Validation and Inter-Comparison of Spaceborne Derived Global and Continental Land Cover Products for the Mediterranean Region: The Case of Thessaly
"> Figure 1
<p>Thessaly, the study area, is located in central Greece and presents high landscape and land cover diversity.</p> "> Figure 2
<p>Weighted PA (Producer’s Accuracy) and UA (User’s Accuracy) for all studied LC datasets.</p> "> Figure 3
<p>Qualitatively comparing the studied products by calculating the per-class differences between: (<b>a</b>) CLC2012-GLC30, (<b>b</b>) CLC2012-HRLs, and (<b>c</b>) GLC30-HRLs.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sets
2.3. Accuracy Assessment and Validation Methodology
2.3.1. Sampling Design Based on CLC2012 Level-3
2.3.2. HRLs and GlobeLand30 Data Pre-Processing
2.3.3. Automated Class Label Retrieval
2.3.4. Reference Data Annotation Based on Google Earth Images
2.3.5. Accuracy Assessment and Weighted Metrics
2.3.6. Inter-Comparison between the C/GLC Products
3. Experimental Results and Validation
3.1. Validation Against the Reference Data
3.2. The Contribution of the Confidence Indicator
3.3. Inter-Comparison between the C/GLC Products
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Liu, J.; Mooney, H.; Hull, V.; Davis, S.J.; Gaskell, J.; Hertel, T.; Lubchenco, J.; Seto, K.C.; Gleick, P.; Kremen, C. Systems integration for global sustainability. Science 2015, 347, 1258832. [Google Scholar] [CrossRef] [PubMed]
- Karantzalos, K.; Bliziotis, D.; Karmas, A. A scalable geospatial web service for near real-time, high-resolution land cover mapping. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 4665–4674. [Google Scholar] [CrossRef]
- Fritz, S.; See, L.; McCallum, I.; Schill, C.; Obersteiner, M.; Van der Velde, M.; Boettcher, H.; Havlík, P.; Achard, F. Highlighting continued uncertainty in global land cover maps for the user community. Environ. Res. Lett. 2011, 6, 044005. [Google Scholar] [CrossRef]
- Tsendbazar, N.; de Bruin, S.; Herold, M. Assessing global land cover reference datasets for different user communities. ISPRS J. Photogramm. Remote Sens. 2015, 103, 93–114. [Google Scholar] [CrossRef]
- Verburg, P.H.; Neumann, K.; Nol, L. Challenges in using land use and land cover data for global change studies. Glob. Chang. Biol. 2011, 17, 974–989. [Google Scholar] [CrossRef]
- Chen, J.; Chen, J.; Liao, A.; Cao, X.; Chen, L.; Chen, X.; He, C.; Han, G.; Peng, S.; Lu, M. Global land cover mapping at 30m resolution: A POK-based operational approach. ISPRS J. Photogramm. Remote Sens. 2015, 103, 7–27. [Google Scholar] [CrossRef]
- Mora, B.; Tsendbazar, N.-E.; Herold, M.; Arino, O. Global land cover mapping: Current status and future trends. In Land Use and Land Cover Mapping in Europe; Springer: Dordrecht, The Netherlands, 2014; pp. 11–30. [Google Scholar]
- Herold, M.; Mayaux, P.; Woodcock, C.; Baccini, A.; Schmullius, C. Some challenges in global land cover mapping: An assessment of agreement and accuracy in existing 1 km datasets. Remote Sens. Environ. 2008, 112, 2538–2556. [Google Scholar] [CrossRef]
- Giri, C.; Zhu, Z.; Reed, B. A comparative analysis of the Global Land Cover 2000 and MODIS land cover data sets. Remote Sens. Environ. 2005, 94, 123–132. [Google Scholar] [CrossRef]
- Manakos, I.; Chatzopoulos-Vouzoglanis, K.; Petrou, Z.I.; Filchev, L.; Apostolakis, A. Globalland30 mapping capacity of land surface water in Thessaly, Greece. Land 2014, 4, 1–18. [Google Scholar] [CrossRef]
- McCallum, I.; Obersteiner, M.; Nilsson, S.; Shvidenko, A. A spatial comparison of four satellite derived 1 km global land cover datasets. Int. J. Appl. Earth Obs. Geoinform. 2006, 8, 246–255. [Google Scholar] [CrossRef]
- Bontemps, S.; Defourny, P.; Bogaert, E.V.; Arino, O.; Kalogirou, V.; Perez, J.R. GLOBCOVER 2009-Products Description and Validation Report; UCLouvain and ESA 2011. Available online: http://due.esrin.esa.int/files/GLOBCOVER2009_Validation_Report_2.2.pdf (accessed on 30 November 2015).
