Pre-Harvest Corn Grain Moisture Estimation Using Aerial Multispectral Imagery and Machine Learning Techniques
<p>Corn trial plots at Tidewater Agricultural Research and Extension Center in Suffolk, VA, imaged using aerial multispectral platform.</p> "> Figure 2
<p>Flowchart showing steps of aerial multispectral image analysis and estimation of corn grain moisture using statistical and machine learning model.</p> "> Figure 3
<p>(<b>a</b>) Principal component analysis biplot of 24 vegetation indices and five reflectance features accounting for a total of 95.60% of the variability in the data, (<b>b</b>) intercorrelation heat map between spectral features, and (<b>c</b>) final selected input features after dimensionality reduction.</p> "> Figure 4
<p>Plots showing measured and estimated CGM using REFs+VIs as input group for models validated over (<b>a</b>) the test dataset at 50:50, (<b>b</b>) train dataset at 95:5, and (<b>c</b>) entire dataset at 95:5 splits.</p> "> Figure 5
<p>Plots of (<b>a</b>) Pearson correlation (r), and (<b>b</b>) Relative root mean square error (rRMSE) summarizing the performance of six corn grain moisture estimation models for ten train–test data split ratios, and for two input groups (REFs, REFs+VIs) over three validation datasets (entire, test, train).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Details
2.2. Aerial Image Acquisition
2.3. Image Analysis
Pre-Processing and Feature Extraction
2.4. Data Analysis and CGM Estimation
3. Results
3.1. Crop Reflectance and Vegetation Index Feature Evaluation
3.2. Non-Invasive CGM Estimation with ML
3.2.1. Input Feature Selection
3.2.2. Using Reflectance Features as Inputs
3.2.3. Using Reflectance and Vegetation Index Features as Inputs
3.2.4. Impact of Training and Testing Data Split Ratios
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martinez-Feria, R.A.; Licht, M.A.; Ordóñez, R.A.; Hatfield, J.L.; Coulter, J.A.; Archontoulis, S.V. Evaluating Maize and Soybean Grain Dry-down in the Field with Predictive Algorithms and Genotype-by-Environment Analysis. Sci. Rep. 2019, 9, 7167. [Google Scholar] [CrossRef] [PubMed]
- Agyei, B.; Andresen, J.; Singh, M.P. Evaluation of a Handheld Near-Infrared Spectroscopy Sensor for Rapid Corn Kernel Moisture Estimation. Crop Forage Turfgrass Manag. 2023, 9, e20235. [Google Scholar] [CrossRef]
- Pordesimo, L.O.; Sokhansanj, S.; Edens, W.C. Moisture and Yield of Corn Stover Fractions before and after Grain Maturity. Trans. ASAE 2004, 47, 1597–1603. [Google Scholar] [CrossRef]
- Fan, L.-F.; Chai, Z.-Q.; Zhao, P.-F.; Tian, Z.-F.; Wen, S.-Q.; Li, S.-M.; Wang, Z.-Y.; Huang, L. Nondestructive Measurement of Husk-Covered Corn Kernel Layer Dynamic Moisture Content in the Field. Comput. Electron. Agric. 2021, 182, 106034. [Google Scholar] [CrossRef]
- Pham, B.T.; Son, L.H.; Hoang, T.A.; Nguyen, D.M.; Tien Bui, D. Prediction of Shear Strength of Soft Soil Using Machine Learning Methods. Catena 2018, 166, 181–191. [Google Scholar] [CrossRef]
- Maiorano, A.; Fanchini, D.; Donatelli, M. MIMYCS. Moisture, a Process-Based Model of Moisture Content in Developing Maize Kernels. Eur. J. Agron. 2014, 59, 86–95. [Google Scholar] [CrossRef]
