Crop Intensity Mapping Using Dynamic Time Warping and Machine Learning from Multi-Temporal PlanetScope Data
<p>Study area observed in this research, the red polygon represents the paddy fields derived from another study by Kusuma, et al. [<a href="#B22-land-10-01384" class="html-bibr">22</a>].</p> "> Figure 2
<p>The workflow of the method used.</p> "> Figure 3
<p>K-means clustering in the study area used to define the fieldwork campaign.</p> "> Figure 4
<p>Training samples distribution map. The yellow polygons represent the paddy fields; this information was derived from a study by Kusuma et al. [<a href="#B22-land-10-01384" class="html-bibr">22</a>].</p> "> Figure 5
<p>Distribution map of validation samples. The yellow polygons represent paddy fields, and were derived from a study by Kusuma, Arjasakusuma, Rafif, Saringatin, Wicaksono, and Aziz [<a href="#B24-land-10-01384" class="html-bibr">24</a>].</p> "> Figure 6
<p>The samples of time-series values from unchanged objects using median composite before the second histogram matching (<b>a</b>,<b>c</b>,<b>e</b>), and after the second histogram matching (<b>b</b>,<b>d</b>,<b>f</b>).</p> "> Figure 6 Cont.
<p>The samples of time-series values from unchanged objects using median composite before the second histogram matching (<b>a</b>,<b>c</b>,<b>e</b>), and after the second histogram matching (<b>b</b>,<b>d</b>,<b>f</b>).</p> "> Figure 7
<p>The average reflectance temporal patterns from different cropping intensities identified in the study areas. (<b>a</b>) Average Reflectance in Blue Band; (<b>b</b>) Average Reflectance in Green Band; (<b>c</b>) Average Reflectance in Green Band; (<b>d</b>) Average Reflectance in NIR Band.</p> "> Figure 7 Cont.
<p>The average reflectance temporal patterns from different cropping intensities identified in the study areas. (<b>a</b>) Average Reflectance in Blue Band; (<b>b</b>) Average Reflectance in Green Band; (<b>c</b>) Average Reflectance in Green Band; (<b>d</b>) Average Reflectance in NIR Band.</p> "> Figure 8
<p>The classification results using tested algorithms in this study, for instance, (<b>a</b>) TWDTW, (<b>b</b>) XGB, (<b>c</b>) RF, and (<b>d</b>) ET.</p> "> Figure 8 Cont.
<p>The classification results using tested algorithms in this study, for instance, (<b>a</b>) TWDTW, (<b>b</b>) XGB, (<b>c</b>) RF, and (<b>d</b>) ET.</p> "> Figure 9
<p>The identified important variables (top 15) in the machine learning models of (<b>a</b>) ET, (<b>b</b>) RF, and (<b>c</b>) XGB.</p> "> Figure 9 Cont.
<p>The identified important variables (top 15) in the machine learning models of (<b>a</b>) ET, (<b>b</b>) RF, and (<b>c</b>) XGB.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Datasets
2.1.1. Study Area
2.1.2. Datasets
2.2. Classification Methods
2.2.1. K-Means Clustering
2.2.2. Training Data Collection
2.2.3. Time-Weighted Dynamic Time Warping (TWDTW)
2.2.4. Machine Learning Classification
2.2.5. Accuracy Assessment
3. Results
3.1. Relative Calibration of PlanetScope Results
3.2. Temporal Patterns from Different Cropping Intensities
3.3. Classification Results
3.4. Model Accuracy and Variable Importance from Machine Learning
3.5. Classification Accuracies
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, L.; Xiao, X.; Qin, Y.; Wang, J.; Xu, X.; Hu, Y.; Qiao, Z. Mapping cropping intensity in China using time series Landsat and Sentinel-2 images and Google Earth Engine. Remote Sens. Environ. 2020, 239, 111624. [Google Scholar] [CrossRef]
- Belgiu, M.; Csillik, O. Sentinel-2 cropland mapping using pixel-based and object-based time-weighted dynamic time warping analysis. Remote Sens. Environ. 2018, 204, 509–523. [Google Scholar] [CrossRef]