- Directorate of Spatial Planning. Evaluation, Revision and Specialization of the Regional Framework for Spatial Planning and Sustainable Development of Thessaly Region; Ministry of the Environment, Energy and Climate Change, General Secretariat of Regional Planning and Urban Development: Athens, Greece, 2013; pp. 1–122.
- EEA—European Environment Agency. Corine Land Cover (CLC) 2012, Version 18/3. Available online: http://land.copernicus.eu/pan-european/corine-land-cover/clc-2012/view (accessed on 30 November 2015).
- EEA—European Environment Agency. Pan-European High Resolution Layers (HRL). Available online: http://land.copernicus.eu/pan-european/high-resolution-layers/view (accessed on 30 November 2015).
- EEA—European Environment Agency. GIO land (GMES/Copernicus initial operations land) High Resolution Layers (HRLs)—Summary of product specifications, Version 7. Available online: http://land.copernicus.eu/user-corner/publications/gio-land-high-resolution-layers (accessed on 30 November 2015).
- NGCC—National Geomatics Center of China. GlobeLand30. Available online: http://www.globallandcover.com/GLC30Download/download_t.aspx (accessed on 30 November 2015).
- Powell, R.; Matzke, N.; De Souza, C.; Clark, M.; Numata, I.; Hess, L.; Roberts, D. Sources of error in accuracy assessment of thematic land-cover maps in the Brazilian Amazon. Remote Sens. Environ. 2004, 90, 221–234. [Google Scholar] [CrossRef]
- Foody, G.M. Sample size determination for image classification accuracy assessment and comparison. Int. J. Remote Sens. 2009, 30, 5273–5291. [Google Scholar] [CrossRef]
- Foody, G.M.; Pal, M.; Rocchini, D.; Garzon-Lopez, C.X.; Bastin, L. The sensitivity of mapping methods to reference data quality: Training supervised image classifications with imperfect reference data. ISPRS Int. J. Geo-Inform. 2016, 5, 199. [Google Scholar] [CrossRef]
- Mayaux, P.; Eva, H.; Gallego, J.; Strahler, A.H.; Herold, M.; Agrawal, S.; Naumov, S.; De Miranda, E.E.; di Bella, C.M.; Ordoyne, C. Validation of the global land cover 2000 map. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1728–1739. [Google Scholar] [CrossRef]
- Silva, J.; Bacao, F.; Foody, G.; Caetano, M. Automatic Selection Of Training Areas Using Existing Land Cover Maps; ESA Special Publication: Paris, France, 2013; p. 184. [Google Scholar]
- Olofsson, P.; Foody, G.M.; Herold, M.; Stehman, S.V.; Woodcock, C.E.; Wulder, M.A. Good practices for estimating area and assessing accuracy of land change. Remote Sens. Environ. 2014, 148, 42–57. [Google Scholar] [CrossRef]
- Arsanjani, J.J.; Tayyebi, A.; Vaz, E. GlobeLand30 as an alternative fine-scale global land cover map: Challenges, possibilities, and implications for developing countries. Habitat Int. 2016, 55, 25–31. [Google Scholar] [CrossRef]
