Degradation or Restoration? The Temporal-Spatial Evolution of Ecosystem Services and Its Determinants in the Yellow River Basin, China
<p>The location of the YRB.</p> "> Figure 2
<p>Influencing factors of ESV change.</p> "> Figure 3
<p>Land use transfer matrix in the YRB during 1990–2018 (km<sup>2</sup>).</p> "> Figure 4
<p>Spatial distribution of ESV per unit area in the YRB during 1990–2018.</p> "> Figure 5
<p>ESV changes in different study periods.</p> "> Figure 6
<p>Spatial distribution of regression coefficients of influencing factors.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Data Sources
2.3. Methods
2.3.1. LUCC Evolution Analysis Model
- (1)
- Land use transfer matrix
- (2)
- Calculation of land use degree
2.3.2. ESV Evaluation Model
2.3.3. ESV Changes in Response to LUCC
- (1)
- Ecological contribution model of land use change
- (2)
- Bivariate spatial autocorrelation model
2.3.4. Geographical Detector Model (GDM)
- (1)
- Factor Detector
- (2)
- Interaction Detector
2.3.5. Geographically Weighted Regression (GWR)
3. Results
3.1. Characteristics of LUCC Evolution in the YRB
3.1.1. Land Use Dynamics from 1990 to 2018 in the YRB
3.1.2. Land Use Degree in the YRB
3.2. Temporal and Spatial Variations of ESV in the YRB
3.3. Impact of LUCC on ESV
3.3.1. Ecological Contribution Rate of LUCC on ESV
3.3.2. Bivariate Spatial Autocorrelation between Land Use Degree and ESV
3.4. Impact of Natural and Socio-Economic Factors on ESV
3.4.1. Relative Effects and Interactions of Influencing Factors
3.4.2. Spatial Distribution of the Effects of Influencing Factors
4. Discussion
4.1. Temporal-Spatial Evolution of ESV and Its Determinants
4.2. Policy Implication
4.3. Limitation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Costanza, R.; d’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Li, W.; Wang, L.; Yang, X.; Liang, T.; Zhang, Q.; Liao, X.; White, J.R.; Rinklebe, J. Interactive influences of meteorological and socioeconomic factors on ecosystem service values in a river basin with different geomorphic features. Sci. Total Environ. 2022, 829, 154595. [Google Scholar] [CrossRef] [PubMed]
- Shang, Y.; Wang, D.; Liu, S.; Li, H. Spatial-Temporal Variation and Mechanisms Causing Spatial Differentiation of Ecosystem Services in Ecologically Fragile Regions Based on Value Evaluation: A Case Study of Western Jilin, China. Land 2022, 11, 629. [Google Scholar] [CrossRef]
- Vitousek, P.M.; Mooney, H.A.; Lubchenco, J.; Melillo, J.M. Human domination of earth’s ecosystems. Science 1997, 277, 494–499. [Google Scholar] [CrossRef] [Green Version]
- Kintisch, E.; Kerr, R.A. Global warming, hotter than ever. Science 2007, 318, 1846–1847. [Google Scholar] [CrossRef]
- Prather, M.; Midgley, P.; Rowland, F.; Stolarski, R. The ozone layer: The road not taken. Nature 1996, 381, 551–554. [Google Scholar] [CrossRef] [Green Version]
- Butchart, S.H.M.; Walpole, M.; Collen, B.; Van Strien, A.; Scharlemann, J.P.W.; Almond, R.E.A.; Baillie, J.E.M.; Bomhard, B.; Brown, C.; Bruno, J.; et al. Global Biodiversity: Indicators of Recent Declines. Science 2010, 328, 1164–1168. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Du, Z.P.; Yan, C.A.; Chen, Y. Evaluating net ecosystem services value of a polluted lake: A case study of Lake Dianchi. Acta Ecol. Sin. 2019, 39, 1748–1757. [Google Scholar] [CrossRef]