- Gerland, P.; Raftery, A.E.; Ševčíková, H.; Li, N.; Gu, D.; Spoorenberg, T.; Alkema, L.; Fosdick, B.K.; Chunn, J.; Lalic, N. World population stabilization unlikely this century. Science 2014, 346, 234–237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Yang, Y.; Li, Y.; Li, J. Conversion from rural settlements and arable land under rapid urbanization in Beijing during 1985–2010. J. Rural Stud. 2017, 51, 141–150. [Google Scholar] [CrossRef]
- Harini, R.; Yunus, H.S.; Hartono, S. Agricultural land conversion: Determinants and impact for food sufficiency in Sleman Regency. Indones. J. Geogr. 2012, 44, 120–133. [Google Scholar]
- Ioja, I.; Onose, D.; Nita, M.; Vanau, G.; Patroescu, M.; Gavrilidis, A.; Saghin, I.; Zarea, R. The conversion of agricultural lands into built surfaces in Romania. Recent Res. Urban Sustain. Green Dev. 2011, 6, 115–120. [Google Scholar]
- Waldner, F.; Canto, G.S.; Defourny, P. Automated annual cropland mapping using knowledge-based temporal features. ISPRS J. Photogramm. Remote Sens. 2015, 110, 1–13. [Google Scholar] [CrossRef]
- Vavorita, B. Decentralization and Rice Production in Bali Province. J. Public Adm. Stud. 2018, 3, 44–50. [Google Scholar] [CrossRef]
- Hao, P.-Y.; Tang, H.-J.; Chen, Z.-X.; Le, Y.; Wu, M.-Q. High resolution crop intensity mapping using harmonized Landsat-8 and Sentinel-2 data. J. Integr. Agric. 2019, 18, 2883–2897. [Google Scholar] [CrossRef]
- Foerster, S.; Kaden, K.; Foerster, M.; Itzerott, S. Crop type mapping using spectral–temporal profiles and phenological information. Comput. Electron. Agric. 2012, 89, 30–40. [Google Scholar] [CrossRef] [Green Version]
- Gómez, C.; White, J.C.; Wulder, M.A. Optical remotely sensed time series data for land cover classification: A review. ISPRS J. Photogram. Remote Sens. 2016, 116, 55–72. [Google Scholar] [CrossRef] [Green Version]
- Maus, V.; Câmara, G.; Cartaxo, R.; Sanchez, A.; Ramos, F.M.; De Queiroz, G.R. A time-weighted dynamic time warping method for land-use and land-cover mapping. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 3729–3739. [Google Scholar] [CrossRef]
- Smith, H.W. Evaluating Multiple Sensors for Mapping Cropped Area of Smallholder Farms in the Eastern Indo-Gangetic Plains. Master’s Thesis, University of Michigan, Ann Arbor, MI, USA, 2019. [Google Scholar]
- Cordero-Sancho, S.; Bergen, K.M. Relationships of agricultural land use to an expanded road network within tropical forest landscapes of Cameroon and Republic of the Congo. Prof. Geogr. 2018, 70, 60–72. [Google Scholar] [CrossRef]
- Xiao, X.; Boles, S.; Frolking, S.; Li, C.; Babu, J.Y.; Salas, W.; Moore, B., III. Mapping paddy rice agriculture in South and Southeast Asia using multi-temporal MODIS images. Remote Sens. Environ. 2006, 100, 95–113. [Google Scholar] [CrossRef]
- Francini, S.; McRoberts, R.E.; Giannetti, F.; Mencucci, M.; Marchetti, M.; Scarascia Mugnozza, G.; Chirici, G. Near-real time forest change detection using PlanetScope imagery. Eur. J. Remote Sens. 2020, 53, 233–244. [Google Scholar] [CrossRef]
- Cheng, Y.; Vrieling, A.; Fava, F.; Meroni, M.; Marshall, M.; Gachoki, S. Phenology of short vegetation cycles in a Kenyan rangeland from PlanetScope and Sentinel-2. Remote Sens. Environ. 2020, 248, 112004. [Google Scholar] [CrossRef]
- Breunig, F.M.; Galvão, L.S.; Dalagnol, R.; Dauve, C.E.; Parraga, A.; Santi, A.L.; Della Flora, D.P.; Chen, S. Delineation of management zones in agricultural fields using cover–crop biomass estimates from PlanetScope data. Int. J. Appl. Earth Obs. Geoinf. 2020, 85, 102004. [Google Scholar] [CrossRef]
- Frazier, A.E.; Hemingway, B.L. A Technical Review of Planet Smallsat Data: Practical Considerations for Processing and Using PlanetScope Imagery. Remote Sens. 2021, 13, 3930. [Google Scholar] [CrossRef]
- Maus, V.; Appel, M.; Giorgino, T. Time-Weighted Dynamic Time Warping for Satellite Image Time Series Analysis (Software). R Package Version 0.2.6. 2017. Available online: https://cran.r-project.org/web/packages/dtwSat/index.html (accessed on 7 December 2021).
