Using Remote Sensing to Quantify Vegetation Change and Ecological Resilience in a Semi-Arid System
<p>Study area situated within the proposed Kavango-Zambezi Transboundary Conservation Area (KAZA).</p> "> Figure 2
<p>Land cover classification for the study region as determined by the IGBP classification [<a href="#B49-land-02-00108" class="html-bibr">49</a>].</p> "> Figure 3
<p>Precipitation regime classes based on precipitation quintiles calculated using the mean annual rainfall from 1972 to 2009. Actual range of data for each quintile (in order of 1–5) : 463.50mm to 523.57 mm, 538.93 mm to 582.2 mm, 575.03 mm to 582.21 mm, 605.71 to 642.93 mm, 657.04 mm to 698.57 mm.</p> "> Figure 4
<p>Hypothetical relationship between mean-variance and vegetation status, adapted from Washington-Allen <span class="html-italic">et al.</span> [<a href="#B27-land-02-00108" class="html-bibr">27</a>].</p> "> Figure 5
<p>Results from the hypergeometric test of the total annual precipitation amounts, based on their water (May–April) for the year from the periods 1950–1970 and 1980–2008.</p> "> Figure 6
<p>Results from mean variance analysis for the entire landscape, with each dot representing one image date, as indicated.</p> "> Figure 7
<p>Results for mean variance analysis for each land cover class (barren/barely vegetated, croplands, wetlands, grasslands, savannas, shrub lands, forest) from the IGBP land cover classes.</p> "> Figure 8
<p>Results for mean variance analysis for each precipitation class (quintiles), with the first quintile representing the driest to the fifth representing the wettest areas on the landscape.</p> "> Figure 9
<p>Results from the NDVI persistence analysis for each of the time steps: (<b>a</b>) 1970–1984, (<b>b</b>) 1984–1990 and (<b>c</b>) 1990–2009; (<b>d</b>) cumulative change in NDVI across the entire time period. These results indicate an initial decrease in NDVI from 1970 to 1984 for the majority of the landscape, followed by increases in NDVI values for much of the study area from 1984 to 1990, followed by mixed changes within the landscape from 1990 to 2009.</p> ">
Abstract
:1. Introduction
Southern African Savannas and Resilience
Indicator Measure | Definition |
---|---|
Elasticity | The period of restoration to a reference condition following a disturbance |
Amplitude | Magnitude of change resulting from a disturbance |
Malleability | Degree to which the state established after a disturbance differs from the original state |
Damping | Pattern of oscillation in a system following disturbance |
2. Materials and Methods
2.1. Study Area
2.2. Data Collection and Analysis
2.2.1. Precipitation Data
2.2.2. Image Collection and Processing
Image Footprint (path/row) | Image Date (mm-dd-yyyy) | Scanner | RMSE | Mosaic Year |
---|---|---|---|---|
187/73 | 06-08-1979 | Landsat MSS | 0.327 | 1970s |
187/74 | 05-18-1976 | Landsat MSS | 0.497 | 1970s |
188/72 | 06-30-1975 | Landsat MSS | 0.498 | 1970s |
188/73 | 06-18-1979 | Landsat MSS | 0.499 | 1970s |
188/74 | 06-12-1975 | Landsat MSS | 0.476 | 1970s |
189/72 | 05-27-1973 | Landsat MSS | 0.496 | 1970s |
189/73 | 05-27-1973 | Landsat MSS | 0.449 | 1970s |