- Huang, J.P.; Zhang, G.L.; Zhang, Y.T.; Guan, X.D.; Wei, Y.; Guo, R.X. Global desertification vulnerability to climate change and human activities. Land Degrad. Dev. 2020, 31, 1380–1391. [Google Scholar] [CrossRef]
- Li, Y.; Feng, Y.; Peng, F.; Chen, S.D. Pattern evolvement of ecological land in Tianjin based on geodetector. Econ. Geogr. 2017, 37, 180–189. [Google Scholar] [CrossRef]
- Fang, L.L.; Wang, L.C.; Chen, W.X.; Jia, S.; Cao, Q.; Wang, S.Q.; Wang, L.Z. Identifying the impacts of natural and human factors on ecosystem service in the Yangtze and Yellow River Basins. J. Clean. Prod. 2021, 314, 127995. [Google Scholar] [CrossRef]
- Zhang, X.L.; Jin, X.B.; Liang, X.Y.; Ren, J.; Han, B.; Liu, J.P.; Fan, Y.T.; Zhou, Y.K. Implications of land sparing and sharing for maintaining regional ecosystem services: An empirical study from a suitable area for agricultural production in China. Sci. Total Environ. 2022, 820, 153330. [Google Scholar] [CrossRef]
- Akhtar, M.; Zhao, Y.; Gao, G.; Gulzar, Q.; Hussain, A.; Samie, A. Assessment of ecosystem services value in response to prevailing and future land use/cover changes in Lahore, Pakistan. Reg. Sustain. 2020, 1, 37–47. [Google Scholar] [CrossRef]
- He, Y.Y.; Kuang, Y.Q.; Zhao, Y.L.; Ruan, Z. Spatial correlation between ecosystem services and human disturbances: A case study of the Guangdong–Hong Kong–Macao Greater Bay Area, China. Remote Sens. 2021, 13, 1174. [Google Scholar] [CrossRef]
- Salata, S.; Grillenzoni, C. A spatial evaluation of multifunctional ecosystem service networks using principal component analysis: A case of study in Turin, Italy. Ecol. Indic. 2021, 127, 107758. [Google Scholar] [CrossRef]
- Yang, Y.J.; Zhang, H.; Zhao, X.Q.; Chen, Z.Z.; Wang, A.G.; Zhao, E.L.; Cao, H. Effects of urbanization on ecosystem services in the Shandong Peninsula urban agglomeration in China: The case of Weifang City. Urban Sci. 2021, 5, 54. [Google Scholar] [CrossRef]
- Yu, H.S.; Yang, J.; Sun, D.Q.; Li, T.; Liu, Y.J. Spatial responses of ecosystem service value during the development of urban agglomerations. Land 2022, 11, 165. [Google Scholar] [CrossRef]
- Wang, Y.H.; Dai, E.F.; Yin, L.; Ma, L. Land use/land cover change and the effects on ecosystem services in the Hengduan Mountain region, China. Ecosyst. Serv. 2018, 34, 55–67. [Google Scholar] [CrossRef]
- Lei, J.R.; Chen, Z.Z.; Wu, T.T.; Li, Y.L.; Yang, Q.; Chen, X.H. Spatial autocorrelation pattern analysis of land use and the value of ecosystem services in northeast Hainan island. Acta Ecol. Sin. 2019, 39, 2366–2377. [Google Scholar] [CrossRef]
- Liu, Z.T.; Wu, R.; Chen, Y.X.; Fang, C.L.; Wang, S.J. Factors of ecosystem service values in a fast-developing region in China: Insights from the joint impacts of human activities and natural conditions. J. Clean. Prod. 2021, 297, 126588. [Google Scholar] [CrossRef]