- Arjasakusuma, S.; Kusuma, S.; Mahendra, W.; Astriviany, N. Mapping Paddy Field Extent and Temporal Pattern Variation in a Complex Terrain Area using Sentinel 1-Time Series Data: Case Study of Magelang District, Indonesia. Int. J. Geoinform. 2021, 17, 79–88. [Google Scholar] [CrossRef]
- Kusuma, S.S.; Arjasakusuma, S.; Rafif, R.; Saringatin, S.; Wicaksono, P.; Aziz, A.A. Assesssment of Image Segmentation and Deep Learning for Mapping Paddy Fields Using Worldview-3 in Magelang, Central Java Provinces, Indonesia. In Proceedings of the 7th Geoinformation Science Symposium, Yogyakarta, Indonesia, 25–28 October 2021. [Google Scholar]
- Hijmans, R.J.; Van Etten, J.; Cheng, J.; Mattiuzzi, M.; Sumner, M.; Greenberg, J.A.; Lamigueiro, O.P.; Bevan, A.; Racine, E.B.; Shortridge, A. Package ‘Raster’; R Package Version 3.5.9. 2021. Available online: https://cran.r-project.org/web/packages/raster/index.html (accessed on 7 December 2021).
- Leutner, B.; Horning, N.; Leutner, M.B. Package ‘RStoolbox’; Version 0.1; R Foundation for Statistical Computing: Vienna, Austria, 2017. [Google Scholar]
- Duda, T.; Canty, M. Unsupervised classification of satellite imagery: Choosing a good algorithm. Int. J. Remote Sens. 2002, 23, 2193–2212. [Google Scholar] [CrossRef]
- Zhou, Y. Reduction of Computation Time of Dynamic Time Warping Based Methods Used for Cropland Mapping. Master’s Thesis, University of Twente, Enschede, The Netherlands, 2019. [Google Scholar]
- Edgar, T.; Manz, D. Research Methods for Cyber Security; Syngress: Cambridge, MA, USA, 2017. [Google Scholar]
- Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Shwartz-Ziv, R.; Armon, A. Tabular Data: Deep Learning is Not All You Need. arXiv 2021, arXiv:2106.03253. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Ampomah, E.K.; Qin, Z.; Nyame, G. Evaluation of tree-based ensemble machine learning models in predicting stock price direction of movement. Information 2020, 11, 332. [Google Scholar] [CrossRef]
- Rainforth, T.; Wood, F. Canonical correlation forests. arXiv 2015, arXiv:1507.05444. [Google Scholar]
- Kursa, M.B.; Rudnicki, W.R. Feature selection with the Boruta package. J. Stat. Softw. 2010, 36, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Arjasakusuma, S.; Swahyu Kusuma, S.; Phinn, S. Evaluating variable selection and machine learning algorithms for estimating forest heights by combining lidar and hyperspectral data. ISPRS Int. J. Geo-Inf. 2020, 9, 507. [Google Scholar] [CrossRef]
- Kuhn, M.; Wing, J.; Weston, S.; Williams, A.; Keefer, C.; Engelhardt, A.; Cooper, T.; Mayer, Z.; Kenkel, B. The Caret Package; Vienna, Austria, 2012; Available online: https://cran.r-project.org/package=care (accessed on 22 August 2020).
