The Impact of Urbanization on Farmland Productivity: Implications for China’s Requisition–Compensation Balance of Farmland Policy
<p>Farmland occupied for construction land use (1999–2017).</p> "> Figure 2
<p>Agricultural labor productivity (<b>a</b>) and farmland productivity (<b>b</b>) in rural China (2000–2014).</p> "> Figure 3
<p>International comparison of cereal yield (<b>a</b>) and the relationship between cereal yield and urbanization rate (<b>b</b>) (1961–2017). <b><span class="html-italic">Notes:</span></b> KOR: Korea, Rep.; DEU: Germany; FRA: France; USA: United States; EMU: Euro area; JPN: Japan; IND: India; GBR: United Kingdom; UMC: Upper middle income; CHN: China. Data are collected from the World Bank database.</p> "> Figure 3 Cont.
<p>International comparison of cereal yield (<b>a</b>) and the relationship between cereal yield and urbanization rate (<b>b</b>) (1961–2017). <b><span class="html-italic">Notes:</span></b> KOR: Korea, Rep.; DEU: Germany; FRA: France; USA: United States; EMU: Euro area; JPN: Japan; IND: India; GBR: United Kingdom; UMC: Upper middle income; CHN: China. Data are collected from the World Bank database.</p> "> Figure A1
<p>Counties included in this study.</p> "> Figure A2
<p>County-level farmland productivity in 2000 (<b>a</b>), 2007 (<b>b</b>) and 2014 (<b>c</b>) in China.</p> ">
Abstract
:1. Introduction
2. Stylized Facts
3. Research Method: SFA with Endogeneity and Heterogeneity
4. Data Sources and Empirical Results
4.1. Data Sources
4.2. Regression Results
4.3. Robust Analysis: Total-Factor Farmland Use Efficiency
5. Conclusions and Policy Implications
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Journal Name | Number of Articles Included | Average Impact Factor |
---|---|---|
Land Use Policy | 26 | 3.497 |
Habitat International | 13 | 3.335 |
Journal of Cleaner Production | 7 | 6.319 |
Cities | 4 | 3.452 |
Journal of Rural Studies | 4 | 2.380 |
China Economic Review | 3 | 2.069 |
Computers, Environment and Urban Systems | 2 | 4.655 |
Ecological Indicators | 2 | 4.194 |
Resources, Conservation & Recycling | 2 | 8.086 |
Food Policy | 1 | 3.086 |
International Journal of Project Management | 1 | 4.034 |
Journal of Destination Marketing & Management | 1 | 3.800 |
Journal of Environmental Planning and Management | 1 | 2.093 |
Journal of Housing Economics | 1 | 1.069 |
Land Degradation & Development | 1 | 7.270 |
Landscape and Urban Planning | 1 | 4.994 |
Ocean & Coastal Management | 1 | 2.276 |
Science of the Total Environment | 1 | 4.610 |
Total | 72 | 3.822 |
References
- Seto, K.C.; Güneralp, B.; Hutyra, L.R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl. Acad. Sci. USA 2012, 109, 16083–16088. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- United Nations. World Urbanization Prospects: The 2011 Revision; United Nations Publication: New York, NY, USA, 2012; Volume 1. [Google Scholar]
- Seto, K.C.; Fragkias, M.; Güneralp, B.; Reilly, M.K. A Meta-Analysis of Global Urban Land Expansion. PLoS ONE 2011, 6, e23777. [Google Scholar] [CrossRef] [PubMed]