- Chen, M.; Lu, Y.; Ling, L.; Wan, Y.; Luo, Z.; Huang, H.; Chen, M.; Lu, Y.; Ling, L.; Wan, Y.; et al. Drivers of changes in ecosystem service values in Ganjiang upstream watershed. Land Use Policy 2015, 47, 247–252. [Google Scholar] [CrossRef]
- Zhang, F.; Yushanjiang, A.; Jing, Y.Q. Assessing and predicting changes of the ecosystem service values based on land use/cover change in Ebinur Lake Wetland National Nature Reserve, Xinjiang, China. Sci. Total Environ. 2019, 656, 1133–1144. [Google Scholar] [CrossRef] [PubMed]
- Dai, X.; Wang, L.C.; Huang, C.B.; Fang, L.L.; Wang, S.Q.; Wang, L.Z. Spatio-temporal variations of ecosystem services in the urban agglomerations in the middle reaches of the Yangtze River, China. Ecol. Indic. 2020, 115, 106394. [Google Scholar] [CrossRef]
- Wang, J.F.; Xu, C.D. Geodetector: Principle and prospective. Acta Geogr. Sinca 2017, 72, 116–134. [Google Scholar] [CrossRef]
- Liu, X.Q.; Wang, H.; Wang, X.P.; Bai, M.; He, D.H. Driving factors and their interactions of carabid beetle distribution based on the geographical detector method. Ecol. Indic. 2021, 133, 108393. [Google Scholar] [CrossRef]
- Wang, X.M.; Meng, Q.Y.; Zhang, L.L.; Hu, D. Evaluation of urban green space in terms of thermal environmental benefits using geographical detector analysis. Int. J. Appl. Earth Obs. Geoinf. 2021, 105, 102610. [Google Scholar] [CrossRef]
- Ju, H.R.; Zhang, Z.X.; Zuo, L.J.; Wang, J.F.; Zhang, S.R.; Wang, X.; Zhao, X.L. Driving forces and their interactions of built-up land expansion based on the geographical detector—A case study of Beijing, China. Int. J. Geogr. Inf. Sci. 2016, 30, 2188–2207. [Google Scholar] [CrossRef]
- Liao, J.J.; Yu, C.Y.; Feng, Z.; Zhao, H.F.; Wu, K.N.; Ma, X.Y. Spatial differentiation characteristics and driving factors of agricultural eco-efficiency in Chinese provinces from the perspective of ecosystem services. J. Clean. Prod. 2020, 288, 125466. [Google Scholar] [CrossRef]
- He, J.H.; Pan, Z.Z.; Liu, D.F.; Guo, X.N. Exploring the regional differences of ecosystem health and its driving factors in China. Sci. Total Environ. 2019, 673, 553–564. [Google Scholar] [CrossRef]
- Zhan, D.; Kwan, M.-P.; Zhang, W.; Yu, X.; Meng, B.; Liu, Q. The driving factors of air quality index in China. J. Clean. Prod. 2018, 197, 1342–1351. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, S.; Sun, Y.; Sun, J.; Wang, F.; Li, M. Effect of grazing exclusion on ecosystem services dynamics, trade-offs and synergies in Northern Tibet. Ecol. Eng. 2022, 179, 106638. [Google Scholar] [CrossRef]
- Lu, D.D.; Sun, D.Q. Development and management tasks of the Yellow River Basin: A preliminary understanding and suggestion. Acta Geogr. Sinca 2019, 74, 2431–2436. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, K.; Wang, S.; Wu, T.; Li, X.; Wang, J.; Wang, D.; Zhu, H.; Tan, C.; Ji, Y. Spatiotemporal evolution of ecological vulnerability in the Yellow River Basin under ecological restoration initiatives. Ecol. Indic. 2022, 135, 108586. [Google Scholar] [CrossRef]
- Jia, G.Y.; Hu, W.M.; Zhang, B.; Li, G.; Shen, S.Y.; Gao, Z.H.; Li, Y. Assessing impacts of the Ecological Retreat project on water conservation in the Yellow River Basin. Sci. Total Environ. 2022, 828, 154483. [Google Scholar] [CrossRef]