- Sadaka, S.; Rosentrater, K.A. Tips on Examining the Accuracy of On-Farm Grain Moisture Meters. In Agriculture and Natural Resources; UAEX: Fayetteville, AR, USA, 2019; pp. 1–5. [Google Scholar]
- Nelson, S.O.; Trabelsi, S. A Century of Grain and Seed Moisture Measurement by Sensing Electrical Properties. Trans. ASABE 2012, 55, 629–636. [Google Scholar] [CrossRef]
- Soltani, M.; Alimardani, R. Prediction of Corn and Lentil Moisture Content Using Dielectric Properties. J. Agric. Technol. 2011, 7, 1223–1232. [Google Scholar]
- Zhang, H.L.; Ma, Q.; Fan, L.F.; Zhao, P.F.; Wang, J.X.; Zhang, X.D.; Zhu, D.H.; Huang, L.; Zhao, D.J.; Wang, Z.Y. Nondestructive in Situ Measurement Method for Kernel Moisture Content in Corn Ear. Sensors 2016, 16, 2196. [Google Scholar] [CrossRef]
- Clevers, J.G.P.W.; Kooistra, L.; Schaepman, M.E. Estimating Canopy Water Content Using Hyperspectral Remote Sensing Data. Int. J. Appl. Earth Obs. Geoinf. 2010, 12, 119–125. [Google Scholar] [CrossRef]
- Croft, H.; Chen, J.M.; Zhang, Y.; Simic, A. Modelling Leaf Chlorophyll Content in Broadleaf and Needle Leaf Canopies from Ground, CASI, Landsat TM 5 and MERIS Reflectance Data. Remote Sens. Environ. 2013, 133, 128–140. [Google Scholar] [CrossRef]
- Khanal, S.; Klopfenstein, A.; Kushal, K.C.; Ramarao, V.; Fulton, J.; Douridas, N.; Shearer, S.A. Assessing the Impact of Agricultural Field Traffic on Corn Grain Yield Using Remote Sensing and Machine Learning. Soil Tillage Res. 2021, 208, 104880. [Google Scholar] [CrossRef]
- Shajahan, S.; Cho, J.; Guinness, J.; van Aardt, J.; Czymmek, K.J.; Ketterings, Q.M. Corn Grain Yield Prediction and Mapping from Unmanned Aerial System (Uas) Multispectral Imagery. Remote Sens. 2021, 13, 3948. [Google Scholar]
- Pinto, A.A.; Zerbato, C.; de Souza Rolim, G.; Barbosa Júnior, M.R.; da Silva, L.F.V.; de Oliveira, R.P. Corn Grain Yield Forecasting by Satellite Remote Sensing and Machine-Learning Models. Agron. J. 2022, 114, 2956–2968. [Google Scholar] [CrossRef]
- Xu, J.; Meng, J.; Quackenbush, L.J. Use of Remote Sensing to Predict the Optimal Harvest Date of Corn. Field Crops Res. 2019, 236, 1–13. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, H.; Niu, Y.; Han, W. Mapping Maizewater Stress Based on UAV Multispectral Remote Sensing. Remote Sens. 2019, 11, 605. [Google Scholar] [CrossRef]
- Yu, N.; Li, L.; Schmitz, N.; Tian, L.F.; Greenberg, J.A.; Diers, B.W. Development of Methods to Improve Soybean Yield Estimation and Predict Plant Maturity with an Unmanned Aerial Vehicle Based Platform. Remote Sens. Environ. 2016, 187, 91–101. [Google Scholar] [CrossRef]
- Ranjan, R.; Chandel, A.K.; Khot, L.R.; Bahlol, H.Y.; Zhou, J.; Boydston, R.A.; Miklas, P.N. Irrigated Pinto Bean Crop Stress and Yield Assessment Using Ground Based Low Altitude Remote Sensing Technology. Inf. Process. Agric. 2019, 6, 502–514. [Google Scholar] [CrossRef]
- Moeinizade, S.; Pham, H.; Han, Y.; Dobbels, A.; Hu, G. An Applied Deep Learning Approach for Estimating Soybean Relative Maturity from UAV Imagery to Aid Plant Breeding Decisions. Mach. Learn. Appl. 2022, 7, 100233. [Google Scholar] [CrossRef]
