Effects of Freeze–Thaw and Dry–Wet Cycles on the Collapsibility of the Ili Loess with Variable Initial Moisture Contents
<p>Location and sampling map of the research area. ((<b>a</b>): Map of China; (<b>b</b>): Studied area; (<b>c</b>): The Haynd Saya Gorge; (<b>d</b>): Sampling photos; (<b>e</b>): Sampling point characteristics).</p> "> Figure 2
<p>(<b>a</b>): The particle size distribution curve. (<b>b</b>): The compaction curve.</p> "> Figure 3
<p>Temperature path diagram of freeze–thaw cycle.</p> "> Figure 4
<p>Process of uniaxial compression test and microscopic test.</p> "> Figure 5
<p>Calibration of moisture content.</p> "> Figure 6
<p>Analysis curves of influence of F-T cycles on loess collapsibility deformation. ((<b>a</b>): w = 6%. (<b>b</b>): w = 10%. (<b>c</b>): w = 14%. (<b>d</b>): w = 18%. (<b>e</b>): w = 22%).</p> "> Figure 7
<p>Analysis curves of influence of W-D cycles on loess collapsibility deformation. ((<b>a</b>): w = 6%. (<b>b</b>): w = 10%. (<b>c</b>): w = 14%. (<b>d</b>): w = 18%. (<b>e</b>): w = 22%).</p> "> Figure 8
<p>Analysis curves of influence of moisture content on loess collapsibility deformation under varying F-T cycles. ((<b>a</b>): N = 0. (<b>b</b>): N = 1. (<b>c</b>): N = 3. (<b>d</b>): N = 6. (<b>e</b>): N = 10. (<b>f</b>): N = 20).</p> "> Figure 9
<p>Analysis curves of influence of moisture content on loess collapsibility deformation under varying W-D cycles. ((<b>a</b>): N = 0. (<b>b</b>): N = 1. (<b>c</b>): N = 3. (<b>d</b>): N = 6. (<b>e</b>): N = 10. (<b>f</b>): N = 20).</p> "> Figure 10
<p>SEM images of representative samples under different F-T cycles. ((<b>a</b>): 0 cycles. (<b>b</b>): 6 cycles. (<b>c</b>): 10 cycles. (<b>d</b>): 20 cycles.)</p> "> Figure 11
<p>SEM images of representative samples under different W-D cycles. ((<b>a</b>): 0 cycles. (<b>b</b>): 6 cycles. (<b>c</b>): 10 cycles. (<b>d</b>): 20 cycles.)</p> "> Figure 12
<p>The relationship between changes in the microscopic structural parameters of loess and different cyclic modes and numbers: (<b>a</b>) fractal dimension of pores, (<b>b</b>) pore area ratio, (<b>c</b>) mean pore diameter, (<b>d</b>) particle roundness.</p> "> Figure 13
<p>Variation in porosity of soil samples under different cycling modes.</p> "> Figure 14
<p>Microevolution of the loess under F-T cycles.</p> "> Figure 15
<p>Microevolution of the loess under W-D cycles.</p> "> Figure 16
<p>Field deformation failure mode of loess under dry–wet and freeze–thaw effects and slope instability deformation. ((<b>a</b>) layered ice crystals. (<b>b</b>) reticulated ice crystals. (<b>c</b>) net peeling. (<b>d</b>): block spalling. (<b>e</b>) block spalling. (<b>f</b>) hard shell. (<b>g</b>) slope failure of tower structure. (<b>h</b>) mud flow at slope toe).</p> ">
Abstract
:1. Introduction
2. Experimental Program
2.1. Raw Materials and Preparation of Samples
2.2. Freeze–Thaw Cycling (F-T) Test
2.3. Dry–Wet Cycling (W-D) Test
2.4. Uniaxial Compression Test
2.5. Scanning Electron Microscope (SEM) Testing
2.6. Nuclear Magnetic Resonance (NMR) Testing
3. Compression Test Results
3.1. Influence of F-T Cycles
3.2. Influence of W-D Cycles
3.3. Influence of Initial Moisture Content
4. Scanning Electron Microscopy (SEM) Test Results
4.1. Qualitative Analysis of Microstructure
- Freeze–Thaw Cycles
- Dry–Wet Cycles
4.2. Quantitative Analysis of Microstructure
- Freeze–Thaw Cycles
- Dry–Wet Cycles