- Lambin, E.F.; Meyfroidt, P. Global land use change, economic globalization, and the looming land scarcity. Proc. Natl. Acad. Sci. USA 2011, 108, 3465–3472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, P.; Li, M.; Cheng, L. Dynamic response of agricultural productivity to landscape structure changes and its policy implications of Chinese farmland conservation. Resour. Conserv. Recycl. 2020, 156, 104724. [Google Scholar] [CrossRef]
- D’Amour, C.B.; Reitsma, F.; Baiocchi, G.; Barthel, S.; Güneralp, B.; Erb, K.H.; Haberl, H.; Creutzig, F.; Seto, K.C. Future urban land expansion and implications for global croplands. Proc. Natl. Acad. Sci. USA 2017, 114, 8939–8944. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Zhou, Y.; Eom, J.; Yu, S.; Asrar, G.R. Projecting Global Urban Area Growth Through 2100 Based on Historical Time Series Data and Future Shared Socioeconomic Pathways. Earth Futur. 2019, 7, 351–362. [Google Scholar] [CrossRef] [Green Version]
- Rimal, B.; Zhang, L.; Stork, N.; Sloan, S.; Rijal, S. Urban expansion occurred at the expense of agricultural lands in the Tarai region of Nepal from 1989 to 2016. Sustain 2018, 10, 1341. [Google Scholar] [CrossRef] [Green Version]
- Schneider, A.; Mertes, C.M.; Tatem, A.J.; Tan, B.; Sulla-Menashe, D.; Graves, S.J.; Patel, N.N.; Horton, J.A.; Gaughan, A.E.; Rollo, J.T.; et al. A new urban landscape in East-Southeast Asia, 2000–2010. Environ. Res. Lett. 2015, 10, 034002. [Google Scholar] [CrossRef]
- Ministry of Natural Resources of the People’s Republic of China. China Land and Resources Statistical Yearbook (2018); Geological Press: Peking, China, 2018. [Google Scholar]
- Foley, J.A.; De Fries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [Green Version]
- Deng, X.; Huang, J.; Rozelle, S.; Uchida, E. Cultivated land conversion and potential agricultural productivity in China. Land Use Policy 2006, 23, 372–384. [Google Scholar] [CrossRef]
- Jiang, L.; Deng, X.; Seto, K.C. Multi-level modeling of urban expansion and cultivated land conversion for urban hotspot counties in China. Landsc. Urban Plan. 2012, 108, 131–139. [Google Scholar] [CrossRef]
- Wei, Y.D.; Ye, X. Urbanization, urban land expansion and environmental change in China. Stoch. Environ. Res. Risk Assess. 2014, 28, 757–765. [Google Scholar] [CrossRef]
- Wu, Y.; Shan, L.; Guo, Z.; Peng, Y. Cultivated land protection policies in China facing 2030: Dynamic balance system versus basic farmland zoning. Habitat Int. 2017, 69, 126–138. [Google Scholar] [CrossRef]
- Zhao, H.; Zhang, H.; Miao, C.; Ye, X.; Min, M. Linking heat source-sink landscape patterns with analysis of Urban heat Islands: Study on the fast-growing Zhengzhou City in central China. Remote Sens. 2018, 10, 1268. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Ye, X.; Li, J.; Fan, X.; Liu, Q.; Dong, W. Analyzing requisition–compensation balance of farmland policy in China through telecoupling: A case study in the middle reaches of Yangtze River Urban Agglomerations. Land Use Policy 2019, 83, 134–146. [Google Scholar] [CrossRef]
- Liu, Y. Introduction to land use and rural sustainability in China. Land Use Policy 2018, 74, 1–4. [Google Scholar] [CrossRef]
- Lichtenberg, E.; Ding, C. Assessing farmland protection policy in China. Land Use Policy 2008, 25, 59–68. [Google Scholar] [CrossRef]