- Qi, H.; Wu, Z.; Zhang, L.; Li, J.; Zhou, J.; Jun, Z.; Zhu, B. Monitoring of Peanut Leaves Chlorophyll Content Based on Drone-Based Multispectral Image Feature Extraction. Comput. Electron. Agric. 2021, 187, 106292. [Google Scholar] [CrossRef]
- Ali, I.; Greifeneder, F.; Stamenkovic, J.; Neumann, M.; Notarnicola, C. Review of Machine Learning Approaches for Biomass and Soil Moisture Retrievals from Remote Sensing Data. Remote Sens. 2015, 7, 16398–16421. [Google Scholar] [CrossRef]
- Cazenave, A.B.; Shah, K.; Trammell, T.; Komp, M.; Hoffman, J.; Motes, C.M.; Monteros, M.J. High-Throughput Approaches for Phenotyping Alfalfa Germplasm under Abiotic Stress in the Field. Plant Phenome J. 2019, 2, 1–13. [Google Scholar] [CrossRef]
- Montandon, L.M.; Small, E.E. The Impact of Soil Reflectance on the Quantification of the Green Vegetation Fraction from NDVI. Remote Sens. Environ. 2008, 112, 1835–1845. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with ERTS. NASA Spec. Publ. 1974, 351, 309–317. [Google Scholar]
- Crippen, R.E. Calculating the Vegetation Index Faster. Remote Sens. Environ. 1990, 34, 71–73. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Merzlyak, M.N. Remote Sensing of Chlorophyll Concentration in Higher Plant Leaves. Adv. Space Res. 1998, 22, 689–692. [Google Scholar] [CrossRef]
- Sripada, R.P.; Heiniger, R.W.; White, J.G.; Meijer, A.D. Aerial Color Infrared Photography for Determining Early In-Season Nitrogen Requirements in Corn. Agron. J. 2006, 98, 968–977. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the Radiometric and Biophysical Performance of the MODIS Vegetation Indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Boegh, E.; Soegaard, H.; Broge, N.; Hasager, C.B.; Jensen, N.O.; Schelde, K.; Thomsen, A. Airborne Multispectral Data for Quantifying Leaf Area Index, Nitrogen Concentration, and Photosynthetic Efficiency in Agriculture. Remote Sens. Environ. 2002, 81, 179–193. [Google Scholar] [CrossRef]
- Yang, Z.; Willis, P.; Mueller, R. Impact of band-ratio enhanced awifs image to crop classification accuracy. In Proceedings of the Pecora 17—The Future of Land Imaging…Going Operational, Denver, CO, USA, 18–20 November 2008. [Google Scholar]
- Sripada, R.P. Determining In-Season Nitrogen Requirements for Corn Using Aerial Color-Infrared Photography; North Carolina State University: Raleigh, NC, USA, 2005. [Google Scholar]
- Rondeaux, G.; Steven, M.; Baret, F. Optimization of Soil-Adjusted Vegetation Indices. Remote Sens. Environ. 1996, 55, 95–107. [Google Scholar] [CrossRef]
- Qi, J.; Chehbouni, A.; Huete, A.R.; Kerr, Y.H.; Sorooshian, S. A Modified Soil Adjusted Vegetation Index. Remote Sens. Environ. 1994, 48, 119–126. [Google Scholar] [CrossRef]
- Leprieur, C.; Kerr, Y.H.; Pichon, J.M. Critical Assessment of Vegetation Indices from Avhrr in a Semi-Arid Environment. Int. J. Remote Sens. 1996, 17, 2549–2563. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Gritz, Y.; Merzlyak, M.N. Relationships between Leaf Chlorophyll Content and Spectral Reflectance and Algorithms for Non-Destructive Chlorophyll Assessment in Higher Plant Leaves. J. Plant Physiol. 2003, 160, 271–282. [Google Scholar] [CrossRef] [PubMed]
- Louhaichi, M.; Borman, M.M.; Johnson, D.E. Spatially Located Platform and Aerial Photography for Documentation of Grazing Impacts on Wheat. Geocarto Int. 2001, 16, 65–70. [Google Scholar] [CrossRef]