5. Nuclear Magnetic Resonance (NMR) Test Results
5.1. Effects of F-T Cycles on Porosity Variation
5.2. Effects of W-D Cycles on Porosity Variation
6. Theoretical Discussions
6.1. Collapsibility Mechanism of Loess Under F-T Cycles
6.2. Collapsibility Mechanism of Loess Under W-D Cycles
6.3. Comparison Analysis
6.4. Correlation Between Landslide Geological Environment and Laboratory Results
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ruiz-Fernández, J.A.; Oliva, M.; Hughes, P. Factors influencing the development of microtextures on cold-climate aeolian sediments. Permafr. Periglac. Process. 2019, 30, 246–247. [Google Scholar]
- Song, Y.Y.; Zhu, P.N.; Lu, T.H.; Qi, C.G. Experimental Study of Wetting-Drying Cycle on Deformation Behaviors of Unsaturated Remoulded Clay. Chin. J. Undergr. Space Eng. 2022, 18, 1219–1225+1240. [Google Scholar]
- Lei, Y.; Long, A.H.; Deng, M.J.; Li, X.Q.; Zhang, Y. Analyses of the Climate Change and lts lmpact on Water Resources in the Middle Reaches of lrtysh River during 1926–2009. J. Glaciol. Geocryol. 2012, 34, 912–919. [Google Scholar]
- Zhu, J.; Han, S.; Zhang, H. Compression behavior and structure of undisturbed Q2 loess under wet-dry cycles. Soils Found. 2022, 62, 101165. [Google Scholar] [CrossRef]
- Ni, W.; Yuan, K.; Lü, X.; Yuan, Z.H. Comparison and quantitative analysis of microstructure parameters between original loess and remoulded loess under different wetting-drying cycles. Sci. Rep. 2020, 10, 5547. [Google Scholar] [CrossRef]
- Zhang, A.J.; Wang, Y.G.; Xing, Y.C.; Yu, C.L.; Zhao, Q.Y. Fitting models for soil-water characteristic curve of total and matrix suctions of Ili loess. Chin. J. Geotech. Eng. 2019, 41, 1040–1049. [Google Scholar]
- Zhu, S.; Ying, P.; Wang, W.; Wei, Y.; Shao, H.; Huang, Z.; Zhuang, M.; Shi, A. Mechanism of Freeze-thaw Loess Landslide in Ili River Valley, Xinjiang. Acta Geosci. Sin. 2019, 40, 339–349. [Google Scholar]
- Niu, L.S.; Zhang, A.J.; Wang, Y.G.; Ren, W.Y.; Zhao, J.M.; Zhao, Q.Y. Critical state characteristics of high soluble salt unsaturated undisturbed Ili loess. Rock Soil Mech. 2020, 41, 2647–2658. [Google Scholar]
- An, P.; Xing, Y.C.; Zhang, A.J.; Jin, C.; Cheng, D. Research on Evaluation of Self-weight Collapsibility for Large-thickness Collapsible Loess Using Centrifugal Model Test. Adv. Eng. Sci. 2016, 48, 23–30. [Google Scholar]
- Li, Z.; Qi, Z.; Qi, S.; Zhang, L.; Hou, X. Microstructural changes and micro–macro-relationships of an intact, compacted and remolded loess for land-creation project from the Loess Plateau. Environ. Earth Sci. 2021, 80, 593. [Google Scholar] [CrossRef]
- Wang, H.M.; Ni, W.K.; Yuan, K.Z.; Li, L.; Nie, Y.P.; Guo, Y.X. Microstructure evolution of loess under multiple collapsibility based on nuclear magnetic resonance and scanning electron microscopy. J. Mt. Sci. 2021, 18, 2612–2625. [Google Scholar] [CrossRef]
- Wang, Q.; Ma, W.; Zhang, Z.; Zhao, S.-P.; Li, G.-Y.; Mao, Y.-C. Research on the Secondary Collapse Properties of Loess under Freeze-Thaw Cycle. J. Glaciol. Geocryol. 2013, 35, 376–382. [Google Scholar]
- Song, C.X.; Qi, J.; Liu, F.Y. Influence of freeze-thaw on mechanical properties of Lanzhou loess. Rock Soil Mech. 2008, 29, 1077. [Google Scholar]
- Qi, J.L.; Ma, W. Influence of freezing-thawing on strength of overconsolidated soils. Chin. J. Geotech. Eng. 2006, 28, 2082–2086. [Google Scholar]