- Yin, D.Y.; Li, X.S.; Li, G.E.; Zhang, J.; Yu, H.C. Spatio-temporal evolution of land use transition and its eco-environmental effects: A case study of the Yellow River Basin, China. Land 2020, 9, 514. [Google Scholar] [CrossRef]
- Sun, M.H.; Niu, W.H.; Zhang, B.B.; Geng, Q.L.; Yu, Q. Spatial-temporal evolution and responses of ecosystem service value under land use change in the Yellow River Basin: A case study of Shaanxi-Gansu-Ningxia region, Northwest China. Chin. J. Appl. Ecol. 2021, 32, 3913–3922. [Google Scholar] [CrossRef]
- Zhang, J.L.; Shang, Y.Z.; Liu, J.X.; Fu, J.; Cui, M. Improved ecological development model for lower Yellow River floodplain, China. Water Sci. Eng. 2020, 13, 275–285. [Google Scholar] [CrossRef]
- Zhu, H.Y.; Li, X.B. Discussion on the index method of regional land use change. Acta Geogr. Sinca 2003, 58, 643–650. [Google Scholar] [CrossRef]
- Zhuang, D.F.; Liu, J.Y. Study on the model of regional differentiation of land use degree in China. J. Nat. Resour. 1997, 12, 105–111. [Google Scholar] [CrossRef]
- Xie, G.D.; Zhen, L.; Lu, C.X.; Xiao, Y.; Chen, C. Expert knowledge based valuation method of ecosystem services in China. J. Nat. Resour. 2008, 23, 911–919. [Google Scholar] [CrossRef]
- Liang, Y.; Zhang, Z.X.; Zhao, X.L.; Liu, B.; Wang, X.; Wen, Q.K.; Zuo, L.J.; Liu, F.; Xu, J.Y.; Hu, S.G. Have changes to unused land in China improved or exacerbated its environmental quality in the past three decades? Sustainability 2016, 8, 184. [Google Scholar] [CrossRef] [Green Version]
- Anselin, L.; Syabri, I.; Smirnov, O. Visualizing multivariate spatial correlation with dynamically linked windows. In Proceedings of the CSISS Workshop on New Tools for Spatial Data Analysis, Santa Barbara, CA, USA, 10–11 May 2002. [Google Scholar]
- Cui, F.Q.; Tang, H.Q.; Zhang, Q.; Wang, B.J.; Dai, L.W. Integrating ecosystem services supply and demand into optimized management at different scales: A case study in Hulunbuir, China. Ecosyst. Serv. 2019, 39, 100984. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Xu, D.Y.; Wang, Z.Y.; Zhang, Y. Balance of water supply and consumption during ecological restoration in arid regions of Inner Mongolia, China. J. Arid. Environ. 2021, 186, 104406. [Google Scholar] [CrossRef]
- Cui, J.; Zhu, M.S.; Liang, Y.; Qin, G.J.; Li, J.; Liu, Y.H. Land use/land cover change and their driving factors in the Yellow River Basin of Shandong Province based on google earth Engine from 2000 to 2020. ISPRS Int. J. Geo-Inf. 2022, 11, 163. [Google Scholar] [CrossRef]
- Ji, Q.; Liang, W.; Fu, B.; Zhang, W.; Yan, J.; Lü, Y.; Yue, C.; Jin, Z.; Lan, Z.; Li, S.; et al. Mapping land use/cover dynamics of the Yellow River Basin from 1986 to 2018 supported by google earth engine. Remote Sens. 2021, 13, 1299. [Google Scholar] [CrossRef]
- Xu, C.; Jiang, Y.N.; Su, Z.H.; Liu, Y.J.; Lyu, J.Y. Assessing the impacts of Grain-for-Green Programme on ecosystem services in Jinghe River basin, China. Ecol. Indic. 2022, 137, 108757. [Google Scholar] [CrossRef]
- Yang, Q.Y.; Gao, D.; Song, D.Y.; Li, Y. Environmental regulation, pollution reduction and green innovation: The case of the Chinese Water Ecological Civilization City Pilot policy. Econ. Syst. 2021, 45, 100911. [Google Scholar] [CrossRef]