- Cheng, Q.; Jiang, P.; Cai, L.; Shan, J.; Zhang, Y.; Wang, L.; Li, M.; Li, F.; Zhu, A.; Chen, D. Delineation of a permanent basic farmland protection area around a city centre: Case study of Changzhou City, China. Land Use Policy 2017, 60, 73–89. [Google Scholar] [CrossRef]
- Han, L.; Meng, P.; Jiang, R.; Xu, B.; Zhang, B.; Chen, M. Logical Root, Pattern Exploration and Management Innovation of Balancing Cultivated Land Occupation and Reclamation in the New Era. China L Sci. 2018, 32, 90–96. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, L.; Zhu, A.X.; Lao, C.; Hu, G.; Hu, Y. Scenario farmland protection zoning based on production potential: A case study in China. Land Use Policy 2020, 95, 104581. [Google Scholar] [CrossRef]
- Tang, H.; Yun, W.; Liu, W.; Sang, L. Structural changes in the development of China’s farmland consolidation in 1998–2017: Changing ideas and future framework. Land Use Policy 2019, 89, 104212. [Google Scholar] [CrossRef]
- Sun, R.; Sun, P.; Wu, J.X.; Zhang, J.Q. Effectiveness and limitations of cultivated land requisition-compensation balance policy in China. China Popul. Resour. Environ. 2014, 24, 41–46. [Google Scholar]
- Liu, L.; Liu, Z.; Gong, J.; Wang, L.; Hu, Y. Quantifying the amount, heterogeneity, and pattern of farmland: Implications for China’s requisition-compensation balance of farmland policy. Land Use Policy 2019, 81, 256–266. [Google Scholar] [CrossRef]
- Song, W.; Han, Z.; Deng, X. Changes in productivity, efficiency and technology of China’s crop production under rural restructuring. J. Rural Stud. 2016, 47, 563–576. [Google Scholar] [CrossRef]
- Cheng, L.; Jiang, P.; Chen, W.; Li, M.; Wang, L.; Gong, Y.; Pian, Y.; Xia, N.; Duan, Y.; Huang, Q. Farmland protection policies and rapid urbanization in China: A case study for Changzhou City. Land Use Policy 2015, 48, 552–566. [Google Scholar] [CrossRef]
- Shen, X.; Wang, L.; Wu, C.; Lv, T.; Lu, Z.; Luo, W.; Li, G. Local interests or centralized targets? How China’s local government implements the farmland policy of Requisition–Compensation Balance. Land Use Policy 2017, 67, 716–724. [Google Scholar] [CrossRef]
- Huang, Z.; He, C.; Zhu, S. Do China’s economic development zones improve land use efficiency? The effects of selection, factor accumulation and agglomeration. Landsc. Urban Plan. 2017, 162, 145–156. [Google Scholar] [CrossRef]
- Wu, C.; Wei, Y.D.; Huang, X.; Chen, B. Economic transition, spatial development and urban land use efficiency in the Yangtze River Delta, China. Habitat Int. 2017, 63, 67–78. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Z.; Liu, Y. Spatial shifts in grain production increases in China and implications for food security. Land Use Policy 2018, 74, 204–213. [Google Scholar] [CrossRef]
- Taylor, J.E.; Rozelle, S.; de Brauw, A. Migration and incomes in source communities: A new economics of migration perspective from China. Econ. Dev. Cult. Chang. 2003, 52, 75–101. [Google Scholar] [CrossRef] [Green Version]
- De Brauw, A.; Rozelle, S. Migration and household investment in rural China. China Econ. Rev. 2008, 19, 320–335. [Google Scholar] [CrossRef]