- Gu, Q.; Wang, J.D.; Si, D.D.; Xu, Y.J.; Chen, P.; Li, B. Effect of freeze-thaw cycles on collapsibility of loess under different moisture contents. Chin. J. Geotech. Eng. 2016, 38, 1187–1192. [Google Scholar]
- Chamberlain, E.J.; Gow, A.J. Effect of freezing and thawing on the permeability and structure of soils. Eng. Geol. 1979, 13, 73–92. [Google Scholar] [CrossRef]
- Malusis, M.A.; Yeom, S.; Evans, J.C. Hydraulic conductivity of model soil–bentonite backfills subjected to wet–dry cycling. Can. Geotech. J. 2011, 48, 1198–1211. [Google Scholar] [CrossRef]
- Zhang, F.Z.; Chen, X.P. Influence of repeated drying and wetting cycles on mechanical behaviors of unsaturated soil. Chinese J. Geotech. Eng. 2010, 32, 41–46. [Google Scholar]
- Liu, H.T.; Zhang, A.J.; Duan, T.; Lian, J.B.; Dong, X.H. The influence of alternate dry-wet on the strength and permeability of remolded loess. Hydro-Sci. Eng. 2010, 4, 38–42. [Google Scholar]
- Sillanpaa, M.; Webber, W.R. The effect of freezing-thawing and wetting-drying cycles on soil aggregation. Can. J. Soil Sci. 1961, 41, 182–187. [Google Scholar] [CrossRef]
- Mao, Y.C.; Li, G.Y.; Lei, J.X. Experimental Study on the Effects of Wetting-drying Cycles of Compacted Loess. Int. Conf. Civ. Eng. Build. Mater. 2014, 831, 326–330. [Google Scholar] [CrossRef]
- Niu, Z.L.; Xu, J.; Li, Y.F.; Wang, Z.F.; Wang, B. Strength deterioration mechanism of bentonite modified loess after wetting–drying cycles. Sci. Rep. 2022, 12, 3130. [Google Scholar] [CrossRef]
- Zhang, S.M.; Zheng, J.G. The Deformation Characteristics of CollapsibleLoess during Moistening Process. Chin. J. Geotech. Eng. 1990, 12, 21–31. [Google Scholar]
- Alfi, A.A.S. Mechanical and Electron Optical Properties of a Stabilized Collapsible Soil in Tucson (Microscopy, Lime-Stabilization); The University of Arizona: Tucson, AZ, USA, 1984. [Google Scholar]
- Houston, S.L.; Houston, W.N.; Spadola, D.J. Prediction of field collapse of soils due to wetting. J. Geotech. Eng. 1988, 114, 40–58. [Google Scholar] [CrossRef]
- Rogers, C.D.F.; Dijkstra, T.A.; Smalley, I.J. Hydroconsolidation and subsidence of loess: Studies from China, Russia, North America and Europe. Eng. Geol. 1994, 37, 83–113. [Google Scholar] [CrossRef]
- Gao, G.R. Study of the microstructures and the collapse mechanism in loess soil from Lanzhou. J. Lanzhou Univ. 1979, 6, 123–134. (In Chinese) [Google Scholar]
- Janisov. Architectural Properties of Loess and Loess Like Loam; Geological Publishing House: Beijing, China, 1956. [Google Scholar]
- Tadepalli, R.; Fredlund, D.G. The collapse behavior of a compacted soil during inundation. Can. Geotech. J. 1991, 28, 477–488. [Google Scholar] [CrossRef]
- Gao, G.R. The microstructures of loess in China. Chin. Sci. Bull. 1980, 945–948. [Google Scholar]
- Gao, G.R. Classification of microstructure of loess in China and their collapsibility. Sci. Sin. A 1981, 24, 962–974. [Google Scholar]
- Gao, G.R. Microstructure of loess soil in China relative to geographic and geologic environment. Acta Geol. Sin. 1984, 58, 265. (In Chinese) [Google Scholar]
- Gao, G.R. A Structure Theory for Collapsing Deformation of Loess Soils. Chin. J. Geotech. Eng. 1990, 12, 1–10. [Google Scholar]
- Li, G.Y.; Ma, W.; Mu, Y.; Mao, Y.; Chen, Z.; Wang, F.; Fang, J. Progress and prospects of the research on collapsibility of compacted loess in seasonally frozen ground regions. J. Glaciol. Geocryol. 2014, 36, 934–943. [Google Scholar]