- Cochran, W.G. Sampling Techniques; Wiley: New York, NY, USA, 1977. [Google Scholar]
- Olofsson, P.; Foody, G.M.; Herold, M.; Stehman, S.V.; Woodcock, C.E.; Wulder, M.A. Good practices for estimating area and assessing accuracy of land change. Remote Sens. Environ. 2014, 148, 42–57. [Google Scholar] [CrossRef]
- Arjasakusuma, S.; Kamal, M.; Hafizt, M.; Forestriko, H.F. Local-scale accuracy assessment of vegetation cover change maps derived from Global Forest Change data, ClasLite, and supervised classifications: Case study at part of Riau Province, Indonesia. Appl. Geomat. 2018, 10, 205–217. [Google Scholar] [CrossRef]
- Olofsson, P.; Foody, G.M.; Stehman, S.V.; Woodcock, C.E. Making better use of accuracy data in land change studies: Estimating accuracy and area and quantifying uncertainty using stratified estimation. Remote Sens. Environ. 2013, 129, 122–131. [Google Scholar] [CrossRef]
- Jensen, J.R. Remote Sensing of the Environment: An Earth Resource Perspective, 2nd ed.; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2007. [Google Scholar]
- Arjasakusuma, S.; Swahyu Kusuma, S.; Rafif, R.; Saringatin, S.; Wicaksono, P. Combination of Landsat 8 OLI and Sentinel-1 SAR Time-Series Data for Mapping Paddy Fields in Parts of West and Central Java Provinces, Indonesia. ISPRS Int. J. Geo-Inf. 2020, 9, 663. [Google Scholar] [CrossRef]
- Qiu, P.; Wang, X.; Cha, M.; Li, Y. Crop identification based on TWDTW method and time series GF-1 WFV. Sci. Agric. Sin. 2019, 52, 2951–2961. [Google Scholar]
- Helmer, E.H.; Ruefenacht, B. Cloud-free satellite image mosaics with regression trees and histogram matching. Photogramm. Eng. Remote Sens. 2005, 71, 1079–1089. [Google Scholar] [CrossRef] [Green Version]
- Cheng, K.; Wang, J. Forest-Type Classification Using Time-Weighted Dynamic Time Warping Analysis in Mountain Areas: A Case Study in Southern China. Forests 2019, 10, 1040. [Google Scholar] [CrossRef] [Green Version]
- Dadi, M.M. Assessing the Transferability of Random Forset and Time-Weighted Dynamic Time Warping for Agriculture Mapping. Master’s Thesis, University of Twente, Enschede, The Netherlands, 2019. [Google Scholar]
- De Oliveira, S.S.T.; Rodrigues, V.J.D.S.; Ferreira, L.G.; Martins, W.S. P-twdtw: Parallel processing of time series remote sensing images using manycore architectures. In Proceedings of the 2018 Symposium on High Performance Computing Systems (WSCAD), São Paulo, Brazil, 1–3 October 2018; pp. 252–258. [Google Scholar]
- Belgiu, M.; Zhou, Y.; Marshall, M.; Stein, A. Dynamic time warping for crops mapping. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, 43, 947–951. [Google Scholar] [CrossRef]
- Gella, G.W.; Bijker, W.; Belgiu, M. Mapping crop types in complex farming areas using SAR imagery with dynamic time warping. ISPRS J. Photogramm. Remote Sens. 2021, 175, 171–183. [Google Scholar] [CrossRef]
- Moola, W.S.; Bijker, W.; Belgiu, M.; Li, M. Vegetable mapping using fuzzy classification of Dynamic Time Warping distances from time series of Sentinel-1A images. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102405. [Google Scholar] [CrossRef]
