Does Smart City Construction Improve the Green Utilization Efficiency of Urban Land?
"> Figure 1
<p>Average Efficiency of Each Year. Notes: the horizontal axis represents the year from 2004 to 2017; the vertical axis represents the green utilization efficiency of urban land.</p> "> Figure 2
<p>Green Utilization Efficiency of Urban Land (GLE) in 2004, 2008, 2013 and 2017.</p> "> Figure 3
<p>Mean Variation of Green Utilization Efficiency of Urban Land. Notes: the horizontal axis represents the year from 2004 to 2017; the vertical axis represents the green utilization efficiency of urban land.</p> ">
Abstract
:1. Introduction
2. Literature Review
3. Methodology and Data
3.1. Benchmark Model
3.2. Variables
3.3. Data
4. Empirical Analysis
4.1. Variable Collinearity Test
4.2. Parallel Trend Test
4.3. Benchmark Regression
4.4. Robustness Testing
5. Heterogeneity Analysis
5.1. City-Size Heterogeneity
5.2. City-Feature Heterogeneity
6. Transmission Mechanisms
7. Conclusions and Policy Implications
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Seyfang, G.; Smith, A. Grassroots innovations for sustainable development: Towards a new research and policy agenda. Environ. Politics 2007, 16, 584–603. [Google Scholar] [CrossRef]
- Cartier, C. “Zone fever”, the arable land debate, and real estate speculation: China’s evolving land use regime and its geographical contradictions. J. Contemp. China 2001, 10, 445–469. [Google Scholar] [CrossRef]
- Huang, Y.; Yang, D.L. The political dynamics of regulatory change: Speculation and regulation in the real estate sector. J. Contemp. China 1996, 5, 171–185. [Google Scholar] [CrossRef]
- Chen, S. Environmental pollution emissions, regional productivity growth and ecological economic development in China. China Econ. Rev. 2014, 35, 171–182. [Google Scholar] [CrossRef]
- Martínez-Zarzoso, I.; Maruotti, A. The impact of urbanization on CO2 emissions: Evidence from developing countries. Ecol. Econ. 2011, 70, 1344–1353. [Google Scholar] [CrossRef] [Green Version]
- Grossman, G.M.; Krueger, A.B. Economic Growth and the Environment. Q. J. Econ. 1995, 110, 353–377. [Google Scholar] [CrossRef] [Green Version]
- Verma, P.; Raghubanshi, A.S. Urban sustainability indicators: Challenges and opportunities. Ecol. Indic. 2018, 93, 282–291. [Google Scholar] [CrossRef]
- Krekel, C.; Kolbe, J.; Wuestemann, H. The greener, the happier? The effect of urban land use on residential well-being. Ecol. Econ. 2016, 121, 117–127. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Q.; Zhu, M.; Qiao, Y.; Zhang, X.; Chen, J. Achieving resilience through smart cities? Evidence from China. Habitat Int. 2021, 111, 102348. [Google Scholar] [CrossRef]
- Silvana, S.; Valerio, B.; Davide, C.; Paolo, B. Towards a hybrid model for the management of smart city initiatives. Cities 2021, 116, 103278. [Google Scholar]
- Chen, W.; Ning, S.; Chen, W.; Liua, E.; Wang, Y.; Zhao, M. Spatial-temporal characteristics of industrial land green efficiency in China: Evidence from prefecture-level cities. Ecol. Indic. 2020, 113, 106256. [Google Scholar] [CrossRef]
- Martinho, V. Efficiency, total factor productivity and returns to scale in a sustainable perspective: An analysis in the European Union at farm and regional level. Land Use Policy 2017, 68, 232–245. [Google Scholar] [CrossRef]
- Xie, H.; Chen, Q.; Lu, F.; Wu, Q.; Wang, W. Spatial-temporal disparities, saving potential and influential factors of industrial land use efficiency: A case study in urban agglomeration in the middle reaches of the Yangtze River. Land Use Policy 2018, 75, 518–529. [Google Scholar] [CrossRef]
- Du, J.; Thill, J.C.; Peiser, R.B. Land pricing and its impact on land use efficiency in post-land-reform China: A case study of Beijing. Cities 2016, 50, 68–74. [Google Scholar] [CrossRef]
- Desiere, S.; Jolliffe, D. Land productivity and plot size: Is measurement error driving the inverse relationship? J. Dev. Econ. 2018, 130, 84–98. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Chen, J.; Zheng, W.; Deng, X. Dynamics of land use efficiency with ecological inter-correlation in regional development. Landsc. Urban Plan. 2018, 177, 303–316. [Google Scholar] [CrossRef]
- Hui, E.C.M.; Wu, Y.; Deng, L.; Zheng, B. Analysis on coupling relationship of urban scale and intensive use of land in China. Cities 2015, 42, 63–69. [Google Scholar] [CrossRef]
- Chen, W.; Chen, W.; Ning, S.; Liu, E.; Zhou, X.; Wang, Y.; Zhao, M. Exploring the industrial land use efficiency of China’s resource-based cities. Cities 2019, 93, 215–223. [Google Scholar] [CrossRef]
- Guastella, G.; Pareglio, S.; Sckokai, P. A spatial econometric analysis of land use efficiency in large and small municipalities. Land Use Policy 2017, 63, 288–297. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, M.; Feres, J.G. Farm size and Land use efficiency in the Brazilian Amazon. Land Use Policy 2020, 99, 104901. [Google Scholar] [CrossRef]