175/72 | 06-09-1984 | Landsat TM | 0.426 | 1984 |
175/72 | 09-05-1990 | Landsat TM | --- | 1990 |
175/72 | 03-26-2009 | Landsat TM | 0.430 | 2009 |
175/73 | 06-09-1984 | Landsat TM | 0.389 | 1984 |
175/73 | 09-05-1990 | Landsat TM | --- | 1990 |
175/73 | 03-26-2009 | Landsat TM | 0.470 | 2009 |
175/74 | 06-09-1984 | Landsat TM | 0.386 | 1984 |
175/74 | 27-03-1992 | Landsat TM | --- | 1990 |
175/74 | 03-26-2009 | Landsat TM | 0.380 | 2009 |
176/72 | 07-02-1984 | Landsat TM | 0.362 | 1984 |
176/72 | 05-13-1989 | Landsat TM | --- | 1990 |
176/72 | 05-20-2009 | Landsat TM | 0.452 | 2009 |
176/73 | 07-02-1984 | Landsat TM | 0.447 | 1984 |
176/73 | 01-04-1991 | Landsat TM | --- | 1990 |
176/73 | 05-20-2009 | Landsat TM | 0.441 | 2009 |
2.2.3. Mean-Variance Analysis
2.2.4. Persistence Analysis
3. Results and Discussion
3.1. Changes in Precipitation
3.2. Mean-Variance Analysis
3.3. Persistence Analysis
3.4. Methodological Mean-Variance Framework for Resilience Context
4. Conclusions
Acknowledgments
Conflict of Interest
References
- Hill, M.J.; Hanan, N.P. Savannas: Biogeographical and Ecological Perspectives. In Ecosystem Function in Savannas: Measuring and Modeling at Landscape to Global Scales; CRC Press: Boca Raton, FL, USA, 2010; pp. 1–10. [Google Scholar]
- Scholes, R.J.; Archer, S.R. Tree-grass interactions in savanna. Ann. Rev. Ecol. Systemat. 1997, 28, 517–544. [Google Scholar] [CrossRef]
- Peters, D.P.C.; Havstad, K.M. Nonlinear dynamics in arid and semi-arid systems: Interactions among drivers and processes across scales. J. Arid Environ. 2006, 65, 196–206. [Google Scholar] [CrossRef]
- Scholes, R.J.; Walker, B.H. An African Savanna: Synthesis of the Nylsvley Study; Cambridge University Press: Cambridge, UK, 1993; pp. 264–267. [Google Scholar]
- Reynolds, J.F.; Smith, D.M.S.; Lambin, E.F.; Turner, B.L., II; Mortimore, M.; Batterbury, S.P.; Downing, T.E.; Dowlatabadi, H.; Fernandez, R.J.; Herrick, J.E.; et al. Global desertification: building a science for dryland development. Science 2007, 316, 847–851. [Google Scholar] [CrossRef]
- Hüttich, C.; Herold, M.; Wegmann, M.; Cord, A.; Strohbach, B.; Schmullius, C.; Dech, S. Assessing effects of temporal compositing and varying observation periods for large-area land-cover mapping in semi-arid ecosystems: Implications for global monitoring. Remote Sens. Environ. 2011, 115, 2445–2459. [Google Scholar] [CrossRef]
- Herold, M.; Mayaux, P.; Woodcock, C.E.; Baccini, A.; Schmullius, C. Some challenges in global land cover mapping: An assessment of agreement and accuracy in existing 1 km datasets. Remote Sens. Environ. 2008, 112, 2538–2556. [Google Scholar] [CrossRef]
- Jung, M.; Henkel, K.; Herold, M.; Churkina, G. Exploiting synergies of global land cover products for carbon cycle modeling. Remote Sens. Environ. 2006, 101, 534–553. [Google Scholar] [CrossRef]
- Lambin, E.F.; Geist, H.J. Land Use and Land Cover Change: Local Processes and Global Impacts; Springer: New York, NY, USA, 2005. [Google Scholar]
- Foody, G.M. Monitoring the magnitude of land-cover change around the southern limits of the Sahara. Photogramm. Eng. Remote Sensing 2001, 67, 841–847. [Google Scholar]