- Tang, P.; Du, P.; Xia, J.; Zhang, P.; Zhang, W. Channel Attention-Based Temporal Convolutional Network for Satellite Image Time Series Classification. IEEE Geosci. Remote Sens. Lett. 2021. [Google Scholar] [CrossRef]
- Zhao, H.; Chen, Z.; Jiang, H.; Jing, W.; Sun, L.; Feng, M. Evaluation of three deep learning models for early crop classification using sentinel-1A imagery time series—A case study in Zhanjiang, China. Remote Sens. 2019, 11, 2673. [Google Scholar] [CrossRef] [Green Version]
- Rußwurm, M.; Körner, M. Self-attention for raw optical satellite time series classification. ISPRS J. Photogramm. Remote Sens. 2020, 169, 421–435. [Google Scholar] [CrossRef]
- Farquharson, G.; Woods, W.; Stringham, C.; Sankarambadi, N.; Riggi, L. The capella synthetic aperture radar constellation. In Proceedings of the EUSAR 2018—12th European Conference on Synthetic Aperture Radar, Aachen, Germany, 4–7 June 2018; pp. 1–5. [Google Scholar]
Methods | Once/Year | Twice/Year | Three Times/Year | Four Times/Year |
---|---|---|---|---|
(km2) | ||||
TWDTW | 3705.94 | 2446.64 | 7716.7 | 2157.55 |
RF | 1.44 | 6531.57 | 5164.37 | 2.61 |
XGB | 37.01 | 6540.59 | 5363.76 | 75.41 |
ET | 0.95 | 8251.99 | 3509.56 | 1.42 |
Methods | Once/Year | Twice/Year | Three Times/Year | Four Times/Year | OA | ||||
---|---|---|---|---|---|---|---|---|---|
UA | PA | UA | PA | UA | PA | UA | PA | ||
XGB | 70 ± 25% | 100 ± 0% | 98 ± 4% | 94 ± 6% | 93 ± 8% | 96 ± 13% | 60 ± 22% | 100 ± 0% | 95 ± 4% |
RF | 70 ± 25% | 100 ± 0% | 100 ± 0% | 87 ± 8% | 82 ± 12% | 99 ± 1% | 60 ± 22% | 100 ± 0% | 92 ± 5% |
ET | 70 ± 25% | 100 ± 0% | 95 ± 6% | 87 ± 5% | 68 ± 15% | 86 ± 3% | 60 ± 22% | 100 ± 0% | 87 ± 6% |
TWDTW | 70 ± 25% | 100 ± 0% | 88 ± 9% | 53 ± 7% | 89 ± 10% | 86 ± 16% | 60 ± 22% | 100 ± 0% | 81 ± 8% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rafif, R.; Kusuma, S.S.; Saringatin, S.; Nanda, G.I.; Wicaksono, P.; Arjasakusuma, S. Crop Intensity Mapping Using Dynamic Time Warping and Machine Learning from Multi-Temporal PlanetScope Data. Land 2021, 10, 1384. https://doi.org/10.3390/land10121384
Rafif R, Kusuma SS, Saringatin S, Nanda GI, Wicaksono P, Arjasakusuma S. Crop Intensity Mapping Using Dynamic Time Warping and Machine Learning from Multi-Temporal PlanetScope Data. Land. 2021; 10(12):1384. https://doi.org/10.3390/land10121384
Chicago/Turabian StyleRafif, Raihan, Sandiaga Swahyu Kusuma, Siti Saringatin, Giara Iman Nanda, Pramaditya Wicaksono, and Sanjiwana Arjasakusuma. 2021. "Crop Intensity Mapping Using Dynamic Time Warping and Machine Learning from Multi-Temporal PlanetScope Data" Land 10, no. 12: 1384. https://doi.org/10.3390/land10121384
APA StyleRafif, R., Kusuma, S. S., Saringatin, S., Nanda, G. I., Wicaksono, P., & Arjasakusuma, S. (2021). Crop Intensity Mapping Using Dynamic Time Warping and Machine Learning from Multi-Temporal PlanetScope Data. Land, 10(12), 1384. https://doi.org/10.3390/land10121384