- Feng, S.; Heerink, N.; Ruben, R.; Qu, F. Land rental market, off-farm employment and agricultural production in Southeast China: A plot-level case study. China Econ. Rev. 2010, 21, 598–606. [Google Scholar] [CrossRef]
- Ji, Y.; Hu, X.; Zhu, J.; Zhong, F. Demographic change and its impact on farmers’ field production decisions. China Econ. Rev. 2017, 43, 64–71. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, X. Agricultural productivity increase, rural labor transfer and the linkage development of industry and agriculture. Manag. World 2016, 7, 76–97. [Google Scholar] [CrossRef]
- Yu, W.; Elleby, C.; Zobbe, H. Food security policies in India and China: Implications for national and global food security. Food Secur. 2015, 7, 405–414. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, L.; Chen, X.; Xie, S.; Gao, Y. Fine land-cover mapping in China using Landsat datacube and an operational SPECLib-based approach. Remote Sens. 2019, 11, 1056. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.Y.; Zhuang, D.F.; Luo, D.; Xiao, X. Land-cover classification of China: Integrated analysis of AVHRR imagery and geophysical data. Int. J. Remote Sens. 2003, 24, 2485–2500. [Google Scholar] [CrossRef]
- Jiao, L. Urban land density function: A new method to characterize urban expansion. Landsc. Urban Plan. 2015, 139, 26–39. [Google Scholar] [CrossRef]
- Zhu, X.; Zhang, P.; Wei, Y.; Li, Y.; Zhao, H. Measuring the efficiency and driving factors of urban land use based on the DEA method and the PLS-SEM model—A case study of 35 large and medium-sized cities in China. Sustain. Cities Soc. 2019, 50, 101646. [Google Scholar] [CrossRef]
- Huang, Z.; Du, X.; Salvador, C.; Castillo, Z. How does urbanization a ff ect farmland protection ? Evidence from China. Resour. Conserv. Recycl. 2019, 145, 139–147. [Google Scholar] [CrossRef] [Green Version]
- Deng, Z.; Qin, M.; Song, S. Re-study on Chinese city size and policy formation. China Econ. Rev. 2020, 60, 101390. [Google Scholar] [CrossRef]
- Wu, X.; Ge, P.; Xu, Z. Urbanization and the promotion of agricultural total factor productivity:Heterogeneity and spatial effect. China Popul. Resour. Environ. 2019, 29, 149–156. [Google Scholar]
- Li, W.; Wang, D.; Li, Y.; Zhu, Y.; Wang, J.; Ma, J. A multi-faceted, location-specific assessment of land degradation threats to peri-urban agriculture at a traditional grain base in northeastern China. J. Environ. Manag. 2020, 271, 111000. [Google Scholar] [CrossRef] [PubMed]
- Song, P. Some thoughts on the management innovation of cultivated land occupation and compensation balance in Zhejiang Province. Zhejiang L. Resour. 2019, 26–27. [Google Scholar] [CrossRef]
- Marschall, P.; Flessa, S. Efficiency of primary care in rural Burkina Faso. A two-stage DEA analysis. Health Econ. Rev. 2011, 1, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chan, C.; Sipes, B.; Ayman, A.; Zhang, X.; LaPorte, P.; Fernandes, F.; Pradhan, A.; Chan-Dentoni, J.; Roul, P. Efficiency of Conservation Agriculture Production Systems for Smallholders in Rain-Fed Uplands of India: A Transformative Approach to Food Security. Land 2017, 6, 58. [Google Scholar] [CrossRef]