- Chamaille-Jammes, S.; Fritz, H.; Murindagomo, F. Spatial patterns of the NDVI-rainfall relationship at the seasonal and interannual time scales in an African savanna. Int. J. Remote Sens. 2006, 27, 5185–5200. [Google Scholar] [CrossRef]
- Vanacker, V.; Linderman, M.; Lupo, F.; Flasse, S.; Lambin, E. Impact of short term rainfall fluctuation on interannual land cover change in sub-Saharan Africa. Global Ecol. Biogeogr. 2005, 14, 123–135. [Google Scholar] [CrossRef]
- Richard, Y.; Poccard, I. A statistical study of NDVI sensitivity to seasonal and interannual rainfall variations in Southern Africa. Int. J. Remote Sens. 1998, 19, 2907–2920. [Google Scholar] [CrossRef]
- Fuller, D.O.; Prince, S.D. Rainfall and foliar dynamics in tropical southern Africa: Potential impacts of global climatic change on savanna vegetation. Clim. Change 1996, 33, 69–96. [Google Scholar] [CrossRef]
- Townshend, J.R.G.; Justice, C.O. Analysis of the dynamics of African vegetation using the normalized difference vegetation index. Int. J. Remote Sens. 1986, 7, 1435–1445. [Google Scholar] [CrossRef]
- Chavez, F.; Ryan, J.; Lluch-Cota, S.; Niquen, M. From anchovies to sardines and back: Multidecadal change in the Pacific ocean. Science 2003, 299, 217–221. [Google Scholar] [CrossRef]
- Nicholson, S.E. The nature of rainfall variability over Africa on time scales of decades to millenia. Glob. Planet. Change 2000, 26, 137–158. [Google Scholar] [CrossRef]
- Hare, S.R.; Mantua, N.J. Empirical evidence for North Pacific regime shifts 1977 and 1989. Prog. Oceanogr. 2000, 47, 103–145. [Google Scholar] [CrossRef]
- Batisani, N.; Yarnal, B. Rainfall variability and trends in semi-arid Botswana: Implications for climate change adaptation policy. Appl. Geogr. 2010, 30, 483–486. [Google Scholar] [CrossRef]
- Nicholson, S.E.; Leposo, D.; Grist, J. The relationship between El Niño and drought over Botswana. J. Clim. 2001, 14, 323–335. [Google Scholar] [CrossRef]
- Reason, C.J.C.; Mulenga, H.M. Relationships between South African rainfall and SST anomalies in the southwest Indian Ocean. Int. J. Climatol. 1999, 19, 1651–1673. [Google Scholar] [CrossRef]
- Shi, G.; Ribbe, J.; Cai, W.; Cowan, T. Multidecadal variability in the transmission of ENSO signals to the Indian Ocean. Geophys. Res. Lett. 2007, 34, L10610. [Google Scholar]
- Mason, S. El Niño, climate change, and Southern African climate. Environmetrics 2001, 12, 327–345. [Google Scholar] [CrossRef]
- Chown, S. Temporal biodiversity change in transformed landscapes: A southern African perspective. Phil. Trans. R. Soc. 2010, 365, 3729–3742. [Google Scholar] [CrossRef]
- Magadza, C. Climate change: some likely multiple impacts in Southern Africa. Food Policy 1994, 19, 165–191. [Google Scholar] [CrossRef]
- Washington-Allen, R.A.; Ramsey, R.; West, N.E. Spatiotemporal mapping of the dry season vegetation response of sagebrush steppe. Comm. Ecol. 2004, 5, 69–79. [Google Scholar] [CrossRef]
- Washington-Allen, R.A.; Ramsey, R.; West, N.E.; Norton, B.E. Quantification of the ecological resilience of drylands using digital remote sensing. Ecol. Soc. 2008, 13, 33. [Google Scholar]