- Brovelli, M.A.; Molinari, M.E.; Hussein, E.; Chen, J.; Li, R. The first comprehensive accuracy assessment of GlobeLand30 at a national level: Methodology and results. Remote Sens. 2015, 7, 4191–4212. [Google Scholar] [CrossRef]
- Caetano, M.; Mata, F.; Freire, S.; Campagnolo, M. Accuracy assessment of the Portuguese CORINE Land Cover map. In Global Developments in Environmental Earth Observation from Space; Marcal, A., Ed.; Millpress: Rotterdam, The Netherlands, 2006; pp. 459–467. [Google Scholar]
- Pérez-Hoyos, A.; García-Haro, F.; San-Miguel-Ayanz, J. Conventional and fuzzy comparisons of large scale land cover products: Application to CORINE, GLC2000, MODIS and GlobCover in Europe. ISPRS J. Photogramm. Remote Sens. 2012, 74, 185–201. [Google Scholar] [CrossRef]
- Sannier, C.; Gallego, J.; Dahmer, J.; Smith, G.; Dufourmont, H.; Pennec, A. Validation of Copernicus high resolution layer on imperviousness degree for 2006, 2009 and 2012. In Proceedings of the International Symposium on Spatial Accuracy Assessment in Natural Resources and Environmental Sciences, Montpellier, France, 5–8 July 2016; pp. 5–8. [Google Scholar]
- Sun, B.; Chen, X.; Zhou, Q. Uncertainty Assessment of GLOBELAND30 Land Cover Data Set Over Central Asia. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, XLI-B8, 1313–1317. [Google Scholar]
- Strahler, A.H.; Boschetti, L.; Foody, G.M.; Friedl, M.A.; Hansen, M.C.; Herold, M.; Mayaux, P.; Morisette, J.T.; Stehman, S.V.; Woodcock, C.E. Global Land Cover Validation: Recommendations for Evaluation and Accuracy Assessment of Global Land Cover Maps; European Communities: Luxembourg, 2006; Volume 51. [Google Scholar]
- Wickham, J.; Stehman, S.; Fry, J.; Smith, J.; Homer, C. Thematic accuracy of the NLCD 2001 land cover for the conterminous United States. Remote Sens. Environ. 2010, 114, 1286–1296. [Google Scholar] [CrossRef]
- Foody, G.M. Status of land cover classification accuracy assessment. Remote sens. Environ. 2002, 80, 185–201. [Google Scholar] [CrossRef]
- Chamoglou, M.; Papadimitriou, T.; Kagalou, I. Key-descriptors for the functioning of a Mediterranean reservoir: The case of the New lake Karla-Greece. Environ. Process. 2014, 1, 127–135. [Google Scholar] [CrossRef]
- Dodouras, S.; Lyratzaki, I.; Papayannis, T. Lake Karla Walking Guide; Med-INA: Athens, Greece, 2014. [Google Scholar]
General Categories | GLC30 2010-30 m | HRLs 2012-20 m | CLC2012 Level 1-100 m |
---|---|---|---|
Artificial Surfaces | Artificial Surfaces (code 80) | Imperviousness | 1. Artificial Surfaces |
Forest | Forest (code 20) | Forest Type | 3. Forest and Semi-Natural Areas (only 3.1.) |