- Wang, H.J.; Schmidt, P. One-step and two-step estimation of the effects of exogenous variables on technical efficiency levels. J. Product. Anal. 2002, 18, 129–144. [Google Scholar] [CrossRef]
- Simar, L.; Wilson, P.W. Two-stage DEA: Caveat emptor. J. Product. Anal. 2011, 36, 205–218. [Google Scholar] [CrossRef]
- Simar, L.; Wilson, P.W. Statistical Inference in Nonparametric Frontier Models: The State of the Art. J. Product. Anal. 2000, 13, 49–78. [Google Scholar] [CrossRef]
- Cazals, C.; Florens, J.-P.; Simar, L. Nonparametric frontier estimation: A robust approach. J. Econom. 2002, 106, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Simar, L.; Vanhems, A.; Van Keilegom, I. Unobserved heterogeneity and endogeneity in nonparametric frontier estimation. J. Econom. 2016, 190, 360–373. [Google Scholar] [CrossRef]
- Karakaplan, M.U.; Kutlu, L. Endogeneity in panel stochastic frontier models: An application to the Japanese cotton spinning industry. Appl. Econ. 2017, 49, 5935–5939. [Google Scholar] [CrossRef]
- Karakaplan, M.U.; Kutlu, L. Handling endogeneity in stochastic frontier analysis. Econ. Bull. 2017, 37, 889–901. [Google Scholar] [CrossRef] [Green Version]
- Murphy, K.M.; Topel, R.H. Estimation and Inference in Two-Step Econometric Models. J. Bus. Econ. Stat. 2002, 20, 88–97. [Google Scholar] [CrossRef]
- Belotti, F.; Daidone, S.; Ilardi, G.; Atella, V. Stochastic Frontier Analysis using Stata. Stata J. 2013, 13, 719–758. [Google Scholar] [CrossRef] [Green Version]
- Cai, F. Has China’s labor mobility axhauseted its momentum? Chin. Rural Econ. 2018, 9, 2–13. [Google Scholar]
- Greene, W. Reconsidering heterogeneity in panel data estimators of the stochastic frontier model. J. Econom. 2005, 126, 269–303. [Google Scholar] [CrossRef]
- Battese, G.E.; Coelli, T.J. A model for technical inefficiency effects in a stochastic frontier production function for panel data. Empir. Econ. 1995, 20, 325–332. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.L.; Wang, S.C. Total-factor energy efficiency of regions in China. Energy Policy 2006, 34, 3206–3217. [Google Scholar] [CrossRef]
- Chambers, R.G.; Chung, Y.; Färe, R. Benefit and distance functions. J. Econ. Theory 1996, 70, 407–419. [Google Scholar] [CrossRef]
- Färe, R.; Grosskopf, S.; Whittaker, G. Directional output distance functions: Endogenous directions based on exogenous normalization constraints. J. Product. Anal. 2013, 40, 267–269. [Google Scholar] [CrossRef]
- Feng, G.; Serletis, A. Undesirable outputs and a primal Divisia productivity index based on the directional output distance function. J. Econom. 2014, 183, 135–146. [Google Scholar] [CrossRef]
- Atkinson, S.E.; Tsionas, M.G. Directional distance functions: Optimal endogenous directions. J. Econom. 2016, 190, 301–314. [Google Scholar] [CrossRef] [Green Version]
- Pastor, J.T.; Lovell, C.A.K. A global Malmquist productivity index. Econ. Lett. 2005, 88, 266–271. [Google Scholar] [CrossRef]
- Pang, R.Z.; Deng, Z.Q.; Hu, J.L. Clean energy use and total-factor efficiencies: An international comparison. Renew. Sustain. Energy Rev. 2015, 52, 1158–1171. [Google Scholar] [CrossRef]
- Pastor, J.T.; Asmild, M.; Lovell, C.A.K. The biennial Malmquist productivity change index. Socioecon. Plann. Sci. 2011, 45, 10–15. [Google Scholar] [CrossRef]