- Zhang, Y.; Song, Z.; Chen, H.; Ruan, L.; He, S. Experimental study on collapsible and structural characteristics of artificially prepared loess material. Sci. Rep. 2023, 13, 4113. [Google Scholar] [CrossRef] [PubMed]
- Sun, G.Z. A Preliminary Study on the Properties of Loess in Several Northwest Regions of China. Hydrogeol. Eng. Geol. 1957, 1–7+13. [Google Scholar]
- Lin, Z.G.; Shu, T.K. Preliminary Discussion on the Collapsibility of Loess in Northwest China. Hydrogeol. Eng. Geol. 1958, 1–7. [Google Scholar]
- Zhang, Z.G. Research on the microstructure of loess soil in China. Acta Geol. Sin. 1964, 357–369+375. [Google Scholar]
- Miao, T.D.; Wang, Z.G. Deformation mechanism of collapsible loess considering microstructure instability. Sci. China Ser. B 1990, 20, 86–96. [Google Scholar]
- Zhu, H.Z. Several Characteristics of Particle and Structure of Malan Loess in the Middle Reaches of the Yellow River: Observations by Oil Immersion Light Slice Method. Chin. J. Geol. 1963, 88–100+102. [Google Scholar]
- Gao, G.R. Formation and development of the structure of collapsing loess in China. Eng. Geol. 1988, 25, 235–245. [Google Scholar]
- Tovey, N.K. A digital computer technique for orientation analysis of micrographs of soil fabric. J. Microsc. 1990, 120, 303–315. [Google Scholar] [CrossRef]
- Smart, P.; Tovey, N.K. Electron Microscopy of Soils and Sediments: Techniques; Oxford University Press: Oxford, UK, 1982. [Google Scholar]
- Yang, H.; Xie, W.L.; Liu, Q.Q.; Zhu, R.S.; Liu, Y.Y. Three-stage collapsibility evolution of Malan loess in the Loess Plateau. CATENA 2022, 217, 106482. [Google Scholar] [CrossRef]
- Li, X.A.; Li, L.; Song, Y.; Hong, B.; Wang, L.; Sun, J. Characterization of the mechanisms underlying loess collapsibility for land-creation project in Shaanxi Province, China—A study from a micro perspective. Eng. Geol. 2018, 249, 77–88. [Google Scholar] [CrossRef]
- Hu, R.L.; Guan, G.; Li, X.; Zhang, L. Microstructure effect on the subsidence of loess. J. Eng. Geol. 1999, 7, 161–167. [Google Scholar]
- Osipov, V.I.; Nikolaeva, S.K.; Sokolov, V.N. Microstructural changes associated with thixotropic phenomena in clay soils. Géotechnique 1984, 34, 293–303. [Google Scholar] [CrossRef]
- Wang, M.; Bai, X.H. Collapse property and microstructure of loess. In Proceedings of the Advances in Unsaturated Soil. Seepage and Environmental Geotechnics, Shanghai, China, 6–8 June 2006; ASCE: Reston, VA, USA, 2006; pp. 111–118. [Google Scholar]
- Ministry of Water Resources of the PRC. Standard for Soil Testing Methods; China Planning Press: Beijing, China, 1999. [Google Scholar]
- Li, G.Y.; Ma, W.; Mu, Y.H.; Zhou, C.L.; Mao, Y.C. Process and Mechanism of Impact of Freezing and Thawing Cycle on Collapse Deformation of Compacted Loess. China J. Highw. Transp. 2011, 24, 1–5+10. [Google Scholar]
- Qi, J.; Vermeer, P.A.; Cheng, G. A review of the influence of freeze-thaw cycles on soil geotechnical properties. Permafr. Periglac. Process 2006, 17, 245–252. [Google Scholar] [CrossRef]
- Viklander, P. Permeability and volume changes in till due to cyclic freeze/thaw. Can. Geotech. J. 1998, 35, 471–477. [Google Scholar] [CrossRef]
- Wang, Y.Y. Loess and Quaternary Geology; Shaanxi People’s Publishing House: Xi’an, China, 1982. [Google Scholar]
- Li, P.; Vanapalli, S.; Li, T. Review of collapse triggering mechanism of collapsible soils due to wetting. J. Rock Mech. Geotech. Eng. 2016, 8, 256–274. [Google Scholar] [CrossRef]