Water | Water Bodies (code 60) | Permanent Water Bodies | 5. Water Bodies (only 5.1.) |
Agriculture | Cultivated Land (code 10) | 2. Agricultural Areas |
CLC2012-Based Stratified Sampling | ||||
---|---|---|---|---|
CLC L1 Classes | L3 Sub-Classes | Area Coverage | # of Samples Per Coverage | Selected # of Samples |
Artificial Surfaces | 1.1.1. Continuous urban fabric | 0.02% | 0.07 | 5 |
1.1.2. Discontinuous urban fabric | 2.53% | 12.12 | 12 | |
1.2.1. Industrial or commercial units | 0.50% | 2.41 | 5 | |
1.2.2. Road and rail networks and associated land | 0.19% | 0.89 | 5 | |
1.2.3. Port areas | 0.00% | 0.02 | 5 | |
1.2.4. Airports | 0.26% | 1.25 | 5 | |
1.3.1. Mineral extraction sites | 0.12% | 0.55 | 5 | |
1.3.2. Dump sites | 0.00% | 0.01 | 5 | |
1.3.3. Construction sites | 0.03% | 0.15 | 5 | |
1.4.1. Green urban areas | 0.00% | 0.02 | 5 | |
1.4.2. Sport and leisure facilities | 0.03% | 0.16 | 5 | |
Sum Artificial Surfaces: | 62 | |||
Agriculture | 2.1.1. Non-irrigated arable land | 24.00% | 115.02 | 115 |
2.1.2. Permanently irrigated land | 25.03% | 120.00 | 120 | |
2.1.3. Rice fields | 0.01% | 0.07 | 5 | |
2.2.1. Vineyards | 0.21% | 1.03 | 5 | |
2.2.2. Fruit trees and berry plantations | 0.80% | 3.84 | 5 | |
2.2.3. Olive groves | 2.62% | 12.58 | 13 | |
2.3.1. Pastures | 1.96% | 9.40 | 9 | |
2.4.2. Complex cultivation patterns | 4.60% | 22.04 | 22 | |
2.4.3. Land principally occupied by agriculture. with significant areas of natural vegetation | 9.11% | 43.68 | 44 | |
Sum Agriculture: | 338 | |||
Forest | 3.1.1. Broad-leaved forest | 13.76% | 65.94 | 66 |
3.1.2. Coniferous forest | 7.94% | 38.05 | 38 | |
3.1.3. Mixed forest | 5.17% | 24.77 | 25 | |
Sum Forest: | 129 | |||
Water | 5.1.1. Water courses | 0.30% | 1.45 | 5 |
5.1.2. Water bodies | 0.80% | 3.82 | 5 | |
Sum Water: | 10 | |||
Total Sum: | 100.00% | Total Sum: | 539 |
CLC2012 Validation-Confidence Level: #1|#2|#3 | ||||||||
---|---|---|---|---|---|---|---|---|
AS | AG | F | W | O/UN | Sum | PA (%) | ||
RD | AS | 33|9|2 | 4|4|2 | 0|0|0 | 0|0|0 | 0|0|0 | 37|13|4 | 89|69|50 |
AG | 1|9|0 | 164|129|10 | 0|0|0 | 0|0|0 | 0|0|0 | 165|138|10 | 99|93|100 | |
F | 0|14|0 | 0|0|1 | 70|35|6 | 0|0|0 | 0|0|0 | 70|49|7 | 100|71|86 | |
W | 0|0|0 | 0|0|0 | 0|0|0 | 7|1|0 | 0|0|0 | 7|1|0 | 100|100|- | |
O/UN | 2|5|1 | 3|7|0 | 3|12|3 | 2|0|0 | 0|0|0 | 10|24|4 | 0|0|0 | |
Sum | 36|37|3 | 171|140|13 | 73|47|9 | 9|1|0 | 0|0|0 | 289|225|25 | ||
UA (%) | 92|24|67 | 96|92|77 | 96|74|67 | 78|100|- | - | OA: | 95%|77%|72% | |
kappa: | 0.91|0.60|0.58 |
HRLs Validation-Confidence Level: #1|#2|#3 | |||||||
---|---|---|---|---|---|---|---|
AS | F | W | O/UN | Sum | PA (%) | ||
RD | AS | 21|6|2 | 3|0|0 | 0|0|0 | 13|7|2 | 37|13|4 | 57|46|50 |
F | 0|0|0 | 70|41|5 | 0|0|0 | 0|8|2 | 70|49|7 | 100|84|71 | |