- Pastor, J.T.; Lovell, C.A.K.; Aparicio, J. Defining a new graph inefficiency measure for the proportional directional distance function and introducing a new Malmquist productivity index. Eur. J. Oper. Res. 2020, 281, 222–230. [Google Scholar] [CrossRef]
- Shestalova, V. Sequential Malmquist indices of productivity growth: An application to OECD industrial activities. J. Product. Anal. 2003, 19, 211–226. [Google Scholar] [CrossRef]
- Deng, Z.; Jiang, N.; Pang, R. Factor-analysis-based directional distance function: The case of New Zealand hospitals. Omega 2019, 102111. [Google Scholar] [CrossRef]
- Cooper, W.W.; Park, K.S.; Pastor, J.T. A range adjusted measure of inefficiency for use with additive models, and relations to other models and measures in DEA. J. Product. Anal. 1999, 11, 5–42. [Google Scholar] [CrossRef]
- Pastor, J.T.; Lovell, C.A.K.; Aparicio, J. Families of linear efficiency programs based on Debreu’s loss function. J. Product. Anal. 2012, 38, 109–120. [Google Scholar] [CrossRef]
- Adler, N.; Volta, N. Accounting for externalities and disposability: A directional economic environmental distance function. Eur. J. Oper. Res. 2016, 250, 314–327. [Google Scholar] [CrossRef]
- United Nations. World Urbanization Prospects: The 2014 Revision; United Nations Publication: New York, NY, USA, 2014. [Google Scholar]
- Hu, Z.; Yang, G.; Xiao, W.; Li, J.; Yang, Y.; Yu, Y. Farmland damage and its impact on the overlapped areas of cropland and coal resources in the eastern plains of China. Resour. Conserv. Recycl. 2014, 86, 1–8. [Google Scholar] [CrossRef]
- Long, H.; Tu, S.; Ge, D.; Li, T.; Liu, Y. The allocation and management of critical resources in rural China under restructuring: Problems and prospects. J. Rural Stud. 2016, 47, 392–412. [Google Scholar] [CrossRef] [Green Version]
1 | In China, the compensation fees for land requisition include land compensation fee, resettlement fee, and compensation fee for attachments and young crops. The land compensation fee is 6 to 10 times the average annual output value of the land before it is requisitioned. The resettlement fee for each agricultural population to be resettled is 4 to 6 times the average annual output value. In addition, the government provides a subsidy of endowment insurance to the land-lost farmers. |
2 | |
3 | The data came from the China Statistical Yearbook (http://www.stats.gov.cn/tjsj/ndsj/). |
4 | The data came from the China Statistical Yearbook (http://www.stats.gov.cn/tjsj/ndsj/). |
5 | The detailed derivations of Equations (9) and (10) are available upon request to the authors. |
6 | Hongkong, Macao and Taiwan are not included. According to the Chinese central government, mainland China had 2851 counties in 2018. Nearly 70% counties are included in this study. |
7 | The large-scale migration of rural labor in China began in the mid-1990s, and the urbanization rate was 30.48% in 1996. According to Cai [58], surplus rural labor became scarce in approximately 2005, which makes the time interval from 2000 to 2014 an appropriate period for study. |
8 | Further details and the efficiency scores are available upon request to the authors. |