- Birth, G.S.; McVey, G.R. Measuring the Color of Growing Turf with a Reflectance Spectrophotometer 1. Agron. J. 1968, 60, 640–643. [Google Scholar] [CrossRef]
- Chen, J.M. Evaluation of Vegetation Indices and a Modified Simple Ratio for Boreal Applications. Can. J. Remote Sens. 1996, 22, 229–242. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and Photographic Infrared Linear Combinations for Monitoring Vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- Bannari, A.; Asalhi, H.; Teillet, P.M. Transformed Difference Vegetation Index (TDVI) for Vegetation Cover Mapping. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Toronto, ON, Canada, 24–28 June 2002; IEEE: Piscataway, NJ, USA, 2002; Volume 5, pp. 3053–3055. [Google Scholar]
- Gitelson, A.A.; Stark, R.; Grits, U.; Rundquist, D.; Kaufman, Y.; Derry, D. Vegetation and Soil Lines in Visible Spectral Space: A Concept and Technique for Remote Estimation of Vegetation Fraction. Int. J. Remote Sens. 2002, 23, 2537–2562. [Google Scholar] [CrossRef]
- Gitelson, A.A. Wide Dynamic Range Vegetation Index for Remote Quantification of Biophysical Characteristics of Vegetation. J. Plant Physiol. 2004, 161, 165–173. [Google Scholar] [CrossRef]
- Chandel, A.K.; Khot, L.R.; Yu, L.-X. Alfalfa (Medicago sativa L.) Crop Vigor and Yield Characterization Using High-Resolution Aerial 1 Multispectral and Thermal Infrared Imaging Technique. Comput. Electron. Agric. 2021, 182, 105999. [Google Scholar] [CrossRef]
- Yu, X.; Liu, Q.; Wang, Y.; Liu, X.; Liu, X. Evaluation of MLSR and PLSR for Estimating Soil Element Contents Using Visible/near-Infrared Spectroscopy in Apple Orchards on the Jiaodong Peninsula. Catena 2016, 137, 340–349. [Google Scholar] [CrossRef]
- Wold, S.; Sjostrom, M.; Eriksson, L. PLS-Regression. A Basic Tool of Chemometrics. Chemom. Intell. Lab. Syst. 2001, 58, 109–130. [Google Scholar] [CrossRef]
- Nijat, K.; Shi, Q.; Wang, J.; Rukeya, S.; Ilyas, N.; Gulnur, I. Estimation of Spring Wheat Chlorophyll Content Based on Hyperspectral Features and PLSR Model. Trans. Chin. Soc. Agric. Eng. 2017, 33, 208–216. [Google Scholar]
- Marques Ramos, A.P.; Prado Osco, L.; Elis Garcia Furuya, D.; Nunes Gonçalves, W.; Cordeiro Santana, D.; Pereira Ribeiro Teodoro, L.; Antonio da Silva Junior, C.; Fernando Capristo-Silva, G.; Li, J.; Henrique Rojo Baio, F.; et al. A Random Forest Ranking Approach to Predict Yield in Maize with Uav-Based Vegetation Spectral Indices. Comput. Electron. Agric. 2020, 178, 105791. [Google Scholar] [CrossRef]
- Abdulridha, J.; Batuman, O.; Ampatzidis, Y. UAV-Based Remote Sensing Technique to Detect Citrus Canker Disease Utilizing Hyperspectral Imaging and Machine Learning. Remote Sens. 2019, 11, 1373. [Google Scholar] [CrossRef]
- Sharma, P.; Leigh, L.; Chang, J.; Maimaitijiang, M.; Caffé, M. Above-Ground Biomass Estimation in Oats Using UAV Remote Sensing and Machine Learning. Sensors 2022, 22, 601. [Google Scholar] [CrossRef] [PubMed]
- Mountrakis, G.; Im, J.; Ogole, C. Support Vector Machines in Remote Sensing: A Review. ISPRS J. Photogramm. Remote Sens. 2011, 66, 247–259. [Google Scholar] [CrossRef]