- Han, X.J.; Yu, J.L.; Shi, L.N.; Zhao, X.C.; Wang, J.J. Spatiotemporal evolution of ecosystem service values in an area dominated by vegetation restoration: Quantification and mechanisms. Ecol. Indic. 2021, 131, 108191. [Google Scholar] [CrossRef]
- Zhai, T.L.; Zhang, D.; Zhao, C.C. How to optimize ecological compensation to alleviate environmental injustice in different cities in the Yellow River Basin? A case of integrating ecosystem service supply, demand and flow. Sustain. Cities Soc. 2021, 75, 103341. [Google Scholar] [CrossRef]
- Pan, N.H.; Guan, Q.Y.; Wang, Q.Z.; Sun, Y.F.; Li, H.C.; Ma, Y.R. Spatial differentiation and driving mechanisms in ecosystem service value of Arid Region: A case study in the middle and lower reaches of Shule River Basin, NW China. J. Clean. Prod. 2021, 319, 128718. [Google Scholar] [CrossRef]
- Abera, W.; Tamene, L.; Kassawmar, T.; Mulatu, K.; Kassa, H.; Quintero, M. Impacts of land use and land cover dynamics on ecosystem services in the Yayo coffee forest biosphere reserve, southwestern Ethiopia. Ecosyst. Serv. 2021, 50, 101338. [Google Scholar] [CrossRef]
- Wang, L.-J.; Ma, S.; Zhao, Y.-G.; Zhang, J.-C. Ecological restoration projects did not increase the value of all ecosystem services in Northeast China. For. Ecol. Manag. 2021, 495, 119340. [Google Scholar] [CrossRef]
- Chu, X.; Zhan, J.; Li, Z.; Zhang, F.; Qi, W. Assessment on forest carbon sequestration in the Three-North Shelterbelt Program region, China. J. Clean. Prod. 2019, 215, 382–389. [Google Scholar] [CrossRef]
- Liu, B.; Pan, L.; Qi, Y.; Guan, X.; Li, J. Land Use and Land Cover Change in the Yellow River Basin from 1980 to 2015 and Its Impact on the Ecosystem Services. Land 2021, 10, 1080. [Google Scholar] [CrossRef]
- Ma, X.F.; Zhu, J.T.; Zhang, H.B.; Yan, W.; Zhao, C.Y. Trade-offs and synergies in ecosystem service values of inland lake wetlands in Central Asia under land use/cover change: A case study on Ebinur Lake, China. Glob. Ecol. Conserv. 2020, 24, e01253. [Google Scholar] [CrossRef]
- Qi, Y.; Lian, X.H.; Wang, H.W.; Zhang, J.L.; Yang, R. Dynamic mechanism between human activities and ecosystem services: A case study of Qinghai lake watershed, China. Ecol. Indic. 2020, 117, 106528. [Google Scholar] [CrossRef]
- Wang, X.Z.; Wu, J.Z.; Liu, Y.L.; Hai, X.Y.; Shanguan, Z.P.; Deng, L. Driving factors of ecosystem services and their spatiotemporal change assessment based on land use types in the Loess Plateau. J. Environ. Manag. 2022, 311, 114835. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Zhan, J.Y.; Zhao, F.; Wang, C.; Zhang, F.; Teng, Y.M.; Chu, X.; Kumi, M.A. Spatio-temporal variations of ecosystem services and their drivers in the Pearl River Delta, China. J. Clean. Prod. 2022, 337, 130466. [Google Scholar] [CrossRef]
- Huang, M.Y.; Yue, W.Z.; Fang, B.; Feng, S.R. Scale response characteristics and geographic exploration mechanism of spatial differentiation of ecosystem service values in Dabie Mountain area, central China from 1970 to 2015. Acta Geogr. Sinca 2019, 74, 1904–1920. [Google Scholar] [CrossRef]