9 | A similar index, total-factor energy efficiency, was used by Hu and Wang [61]. |
Variable | Description | Mean | Std. Dev. | Unit | Time Period | Obs | |
---|---|---|---|---|---|---|---|
Variables to calculate agricultural land use efficiency | Agriland | Agricultural land for planting, forestry, animal husbandry and fishery | 26.5318 | 36.0115 | 10,000 ha | 2001–2014, yearly | 29,415 |
Agrilabor | Rural laborers occupied in planting, forestry, animal husbandry and fishery | 12.5207 | 9.7501 | 10,000 person | 2000–2014, yearly | 29,415 | |
Machi | Total power of agricultural machinery | 32.7981 | 35.0660 | 10,000 kw | 2000–2014, yearly | 29,415 | |
Ferti | Consumption of chemical fertilizers | 2.1152 | 2.2128 | 10,000 tons | 2000–2014, yearly | 29,415 | |
Grain | Output of grain | 24.4166 | 27.3292 | 10,000 tons | 2000–2014, yearly | 29,415 | |
Independent variables | Urban_1 | Proportion of rural laborers engaged in off-farm employment | 0.3515 | 0.1722 | - | 2000–2014, yearly | 29,415 |
Urban_2 | Ratio of built-up area to administrative area | 0.0091 | 0.0142 | - | 2004–2011, yearly | 14,609 | |
gdp_21 | Ratio of the output values of secondary and primary industries | 3.2529 | 7.9313 | - | 2000–2014, yearly | 29,415 | |
Agri_income | Net income of rural households per capita of a county | 4655 | 3529 | yuan per capita | 2000–2014, yearly | 29,415 | |
Land_hou | Cultivated land area per household | 1.1972 | 8.7919 | ha per household | 2000–2014, yearly | 29,415 |
Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Urbanization Rate (Urban) is Measure by Urban_1 | Urbanization Rate (Urban) is Measure by Urban_2 | |||||||||||
Coef. | Std. Err. | Coef. | Std. Err. | Coef. | Std. Err. | Coef. | Std. Err. | Coef. | Std. Err. | Coef. | Std. Err. | |
Frontier | ||||||||||||
Constant | 9.377 *** | 0.097 | 10.449 *** | 0.104 | 6.045 *** | 0.075 | 5.910 *** | 0.105 | 7.144 *** | 0.068 | 5.695 *** | 0.108 |
0.061 *** | 0.005 | 0.086 *** | 0.005 | 0.280 *** | 0.005 | 0.225 *** | 0.007 | 0.073 *** | 0.004 | 0.223 *** | 0.007 | |
0.105 *** | 0.005 | 0.016 *** | 0.005 | 0.140 *** | 0.004 | 0.183 *** | 0.005 | 0.246 *** | 0.004 | 0.200 *** | 0.006 | |
0.218 *** | 0.005 | 0.226 *** | 0.004 | 0.429 *** | 0.004 | 0.433 *** | 0.006 | 0.338 *** | 0.004 | 0.437 *** | 0.006 | |
0.068 *** | 0.003 | 0.070 *** | 0.003 | 0.285 *** | 0.004 | 0.326 *** | 0.006 | 0.121 *** | 0.004 | 0.319 *** | 0.006 | |
Inefficiency | ||||||||||||
Constant | 9.617 *** | 0.988 | –2.610 | 2.407 | –35.943 *** | 3.184 | –76.725 *** | 11.983 | –80.086 ** | 30.959 | –103.829 *** | 16.346 |
–1.222 *** | 0.114 | –16.140 *** | 2.163 | –8.264 *** | 0.681 | –3.159 *** | 0.446 | –7.845 ** | 3.648 | –8.923 *** | 1.553 | |
–2.858 *** | 0.400 | –1.216 *** | 0.111 | –0.069 | 0.137 | –0.392 *** | 0.081 | |||||
2.556 *** | 0.138 | 3.752 *** | 0.362 | –1.684 *** | 0.119 | –1.987 *** | 0.290 | 6.836 *** | 1.875 | –2.032 *** | 0.280 | |
0.934 *** | 0.076 | 2.102 *** | 0.245 | 0.709 *** | 0.077 | 0.221 | 0.141 | 1.975 *** | 0.709 | 0.348 ** | 0.147 | |
–2.440 *** | 0.184 | –4.168 *** | 0.502 | 2.507 *** | 0.234 | 5.563 *** | 0.903 | –0.957 | 0.913 | 6.385 *** | 1.008 | |
Standard deviations | ||||||||||||