- Goheen, J.; Young, T.; Keesing, F.; Palmer, T. Consequences of herbivory by native ungulates for the reproduction of a savanna tree. J. Ecol. 2007, 95, 129–138. [Google Scholar]
- Ringrose, S.; Matheson, W.; Tempest, F.; Boyle, T. The development and causes of range degradation features in southeast Botswana using multi-temporal Landsat MSS imagery. Photogramm. Eng. Remote Sensing 1990, 56, 1252–1262. [Google Scholar]
- Adger, W.N.; Hughes, T.P.; Folke, C.; Carpenter, S.; Rockstrom, J. Social-ecological resilience to coastal disasters. Science 2005, 309, 1036–1039. [Google Scholar]
- Carpenter, S.R.; Walker, B.H.; Anderies, J.M.; Abel, N. From metaphor to measurement: Resilience of what to what? Ecosystems 2001, 4, 765–781. [Google Scholar] [CrossRef]
- Westman, W.E.; O’Leary, J. Measures of resilience: the response of coastal sage scrub to fire. Vegetatio 1986, 65, 179–189. [Google Scholar] [CrossRef]
- Simoniello, T.; Lanfredi, M.; Liberti, M.; Coppola, R.; Macchiato, M. Estimation of vegetation cover resilience from satellite timer series. Hydrol. Earth Syst. Sci. Discuss. 2008, 5, 511–546. [Google Scholar] [CrossRef]
- Dougill, A.; Trodd, N. Monitoring and Modelling Open Savannas Using Multisource Information: Analyses of Kalahari Studies. Global Ecol. Biogeogr. 1999, 8, 211–221. [Google Scholar] [CrossRef]
- Frost, P.G.H.; Robertson, F. Fire: The Ecological Effects of Fire in Savannas. In Determinants of Tropical Savannas; Walker, T.S., Walker, B.H., Eds.; IRL Press: Oxford, UK, 1987; pp. 93–140. [Google Scholar]
- Walker, B.H.; Noy-Meir, I. Aspects of the Stability and Resilience of Savanna Ecosystems. In Ecology of Tropical Savannas; Huntley, B.J., Walker, B.H., Eds.; Springer Verlag: Berlin, Germany/New York, NY, USA, 1982; pp. 577–590. [Google Scholar]
- Martiny, N.; Camberlin, P.; Richard, Y.; Philippon, N. Compared regimes of NDVI and rainfall in semi-arid regions of Africa. Int. J. Remote Sens. 2006, 27, 5201–5223. [Google Scholar]
- Farrar, T.J.; Nicholson, S.E.; Lare, A.R. The influence of soil type on the relationships between NDVI, rainfall, and soil moisture in semiarid Botswan. II. NDVI response to soil moisture. Remote Sens. Environ. 1994, 50, 121–133. [Google Scholar] [CrossRef]
- Scanlon, T.M.; Caylor, K.K.; Manfreda, S.; Levin, S.A.; Rodriguez-Iturbe, I. Dynamic response of grass cover to rainfall variability: implications for the function and persistence of savanna ecosystems. Adv. Water Resour. 2005, 28, 291–302. [Google Scholar] [CrossRef]
- Stige, L.; Stave, J.; Chan, K.; Ciannelli, L.; Pettorelli, N.; Glantz, M.; Herren, H. The effect of climate variation on agro-pastoral production in Africa. Proc. Natl. Acad. Sci. USA 2006, 103, 3049–3053. [Google Scholar]
- Area, Kavango-Zambezi Transfrontier Conservation. Mitigation of Human-Elephant Conflict in the Kavango-Zambezi Transfrontier Conservation Area through Community Based Problem Animal Control, with Particular Reference to the Use of Chilli Peppers. 2006. Available online: http://www.dlist-benguela.org/sites/default/files/doclib/human%20elephant%20conflict%20TFCA.pdf (Accessed on 3 August 2013).