- Gao, J.B.; Jiang, Y.; Anker, Y. Contribution analysis on spatial tradeoff/synergy of Karst soil conservation and water retention for various geomorphological types: Geographical detector application. Ecol. Indic. 2021, 125, 107470. [Google Scholar] [CrossRef]
- Sannigrahi, S.; Zhang, Q.; Pilla, F.; Joshi, P.K.; Basu, B.; Keesstra, S.; Roy, P.S.; Wang, Y.; Sutton, P.C.; Chakraborti, S.; et al. Responses of ecosystem services to natural and anthropogenic forcings: A spatial regression based assessment in the world’s largest mangrove ecosystem. Sci. Total Environ. 2020, 715, 137004. [Google Scholar] [CrossRef] [PubMed]
Type | Name | Source | Year | Precision |
---|---|---|---|---|
Statistics | Grain sown area | Statistical Yearbook | 2018 | Provincial |
Grain yield | ||||
Grain price | ||||
Vectors | Administrative boundary | The 1:400,000 database of the National Geomatics Center of China (http://www.ngcc.cn/ngcc/ (accessed on 22 November 2021)) | 2017 | - |
River map | ||||
Road map | ||||
City location | ||||
Rasters | LUCC | The Resources and Environmental Sciences and Data Center, Chinese Academy of Sciences (https://www.resdc.cn/ (accessed on 20 November 2021)) | 1990, 2000, 2010, 2018 | 30 m |
DEM | - | 250 m | ||
Precipitation | 2015 | 1 km | ||
NDVI | 2018 | |||
Population density | 2015 | |||
GDP |
Ecosystem Services | Cropland | Forest Land | Grassland | Water Bodies | Unused Land | |
---|---|---|---|---|---|---|
Supply services | Food supply | 2083.02 | 687.40 | 895.70 | 926.94 | 41.66 |
Raw material | 812.38 | 6207.40 | 749.89 | 614.49 | 83.32 | |
Regulation services | Gas regulation | 1499.77 | 8998.65 | 3124.53 | 3041.21 | 124.98 |
Climate regulation | 2020.53 | 8477.90 | 3249.51 | 16,257.98 | 270.79 | |
Hydrological regulation | 1603.92 | 8519.55 | 3166.19 | 33,547.05 | 145.81 | |
Waste disposal | 2895.40 | 3582.80 | 2749.59 | 30,464.18 | 541.59 | |
Support services | Soil conservation | 3062.04 | 8373.74 | 4665.97 | 2499.62 | 354.11 |
Biodiversity maintenance | 2124.68 | 9394.42 | 3895.25 | 7415.55 | 833.21 | |
Cultural services | Aesthetic landscape | 354.11 | 4332.68 | 1812.23 | 9508.99 | 499.93 |
Total | 16,455.86 | 58,574.54 | 24,308.85 | 104,276.02 | 2895.40 |
Type | 1990 | 2000 | 2010 | 2018 | ||||
---|---|---|---|---|---|---|---|---|
ESV | Proportion | ESV | Proportion | ESV | Proportion | ESV | Proportion | |
108 CNY | % | 108 CNY | % | 108 CNY | % | 108 CNY | % | |
Cropland | 8846.56 | 13.01 | 9053.06 | 13.37 | 8969.53 | 13.19 | 8865.89 | 13.03 |
Forest land | 21,233.50 | 31.22 | 20,990.48 | 31.00 | 22,040.78 | 32.42 | 21,843.85 | 32.10 |
Grassland | 29,731.38 | 43.72 | 29,460.94 | 43.50 | 28,383.45 | 41.75 | 28,453.66 | 41.82 |
Water bodies | 6006.40 | 8.83 | 6035.81 | 8.91 | 6371.68 | 9.37 | 6689.31 | 9.83 |
Unused land | 2185.46 | 3.21 | 2181.44 | 3.22 | 2215.17 | 3.26 | 2192.11 | 3.22 |
Total | 68,003.31 | 100.00 | 67,721.73 | 100.00 | 67,980.62 | 100.00 | 68,044.81 | 100.00 |
Land Use Change | 1990–2000 | 2000–2010 | 2010–2018 | 1990–2018 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Variation | Improvement | Deterioration | Variation | Improvement | Deterioration | Variation | Improvement | Deterioration | Variation | Improvement | Deterioration | |