- Zou, J.; Han, Y.; So, S.S. Overview of Artificial Neural Networks. In Artificial Neural Networks: Methods and Applications; Humana Press: Totowa, NJ, USA, 2009; pp. 14–22. [Google Scholar]
- Ngie, A.; Ahmed, F. Estimation of Maize Grain Yield Using Multispectral Satellite Data Sets (SPOT 5) and the Random Forest Algorithm. S. Afr. J. Geomat. 2018, 7, 11. [Google Scholar] [CrossRef]
- Jiang, Z.; Huete, A.R.; Didan, K.; Miura, T. Development of a Two-Band Enhanced Vegetation Index without a Blue Band. Remote Sens. Environ. 2008, 112, 3833–3845. [Google Scholar] [CrossRef]
- Xue, J.; Su, B. Significant Remote Sensing Vegetation Indices: A Review of Developments and Applications. J. Sens. 2017, 2017, 1353691. [Google Scholar] [CrossRef]
- Kayad, A.; Sozzi, M.; Gatto, S.; Marinello, F.; Pirotti, F. Monitoring Within-Field Variability of Corn Yield Using Sentinel-2 and Machine Learning Techniques. Remote Sens. 2019, 11, 2873. [Google Scholar] [CrossRef]
- Zhang, Y.; Ta, N.; Guo, S.; Chen, Q.; Zhao, L.; Li, F.; Chang, Q. Combining Spectral and Textural Information from UAV RGB Images for Leaf Area Index Monitoring in Kiwifruit Orchard. Remote Sens. 2022, 14, 1063. [Google Scholar] [CrossRef]
- Habibi, L.N.; Watanabe, T.; Matsui, T.; Tanaka, T.S.T. Machine Learning Techniques to Predict Soybean Plant Density Using UAV and Satellite-Based Remote Sensing. Remote Sens. 2021, 13, 2548. [Google Scholar] [CrossRef]
- Fei, S.; Hassan, M.A.; He, Z.; Chen, Z.; Shu, M.; Wang, J.; Li, C.; Xiao, Y. Assessment of Ensemble Learning to Predict Wheat Grain Yield Based on UAV-Multispectral Reflectance. Remote Sens. 2021, 13, 2338. [Google Scholar] [CrossRef]
- Kuhn, M. Caret Package. J. Stat. Softw. 2008, 28, 1–26. [Google Scholar]
- Zhou, Y.; Lao, C.; Yang, Y.; Zhang, Z.; Chen, H.; Chen, Y.; Chen, J.; Ning, J.; Yang, N. Diagnosis of Winter-Wheat Water Stress Based on UAV-Borne Multispectral Image Texture and Vegetation Indices. Agric. Water Manag. 2021, 256, 107076. [Google Scholar] [CrossRef]
- Yue, J.; Yang, G.; Tian, Q.; Feng, H.; Xu, K.; Zhou, C. Estimate of Winter-Wheat above-Ground Biomass Based on UAV Ultrahigh-Ground-Resolution Image Textures and Vegetation Indices. ISPRS J. Photogramm. Remote Sens. 2019, 150, 226–244. [Google Scholar] [CrossRef]
- Yue, J.; Feng, H.; Yang, G.; Li, Z. A Comparison of Regression Techniques for Estimation of Above-Ground Winter Wheat Biomass Using near-Surface Spectroscopy. Remote Sens. 2018, 10, 66. [Google Scholar] [CrossRef]
- Gill, W.R.; Asae, M. Influence of Compaction Hardening of Soil on Penetration Resistance. Trans. ASAE 1968, 11, 741–0745. [Google Scholar] [CrossRef]
- Hota, S.; Tewari, V.K.; Chandel, A.K. Workload Assessment of Tractor Operations with Ergonomic Transducers and Machine Learning Techniques. Sensors 2023, 23, 1408. [Google Scholar] [CrossRef]
- Adugna, T.; Xu, W.; Fan, J. Comparison of Random Forest and Support Vector Machine Classifiers for Regional Land Cover Mapping Using Coarse Resolution FY-3C Images. Remote Sens. 2022, 14, 574. [Google Scholar] [CrossRef]
- Fu, Z.; Jiang, J.; Gao, Y.; Krienke, B.; Wang, M.; Zhong, K.; Cao, Q.; Tian, Y.; Zhu, Y.; Cao, W.; et al. Wheat Growth Monitoring and Yield Estimation Based on Multi-Rotor Unmanned Aerial Vehicle. Remote Sens. 2020, 12, 508. [Google Scholar] [CrossRef]