- Gaughan, A.E.; Waylen, P.R. Spatial and temporal precipitation variability in the Okavango-Kwando-Zambezi catchment, southern Africa. J. Arid Environ. 2012, 82, 19–30. [Google Scholar] [CrossRef]
- Archibald, S.; Scholes, R.J. Leaf green-up in a semi-arid African savanna—Separating tree and grass responses to environmental cues. J. Veg. Sci. 2007, 181, 583–594. [Google Scholar]
- Jensen, J.R. Introductory Digital Image Processing: A Remote Sensing Perspective, 3rd ed; Prentice-Hall: New York, NY, USA, 2005. [Google Scholar]
- Green, G.M.; Schweik, C.M.; Randolf, J.C. Retrieving Land-Cover Change Information from Landsat Satellite Images by Minimizing Other Sources of Reflectance Variability. In Seeing the Forest and the Trees: Human–Environment Interactions in Forest Ecosystems; Moran, E.F., Ostrom, E., Eds.; MIT Press: Cambridge, MA, USA, 2005. [Google Scholar]
- Markham, B.L.; Barker, J.L. Landsat MSS and TM post-calibration dynamic rangers, exoatmospheric reflectance and at-satellite temperatures. EOSAT Landsat Tech. Notes 1986, 1, 3–8. [Google Scholar]
- Guerschman, J.P.; Hill, M.J.; Renzullo, L.J.; Barrett, D.J.; Marks, A.S.; Botha, E.J. Estimating fractional cover of photosynthetic vegetation, non-photosynthetic vegetation and bare soil in the Australian tropical savanna region upscaling the EO-1 Hyperion and MODIS sensors. Remote Sens. Environ. 2009, 113, 928–945. [Google Scholar] [CrossRef]
- Schmidt, H.; Karnieli, A. Remote Sensing of the seasonal variability of vegetation in a semi-arid environment. J. Arid Environ. 2000, 45, 43–59. [Google Scholar] [CrossRef]
- Running, S.W.; Loveland, T.L.; Pierce, L. A vegetation classification logic based on remote sensing for use in global biogeochemical models. Ambio 1994, 23, 77–81. [Google Scholar]
- Sedano, F.; Gong, P.; Ferrao, M. Land cover assessment with MODIS imagery in southern African Miombo ecosystems. Remote Sens. Environ. 2005, 98, 429–441. [Google Scholar] [CrossRef]
- Adler, R.F.; Huffman, G.J.; Change, A.; Ferraro, R.; Xie, P.-P.; Janowiak, J.; Rudolf, B.; Schneider, U.; Curtis, S.; Bolvin, D.; et al. The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeorol. 2003, 4, 1147–1167. [Google Scholar] [CrossRef]
- Curtis, S.; Adler, R.F. ENSO indices based on patterns of satellite-derived precipitation. J. Clim. 2000, 13, 2786–2793. [Google Scholar] [CrossRef]
- Pickup, G.; Foran, B.D. The use of spectral and spatial variability to monitor cover change on inert landscapes. Remote Sens. Environ. 1987, 23, 361–363. [Google Scholar]
- Lanfredi, M.; Simoniello, T.; Macchiato, M. Temporal persistence in vegetation cover changes observed from satellite: Development of an estimation procedure in the test site of the Mediterranean Italy. Remote Sens. Environ. 2004, 93, 565–576. [Google Scholar] [CrossRef]
- Swanson, K.L.; Tsonis, A.A. Has the climate recently shifted? Geophys. Res. Lett. 2009, 36, L06711. [Google Scholar] [CrossRef]
- Meyer, K.; Wiegand, K.; Wards, D.; Moustakas, A. The rhythm of savanna patch dynamics. J. Ecol. 2007, 95, 1306–1315. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Cui, X.; Gibbes, C.; Southworth, J.; Waylen, P. Using Remote Sensing to Quantify Vegetation Change and Ecological Resilience in a Semi-Arid System. Land 2013, 2, 108-130. https://doi.org/10.3390/land2020108
Cui X, Gibbes C, Southworth J, Waylen P. Using Remote Sensing to Quantify Vegetation Change and Ecological Resilience in a Semi-Arid System. Land. 2013; 2(2):108-130. https://doi.org/10.3390/land2020108
Chicago/Turabian StyleCui, Xia, Cerian Gibbes, Jane Southworth, and Peter Waylen. 2013. "Using Remote Sensing to Quantify Vegetation Change and Ecological Resilience in a Semi-Arid System" Land 2, no. 2: 108-130. https://doi.org/10.3390/land2020108
APA StyleCui, X., Gibbes, C., Southworth, J., & Waylen, P. (2013). Using Remote Sensing to Quantify Vegetation Change and Ecological Resilience in a Semi-Arid System. Land, 2(2), 108-130. https://doi.org/10.3390/land2020108