108 CNY | % | % | 108 CNY | % | % | 108 CNY | % | % | 108 CNY | % | % | |
1→2 | 28.26 | 5.71 | 373.85 | 9.33 | 183.93 | 8.05 | 436.18 | 8.01 | ||||
1→3 | 34.33 | 6.93 | 169.18 | 4.22 | 184.19 | 8.06 | 297.97 | 5.47 | ||||
1→4 | 56.82 | 11.47 | 267.68 | 6.68 | 199.53 | 8.73 | 390.80 | 7.17 | ||||
1→5 | −54.68 | 7.04 | −353.78 | 9.44 | −192.99 | 8.69 | −532.71 | 9.85 | ||||
1→6 | −6.21 | 0.80 | −47.12 | 1.26 | −27.89 | 1.26 | −42.66 | 0.79 | ||||
2→1 | −124.08 | 15.97 | −286.74 | 7.65 | −198.63 | 8.94 | −487.94 | 9.02 | ||||
2→3 | −128.05 | 16.48 | −453.99 | 12.11 | −463.44 | 20.86 | −786.84 | 14.55 | ||||
2→4 | 1.51 | 0.30 | 25.32 | 0.63 | 12.75 | 0.56 | 32.13 | 0.59 | ||||
2→5 | −2.69 | 0.35 | −61.62 | 1.64 | −46.86 | 2.11 | −97.64 | 1.81 | ||||
2→6 | −5.68 | 0.73 | −375.00 | 10.01 | −173.83 | 7.82 | −492.98 | 9.12 | ||||
3→1 | −128.39 | 16.52 | −225.99 | 6.03 | −182.79 | 8.23 | −437.00 | 8.08 | ||||
3→2 | 62.91 | 12.70 | 1209.61 | 30.19 | 416.77 | 18.23 | 1463.76 | 26.87 | ||||
3→4 | 46.70 | 9.43 | 172.89 | 4.31 | 183.12 | 8.01 | 346.26 | 6.36 | ||||
3→5 | −7.34 | 0.94 | −104.33 | 2.78 | −109.24 | 4.92 | −201.67 | 3.73 | ||||
3→6 | −110.00 | 14.16 | −1176.80 | 31.40 | −345.16 | 15.54 | −1386.11 | 25.64 | ||||
4→1 | −112.94 | 14.54 | −215.77 | 5.76 | −122.51 | 5.51 | −316.33 | 5.85 | ||||
4→2 | −2.15 | 0.28 | −14.08 | 0.38 | −10.37 | 0.47 | −18.74 | 0.35 | ||||
4→3 | −31.99 | 4.12 | −91.48 | 2.44 | −139.78 | 6.29 | −195.20 | 3.61 | ||||
4→5 | −3.02 | 0.39 | −52.14 | 1.39 | −49.64 | 2.23 | −74.04 | 1.37 | ||||
4→6 | −59.21 | 7.62 | −284.78 | 7.60 | −153.69 | 6.92 | −329.18 | 6.09 | ||||
5→1 | 0.59 | 0.12 | 160.58 | 4.01 | 74.53 | 3.26 | 173.13 | 3.18 | ||||
5→2 | 0.23 | 0.05 | 18.28 | 0.46 | 14.47 | 0.63 | 20.50 | 0.38 | ||||
5→3 | 0.00 | 0.00 | 24.26 | 0.61 | 31.24 | 1.37 | 33.79 | 0.62 | ||||
5→4 | 0.10 | 0.02 | 91.45 | 2.28 | 99.90 | 4.37 | 103.34 | 1.90 | ||||
5→6 | 0.00 | 0.00 | 0.88 | 0.02 | 1.47 | 0.06 | 1.00 | 0.02 | ||||
6→1 | 19.01 | 3.84 | 75.46 | 1.88 | 49.69 | 2.17 | 109.66 | 2.01 | ||||
6→2 | 8.74 | 1.76 | 85.30 | 2.13 | 115.59 | 5.06 | 131.29 | 2.41 | ||||
6→3 | 97.97 | 19.78 | 947.10 | 23.64 | 454.35 | 19.88 | 1251.04 | 22.96 | ||||
6→4 | 138.18 | 27.90 | 385.04 | 9.61 | 264.50 | 11.57 | 657.45 | 12.07 | ||||
6→5 | −0.50 | 0.06 | −4.35 | 0.12 | −4.99 | 0.22 | −7.75 | 0.14 |
Index | Comprehensive Index of Land Use Degree | |||
---|---|---|---|---|
Moran’s I | Z | p-Value | ||
1990 | Supply services | 0.4360 | 7.8729 | 0.0010 |
Regulation services | −0.0045 | −0.1379 | 0.4640 | |
Support services | −0.1067 | −2.0931 | 0.0200 | |
Cultural services | −0.3836 | −6.8991 | 0.0010 | |
2000 | Supply services | 0.4299 | 7.7624 | 0.0010 |
Regulation services | −0.0121 | −0.2860 | 0.3870 | |
Support services | −0.1106 | −2.1650 | 0.0150 | |
Cultural services | −0.3825 | −6.8704 | 0.0010 | |
2010 | Supply services | 0.3603 | 6.5781 | 0.0010 |
Regulation services | −0.046 | −0.9580 | 0.1790 | |
Support services | −0.1821 | −3.5213 | 0.0010 | |
Cultural services | −0.4051 | −7.2955 | 0.0010 | |
2018 | Supply services | 0.3333 | 6.1278 | 0.0010 |