- Nguyen, Q.H.; Ly, H.B.; Ho, L.S.; Al-Ansari, N.; Van Le, H.; Tran, V.Q.; Prakash, I.; Pham, B.T. Influence of Data Splitting on Performance of Machine Learning Models in Prediction of Shear Strength of Soil. Math. Probl. Eng. 2021, 2021, 4832864. [Google Scholar] [CrossRef]
- Palmer, D.S.; O’Boyle, N.M.; Glen, R.C.; Mitchell, J.B.O. Random Forest Models to Predict Aqueous Solubility. J. Chem. Inf. Model. 2007, 47, 150–158. [Google Scholar] [CrossRef]
- Prasad, A.M.; Iverson, L.R.; Liaw, A. Newer Classification and Regression Tree Techniques: Bagging and Random Forests for Ecological Prediction. Ecosystems 2006, 9, 181–199. [Google Scholar] [CrossRef]
Vegetation Index | Equation | Reference |
---|---|---|
Normalized Difference Vegetation Index (NDVI) | (NIR − R)/(NIR + R) | [25] |
Infrared Percentage Vegetation Index (IPVI) | (NIR)/(NIR + R) | [26] |
Green Normal Difference Vegetation Index (GNDVI) | (NIR − G)/(NIR + G) | [27] |
Green Difference Vegetation Index (GDVI) | NIR − G | [28] |
Enhanced Vegetation Index (EVI) | 2.5 × (NIR − R)/(NIR + 6 × R − 7.5 × B + 1) | [29] |
Leaf Area Index (LAI) | 3.618 × EVI − 0.118 | [30] |
Modified Non-Linear Index (MNLI) | (NIR2 − R) × (1 + L)/(NIR2 + R + L) | [31] |
Soil Adjusted Vegetation Index (SAVI) | 1.5 × (NIR − R)/(NIR + R + 0.5) | [32] |
Optimized Soil Adjusted Vegetation Index (OSAVI) | (NIR − R)/(NIR + R + 0.16) | [33] |
Green Soil Adjusted Vegetation Index (GSAVI) | (NIR − G)/(NIR + G + 0.5) | [32] |
Green Optimized Soil Adjusted Vegetation Index (GOSAVI) | (NIR − G)/(NIR + G + 0.16) | [32] |
Modified Soil Adjusted Vegetation Index (MSAVI2) | (2 × NIR + 1 − sqrt ((2 × NIR + 1) 2 − 8 × (NIR − R)))/2 | [34] |
Normalized Difference Red-edge Index (NDRE) | (NIR − RE)/(NIR + RE) | [35] |
Green Ratio Vegetation Index (GRVI) | NIR/G | [28] |
Green Chlorophyll Index (GCI) | (NIR/G) − 1 | [36] |
Green Leaf Index (GLI) | ((G − R) + (G − B))/((2 × G) + R + B) | [37] |
Simple Ratio (SR) | NIR/R | [38] |
Modified Simple Ratio (MSR) | ((NIR/R) − 1)/(sqrt (NIR/R) + 1) | [39] |
Renormalized Difference Vegetation Index (RDVI) | (NIR − R)/sqrt (NIR + R) | [40] |
Transformed Difference Vegetation Index (TDVI) | 1.5 × ((NIR − R)/sqrt (NIR + R + 0.5)) | [41] |
Visible Atmospherically Resistant Index (VARI) | (G − R)/(G + R − B) | [42] |
Wide Dynamic Range Vegetation Index (WDRVI) | (a × NIR − R)/(a × NIR + R) | [43] |
Vegetation Index | Pearson Correlation (r) |
---|---|
Blue | −0.27 |
Green | 0.05 |
Red | −0.52 |
Red Edge | 0.66 |
Near Infrared | 0.74 |
Normalized Difference Vegetation Index (NDVI) | 0.77 |
Infrared Percentage Vegetation Index (IPVI) | 0.77 |
Green Normal Difference Vegetation Index (GNDVI) | 0.80 |
Difference Vegetation Index (DVI) | 0.76 |
Green Difference Vegetation Index (GDVI) | 0.76 |
Enhanced Vegetation Index (EVI) | 0.77 |
Leaf Area Index (LAI) | 0.77 |
Non-Linear Index (NLI) | 0.78 |
Modified Non-Linear Index (MNLI) | 0.76 |
Soil Adjusted Vegetation Index (SAVI) | 0.77 |
Optimized Soil Adjusted Vegetation Index (OSAVI) | 0.78 |
Green Soil Adjusted Vegetation Index (GSAVI) | 0.78 |
Green Optimized Soil Adjusted Vegetation Index (GOSAVI) | 0.79 |