W | 0|0|0 | 0|0|0 | 5|1|0 | 2|0|0 | 7|1|0 | 71|100|- | |
O/UN | 0|2|0 | 7|12|2 | 0|0|0 | 168|148|12 | 175|162|14 | 96|91|86 | |
Sum | 21|8|2 | 80|53|7 | 5|1|0 | 183|163|16 | 289|225|25 | ||
UA (%) | 100|75|100 | 88|77|71 | 100|100|- | 92|91|75 | OA: | 91%|87%|76% | |
kappa: | 0.84|0.70|0.56 |
GLC30 Validation-Confidence Level: #1|#2|#3 | ||||||||
---|---|---|---|---|---|---|---|---|
AS | AG | F | W | O/UN | Sum | PA (%) | ||
RD | AS | 27|10|3 | 6|3|1 | 0|1|0 | 0|0|0 | 3|0|0 | 36|14|4 | 75|71|75 |
AG | 6|4|0 | 158|132|10 | 0|0|0 | 0|0|0 | 2|1|0 | 166|137|10 | 95|96|100 | |
F | 0|0|0 | 0|13|1 | 73|25|10 | 0|0|0 | 0|3|0 | 73|41|11 | 100|61|91 | |
W | 0|0|0 | 5|1|0 | 0|0|0 | 2|0|0 | 0|0|0 | 7|1|0 | 29|0|- | |
O/UN | 3|0|0 | 4|7|1 | 1|15|4 | 0|0|0 | 1|3|0 | 9|25|5 | 11|12|0 | |
Sum | 36|14|3 | 173|156|13 | 74|41|14 | 2|0|0 | 6|7|0 | 291|218|30 | ||
UA (%) | 75|71|100 | 91|85|77 | 99|61|71 | 100|-|- | 17|43|- | OA: | 90%|78%|77% | |
kappa: | 0.82|0.57|0.65 |
LC Class | PA | UA |
---|---|---|
Artificial Surfaces | ClC2012 (85%) | HRLs (96%) |
Agriculture | ClC2012 (97%) | ClC2012 (95%) |
Forest | HRLs (95%) | ClC2012 (90%) |
Water | ClC2012 (100%) | HRLs & GLC30 (100%) |
LC Map | ClC2012 | HRLs | GLC30 | ||||||
---|---|---|---|---|---|---|---|---|---|
Confidence Level | CL1 | CL2 | CL3 | CL1 | CL2 | CL3 | CL1 | CL2 | CL3 |
# of samples | 289 | 225 | 25 | 289 | 225 | 25 | 291 | 218 | 30 |
OA per CL | 95% | 77% | 72% | 91% | 87% | 76% | 90% | 78% | 77% |
OA | 86% | 89% | 84% | ||||||
Weighted OA | 89% | 90% | 86% |
LC Maps | ClC2012 | HRLs | GLC30 | |||
---|---|---|---|---|---|---|
wPA-PA | wUA-UA | wPA-PA | wUA-UA | wPA-PA | wUA-UA | |
Artificial Surfaces | 4% | 9% | 1% | 2% | 0% | −1% |
Agriculture | 1% | 1% | 0% | 1% | ||
Forest | 4% | 4% | 3% | 2% | 4% | 6% |
Water | 0% | −1% | −1% | 0% | 1% | 0% |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manakos, I.; Karakizi, C.; Gkinis, I.; Karantzalos, K. Validation and Inter-Comparison of Spaceborne Derived Global and Continental Land Cover Products for the Mediterranean Region: The Case of Thessaly. Land 2017, 6, 34. https://doi.org/10.3390/land6020034
Manakos I, Karakizi C, Gkinis I, Karantzalos K. Validation and Inter-Comparison of Spaceborne Derived Global and Continental Land Cover Products for the Mediterranean Region: The Case of Thessaly. Land. 2017; 6(2):34. https://doi.org/10.3390/land6020034
Chicago/Turabian StyleManakos, Ioannis, Christina Karakizi, Ioannis Gkinis, and Konstantinos Karantzalos. 2017. "Validation and Inter-Comparison of Spaceborne Derived Global and Continental Land Cover Products for the Mediterranean Region: The Case of Thessaly" Land 6, no. 2: 34. https://doi.org/10.3390/land6020034