Regulation services | −0.0545 | −1.1116 | 0.1440 | |
Support services | −0.2004 | −3.8674 | 0.0010 | |
Cultural services | −0.4081 | −7.3436 | 0.0010 |
Factors | 1990 | 2000 | 2010 | 2018 | ||||
---|---|---|---|---|---|---|---|---|
q | p-Value | q | p-Value | q | p-Value | q | p-Value | |
Elevation | 0.1140 | 0.0000 | 0.1105 | 0.0000 | 0.0998 | 0.0000 | 0.0961 | 0.0000 |
Slope | 0.0717 | 0.0000 | 0.0717 | 0.0000 | 0.0825 | 0.0000 | 0.0829 | 0.0000 |
Precipitation | 0.3861 | 0.0000 | 0.3873 | 0.0000 | 0.4066 | 0.0000 | 0.4031 | 0.0000 |
NDVI | 0.5511 | 0.0000 | 0.5522 | 0.0000 | 0.5590 | 0.0000 | 0.5562 | 0.0000 |
Population density | 0.2785 | 0.0000 | 0.2810 | 0.0000 | 0.2630 | 0.0000 | 0.2591 | 0.0000 |
GDP | 0.1496 | 0.0000 | 0.1520 | 0.0000 | 0.1494 | 0.0000 | 0.1459 | 0.0000 |
Distance to road | 0.0900 | 0.0000 | 0.0912 | 0.0000 | 0.0936 | 0.0000 | 0.0927 | 0.0000 |
Distance to river | 0.1470 | 0.0000 | 0.1471 | 0.0000 | 0.1663 | 0.0000 | 0.1637 | 0.0000 |
Distance to railway | 0.0183 | 0.0000 | 0.0188 | 0.0000 | 0.0231 | 0.0000 | 0.0228 | 0.0000 |
Distance to city | 0.0448 | 0.0000 | 0.0454 | 0.0000 | 0.0472 | 0.0000 | 0.0475 | 0.0000 |
Xi ∩ Xj | q(Xi) | q(Xj) | q(Xi ∩ Xj) | Interaction Types |
---|---|---|---|---|
X1 ∩ X3 | 0.0961 | 0.4033 | 0.5650 | Nonlinear enhancement |
X1 ∩ X4 | 0.0961 | 0.5560 | 0.6302 | Two-factor enhancement |
X1 ∩ X5 | 0.0961 | 0.2592 | 0.6024 | Nonlinear enhancement |
X1 ∩ X6 | 0.0961 | 0.1459 | 0.5750 | Nonlinear enhancement |
X2 ∩ X4 | 0.0829 | 0.5560 | 0.5829 | Two-factor enhancement |
X3 ∩ X4 | 0.4033 | 0.5560 | 0.5952 | Two-factor enhancement |
X3 ∩ X5 | 0.4033 | 0.2592 | 0.5251 | Two-factor enhancement |
X3 ∩ X6 | 0.4033 | 0.1459 | 0.5017 | Two-factor enhancement |
X4 ∩ X5 | 0.5560 | 0.2592 | 0.6605 | Two-factor enhancement |
X4 ∩ X6 | 0.5560 | 0.1459 | 0.6564 | Two-factor enhancement |
X4 ∩ X7 | 0.5560 | 0.0929 | 0.5758 | Two-factor enhancement |
X4 ∩ X8 | 0.5560 | 0.1638 | 0.5810 | Two-factor enhancement |
X4 ∩ X9 | 0.5560 | 0.0228 | 0.5852 | Nonlinear enhancement |
X4 ∩ X10 | 0.5560 | 0.0475 | 0.6174 | Nonlinear enhancement |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, B.; Wang, Y.; Li, J.; Zheng, L. Degradation or Restoration? The Temporal-Spatial Evolution of Ecosystem Services and Its Determinants in the Yellow River Basin, China. Land 2022, 11, 863. https://doi.org/10.3390/land11060863
Zhang B, Wang Y, Li J, Zheng L. Degradation or Restoration? The Temporal-Spatial Evolution of Ecosystem Services and Its Determinants in the Yellow River Basin, China. Land. 2022; 11(6):863. https://doi.org/10.3390/land11060863
Chicago/Turabian StyleZhang, Bowen, Ying Wang, Jiangfeng Li, and Liang Zheng. 2022. "Degradation or Restoration? The Temporal-Spatial Evolution of Ecosystem Services and Its Determinants in the Yellow River Basin, China" Land 11, no. 6: 863. https://doi.org/10.3390/land11060863
APA StyleZhang, B., Wang, Y., Li, J., & Zheng, L. (2022). Degradation or Restoration? The Temporal-Spatial Evolution of Ecosystem Services and Its Determinants in the Yellow River Basin, China. Land, 11(6), 863. https://doi.org/10.3390/land11060863