Modified Soil Adjusted Vegetation Index (MSAVI2) | 0.77 |
Normalized Difference Red-edge Index (NDRE) | 0.76 |
Green Ratio Vegetation Index (GRVI) | 0.79 |
Green Chlorophyll Index (GCI) | 0.79 |
Green Leaf Index (GLI) | 0.69 |
Simple Ratio (SR) | 0.77 |
Modified Simple Ratio (MSR) | 0.78 |
Renormalized Difference Vegetation Index (RDVI) | 0.77 |
Transformed Difference Vegetation Index (TDVI) | 0.78 |
Visible Atmospherically Resistant Index (VARI) | 0.68 |
Wide Dynamic Range Vegetation Index (WDRVI) | 0.78 |
Parameters | Dataset: Entire | Dataset: Test | Dataset: Train | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Train:Test Ratio | Input Group | Best Model | r | rRMSE (%) | Best Model | r | rRMSE (%) | Best Model | r | rRMSE (%) |
50:50 | REFs | RF | 0.86 | 2.14 | SLR | 0.74 | 2.43 | RF | 0.96 | 1.59 |
REFs+VIs | 0.87 | 2.08 | SVM | 0.70 | 2.58 | 0.97 | 1.34 | |||
55:45 | REFs | RF | 0.87 | 2.11 | SLR | 0.74 | 2.51 | RF | 0.96 | 1.47 |
REFs+VIs | 0.87 | 2.08 | SVM | 0.69 | 2.68 | ANN | 0.97 | 1.26 | ||
60:40 | REFs | RF | 0.88 | 2.05 | SLR | 0.70 | 2.27 | RF | 0.96 | 1.47 |
REFs+VIs | 0.88 | 2.03 | SVM | 0.67 | 2.64 | 0.97 | 1.26 | |||
65:35 | REFs | RF | 0.88 | 2.02 | SLR | 0.66 | 2.67 | RF | 0.96 | 1.41 |
REFs+VIs | 0.88 | 2.02 | SVM | 0.64 | 2.78 | 0.97 | 1.22 | |||
70:30 | REFs | RF | 0.89 | 1.95 | SLR | 0.61 | 2.76 | RF | 0.96 | 1.43 |
REFs+VIs | 0.89 | 1.93 | SVM | 0.60 | 2.92 | 0.97 | 1.21 | |||
75:25 | REFs | RF | 0.89 | 1.92 | ANN | 0.62 | 2.82 | RF | 0.96 | 1.35 |
REFs+VIs | 0.90 | 1.86 | SVM | 0.60 | 3.08 | 0.97 | 1.17 | |||
80:20 | REFs | RF | 0.91 | 1.86 | PLSR | 0.65 | 2.70 | RF | 0.96 | 1.34 |
REFs+VIs | 0.92 | 1.73 | SLR | 0.71 | 2.74 | 0.96 | 1.21 | |||
85:15 | REFs | RF | 0.93 | 1.69 | PLSR | 0.62 | 2.82 | RF | 0.96 | 1.33 |
REFs+VIs | 0.92 | 1.65 | SLR | 0.67 | 2.69 | 0.97 | 1.20 | |||
90:10 | REFs | RF | 0.94 | 1.55 | PLSR | 0.43 | 2.91 | RF | 0.96 | 1.32 |
REFs+VIs | 0.94 | 1.45 | SLR | 0.51 | 2.84 | 0.97 | 1.16 | |||
95:5 | REFs | RF | 0.94 | 1.51 | KNN | 0.69 | 3.25 | RF | 0.96 | 1.31 |
REFs+VIs | 0.95 | 1.37 | SLR | 0.77 | 2.59 | 0.97 | 1.17 |
Variable | p Value (r) | p Value (rRMSE) |
---|---|---|
Model | <0.001 | <0.001 |
Train–test split | <0.001 | 0.619 |
Dataset | <0.001 | <0.001 |
Input group | 0.374 | 0.725 |
Train–test split: Dataset | <0.001 | <0.001 |
Train–test split: Input group | 0.189 | 0.290 |
Dataset: Input group | 0.450 | 0.002 |
Train–test split: Dataset: Input group | 0.204 | 0.544 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jjagwe, P.; Chandel, A.K.; Langston, D. Pre-Harvest Corn Grain Moisture Estimation Using Aerial Multispectral Imagery and Machine Learning Techniques. Land 2023, 12, 2188. https://doi.org/10.3390/land12122188
Jjagwe P, Chandel AK, Langston D. Pre-Harvest Corn Grain Moisture Estimation Using Aerial Multispectral Imagery and Machine Learning Techniques. Land. 2023; 12(12):2188. https://doi.org/10.3390/land12122188
Chicago/Turabian StyleJjagwe, Pius, Abhilash K. Chandel, and David Langston. 2023. "Pre-Harvest Corn Grain Moisture Estimation Using Aerial Multispectral Imagery and Machine Learning Techniques" Land 12, no. 12: 2188. https://doi.org/10.3390/land12122188