1.457 *** | 0.012 | 1.304 *** | 0.009 | 0.906 *** | 0.005 | |||||||
1.414 *** | 0.053 | 2.167 *** | 0.132 | 1.550 *** | 0.073 | 2.100 *** | 0.176 | 3.011 *** | 0.491 | 2.146 *** | 0.181 | |
0.090 *** | 0.001 | 0.089 *** | 0.001 | 0.398 *** | 0.003 | 0.394 *** | 0.004 | 0.030 *** | 0.002 | 0.395 *** | 0.004 | |
15.776 *** | 0.053 | 24.324 *** | 0.132 | 3.890 *** | 0.074 | 5.335 *** | 0.176 | 99.308 *** | 0.491 | 5.427 *** | 0.181 |
Model 7 | Model 8 | Model 9 | ||||
---|---|---|---|---|---|---|
Coef. | Std. Err. | Coef. | Std. Err. | Coef. | Std. Err. | |
Urban=Urban_1 | Urban=Urban_2 | |||||
Frontier | ||||||
Constant | 6.323 *** | 0.078 | 6.086 *** | 0.078 | 5.780 *** | 0.116 |
0.265 *** | 0.005 | 0.271 *** | 0.005 | 0.205 *** | 0.008 | |
0.129 *** | 0.004 | 0.141 *** | 0.004 | 0.204 *** | 0.006 | |
0.431 *** | 0.004 | 0.431 *** | 0.004 | 0.437 *** | 0.006 | |
0.305 *** | 0.005 | 0.298 *** | 0.005 | 0.340 *** | 0.007 | |
Inefficiency | ||||||
Constant | –35.194 *** | 3.990 | –35.040 *** | 3.175 | –105.712 *** | 18.144 |
–3.487 *** | 0.323 | –8.341 *** | 0.706 | –9.158 *** | 1.742 | |
–1.279 *** | 0.121 | –0.401 *** | 0.091 | |||
–1.822 *** | 0.180 | –1.634 *** | 0.118 | –1.990 *** | 0.297 | |
0.768 *** | 0.114 | 0.663 *** | 0.075 | 0.426 *** | 0.163 | |
2.504 *** | 0.307 | 2.447 *** | 0.234 | 6.428 *** | 1.105 | |
Standard deviations | ||||||
1.855 *** | 0.108 | 1.518 *** | 0.074 | 2.193 *** | 0.201 | |
0.402 *** | 0.003 | 0.400 *** | 0.003 | 0.395 *** | 0.004 | |
4.617 *** | 0.108 | 3.795 *** | 0.074 | 5.557 *** | 0.201 | |
Endogeneity test | ||||||
–0.021 | 0.015 | –0.034 ** | 0.014 | –0.031 * | 0.016 |
Model 10 | Model 11 | Model 12 | ||||
---|---|---|---|---|---|---|
Fixed | Random | Fixed | Random | Fixed | Random | |
Constant | 1.208 *** | 1.263 *** | 0.099 *** | 0.107 *** | –0.137 *** | –0.124 *** |
0.155 *** | 0.167 *** | 0.009 *** | 0.011 *** | 0.032 *** | 0.036 *** | |
0.025 *** | 0.027 *** | 0.002 *** | 0.003 *** | 0.006 *** | 0.007 *** | |
0.072 *** | 0.056 *** | 0.003 | –0.004 ** | 0.023 *** | 0.012 *** | |
–0.029 *** | –0.028 *** | –0.002 *** | –0.002 *** | –0.006 *** | –0.006 *** | |
–0.034 *** | –0.040 *** | 0.016 *** | 0.015 *** | 0.038 *** | 0.036 *** |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, Z.; Zhao, Q.; Bao, H.X.H. The Impact of Urbanization on Farmland Productivity: Implications for China’s Requisition–Compensation Balance of Farmland Policy. Land 2020, 9, 311. https://doi.org/10.3390/land9090311
Deng Z, Zhao Q, Bao HXH. The Impact of Urbanization on Farmland Productivity: Implications for China’s Requisition–Compensation Balance of Farmland Policy. Land. 2020; 9(9):311. https://doi.org/10.3390/land9090311
Chicago/Turabian StyleDeng, Zhongqi, Qianyu Zhao, and Helen X. H. Bao. 2020. "The Impact of Urbanization on Farmland Productivity: Implications for China’s Requisition–Compensation Balance of Farmland Policy" Land 9, no. 9: 311. https://doi.org/10.3390/land9090311
APA StyleDeng, Z., Zhao, Q., & Bao, H. X. H. (2020). The Impact of Urbanization on Farmland Productivity: Implications for China’s Requisition–Compensation Balance of Farmland Policy. Land, 9(9), 311. https://doi.org/10.3390/land9090311