- Ni, W.K.; Shi, H.Q. Influence of freezing-thawing cycles on micro-structure and shear strength of loess. J. Glaciol. Geocryol. 2014, 36, 922–927. [Google Scholar]
- Hu, R.L.; Li, X.Q.; Guan, G.L.; Ye, H. Progress in Quantitative Research on the Microstructure of Cohesive Soil. In Proceedings of the Fifth National Conference on Engineering Geology; 1996; Volume 3, pp. 497–502. [Google Scholar]
- Hu, R.L. Quantitative Model of Microstructure and Engineering Geological Characteristics of Cohesive Soil; Beijing Geol. Press: Beijing, China, 1995; Volume 6, pp. 3–13. [Google Scholar]
- Shao, X.X.; Zhang, H.Y.; Tan, Y. Collapse Behavior and Microstructural Alteration of Remolded Loess under Graded Wetting Tests. Eng. Geol. 2018, 233, 11–22. [Google Scholar] [CrossRef]
- Gao, L.X.; Luan, M.T.; Li, S.Q. Analysis of Microstructure Parameters of Collapsible Loess Based on SEM Images. J. Converg. Inf. Technol. 2011, 6, 32–43. [Google Scholar]
- Kut, A.A.; Woronko, B.; Spektor, V.V.; Klimova, I.V. Grain-surface microtextures in deposits affected by periglacial conditions. Micron 2021, 146, 103067. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Li, G.Y.; Mu, Y.H.; Wu, Y.H.; Fan, S.Z. Study on collapse characteristic of compacted loess subjected to cyclic drying and wetting. J. Glaciol. Geocryol. 2016, 38, 416–423. [Google Scholar]
Parameters | Value |
---|---|
Specific gravity, Gs | 2.69 |
Density, (g·cm−3) | 1.36 |
Maximum dry density, (g·cm−3) | 1.86 |
Moisture content, (%) | 18.70 |
Optimum moisture content, (%) | 17.60 |
Void ratio, e | 1.01 |
Liquid limit, (%) | 28.10 |
Plastic limit, (%) | 19.10 |
Plasticity index, | 9.00 |
Liquidity index, | −0.04 |
Grain-size distribution (%) | |
Sand content (greater than 0.075 mm) | 43.63 |
Silt content (0.005–0.075 mm) | 52.16 |
Clay content (less than 0.005 mm) | 4.22 |
Main minerals (%) | |
Quartz | 28.1 |
Calcite | 21.1 |
Albite | 19.5 |
Muscovite | 15 |
Clinopyroxene | 10.5 |
Types | Classification Criteria () | Collapse Degree |
---|---|---|
Non-collapsible loess | < 0.015 | None |
Collapsible loess | 0.015 ≤ ≤ 0.03 | Slight |
0.03 ≤ ≤ 0.07 | Medium | |
> 0.07 | Strong |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, L.; Zhang, Z.; Liu, C.; Zhang, Y.; Lv, Q.; Zhang, Y.; Chen, K.; Shi, G.; Huang, J. Effects of Freeze–Thaw and Dry–Wet Cycles on the Collapsibility of the Ili Loess with Variable Initial Moisture Contents. Land 2024, 13, 1931. https://doi.org/10.3390/land13111931
Cheng L, Zhang Z, Liu C, Zhang Y, Lv Q, Zhang Y, Chen K, Shi G, Huang J. Effects of Freeze–Thaw and Dry–Wet Cycles on the Collapsibility of the Ili Loess with Variable Initial Moisture Contents. Land. 2024; 13(11):1931. https://doi.org/10.3390/land13111931
Chicago/Turabian StyleCheng, Lilong, Zizhao Zhang, Chenxin Liu, Yongliang Zhang, Qianli Lv, Yanyang Zhang, Kai Chen, Guangming Shi, and Junpeng Huang. 2024. "Effects of Freeze–Thaw and Dry–Wet Cycles on the Collapsibility of the Ili Loess with Variable Initial Moisture Contents" Land 13, no. 11: 1931. https://doi.org/10.3390/land13111931
APA StyleCheng, L., Zhang, Z., Liu, C., Zhang, Y., Lv, Q., Zhang, Y., Chen, K., Shi, G., & Huang, J. (2024). Effects of Freeze–Thaw and Dry–Wet Cycles on the Collapsibility of the Ili Loess with Variable Initial Moisture Contents. Land, 13(11), 1931. https://doi.org/10.3390/land13111931