- Jin, G.; Deng, X.; Zhao, X.D.; Guo, B.S.; Yang, J. Spatio-temporal patterns of urban land use efficiency in the Yangtze River Economic Zone during 2005–2014. Acta Geogr. Sin. 2018, 73, 1242–1252. [Google Scholar]
- Jing, L.; Bixia, H.; Kuang, B.; Chen, D. Measuring of urban land use efficiency and its dynamic development in China. Econ. Geogr. 2017, 37, 162–167. [Google Scholar]
- Zhou, Y.; Tan, G. Impact of local government competition on the efficiency of urban land use. Areal Res. Dev. 2017, 36, 118–122. [Google Scholar]
- Xin, G.; Az, B.; Zs, C. How regional economic integration influence on urban land use efficiency? A case study of Wuhan metropolitan area, China. Land Use Policy 2020, 90, 104329. [Google Scholar]
- Yang, C.H.; Wu, L.; Lin, H.L. Analysis of total-factor cultivated land efficiency in China’s agriculture. Agric. Econ. 2010, 56, 231–242. [Google Scholar] [CrossRef]
- Zhu, X.; Li, Y.; Zhang, P.; Wei, Y.; Zheng, X.; Xie, L. Temporal–spatial characteristics of urban land use efficiency of China’s 35mega cities based on DEA: Decomposing technology and scale efficiency. Land Use Policy 2019, 88, 104083. [Google Scholar] [CrossRef]
- Hanif, I. Impact of economic growth, nonrenewable and renewable energy consumption, and urbanization on carbon emissions in Sub-Saharan Africa. Environ. Sci. Pollut. Res. 2018, 25, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Peng, B.B.; Xu, J.H.; Fan, Y. Modeling uncertainty in estimation of carbon dioxide abatement costs of energy-saving technologies for passenger cars in China. Energy Policy 2018, 113, 306–319. [Google Scholar] [CrossRef]
- Yang, L.; Ouyang, H.; Fang, K.; Ye, L.; Zhang, J. Evaluation of regional environmental efficiencies in China based on super-efficiency-DEA. Ecol. Indic. 2015, 51, 13–19. [Google Scholar] [CrossRef]
- Tao, X.; Wang, P.; Zhu, B. Provincial green economic efficiency of China: A non-separable input-output SBM approach. Appl. Energy 2016, 171, 58–66. [Google Scholar] [CrossRef]
- Yu, J.; Zhou, K.; Yang, S. Land use efficiency and influencing factors of urban agglomerations in China. Land Use Policy 2019, 88, 104–113. [Google Scholar] [CrossRef]
- Zhu, X.H.; Zhang, P.F.; Wei, Y.G.; Li, Y.; Zhao, H. Measuring the efficiency and driving factors of urban land use based on the DEA method and the PLS-SEM model—A case study of 35 large and medium-sized cities in China. Sustain. Cities Soc. 2019, 50, 101646. [Google Scholar] [CrossRef]
- Lu, X.; Chen, D.; Kuang, B.; Zhang, C.; Cheng, C. Is high-tech zone a policy trap or a growth drive? Insights from the perspective of urban land use efficiency. Land Use Policy 2020, 95, 104583. [Google Scholar] [CrossRef]
- Wang, P.; Shao, Z.; Wang, J.; Wu, Q. The impact of land finance on urban land use efficiency: A panel threshold model for Chinese provinces. Growth Chang. 2021, 52, 310–331. [Google Scholar] [CrossRef]
- Yan, S.; Peng, J.; Wu, Q. Exploring the non-linear effects of city size on urban industrial land use efficiency: A spatial econometric analysis of cities in eastern China. Land Use Policy 2020, 99, 104944. [Google Scholar] [CrossRef]
- Chen, Y.; Henderson, J.V.; Cai, W. Political favoritism in China’s capital markets and its effect on city sizes. J. Urban Econ. 2017, 98, 69–87. [Google Scholar] [CrossRef] [Green Version]
- Huang, Z.; He, C.; Zhu, S. Do China’s economic development zones improve land use efficiency? The effects of selection, factor accumulation and agglomeration. Landsc. Urban Plan. 2017, 162, 145–156. [Google Scholar] [CrossRef]
- Xie, H.; Chen, Q.; Lu, F.; Wang, W.; Yao, G.; Yu, J. Spatial-temporal disparities and influencing factors of total-factor green use efficiency of industrial land in China. J. Clean. Prod. 2019, 207, 1047–1058. [Google Scholar] [CrossRef]
- Sun, Y.; Ma, A.; Su, H.; Su, S.; Chen, F.; Wang, W.; Weng, M. Does the establishment of development zones really improve industrial land use efficiency? Implications for China’s high-quality development policy. Land Use Policy 2020, 90, 104265. [Google Scholar] [CrossRef]
- Keivani, R.; Mattingly, M.; Majedi, H. Public management of urban land, enabling markets and low-income housing provision: The overlooked experience of Iran. Urban Stud. 2008, 45, 1825–1853. [Google Scholar] [CrossRef]
- Osman, T.; Divigalpitiya, P.; Arima, T. Driving factors of urban sprawl in giza governorate of greater cairo metropolitan region using AHP method. Land Use Policy 2016, 58, 21–31. [Google Scholar] [CrossRef]
- Barbosa, J.A.; Bragança, L.; Mateus, R. Assessment of land use efficiency using BSA tools: Development of a new index. J. Urban Plan. Dev. 2014, 141, 04014020. [Google Scholar] [CrossRef]
- Turnbull, G.K. Irreversible development and eminent domain: Compensation rules, land use and efficiency. J. Hous. Econ. 2010, 19, 243–254. [Google Scholar] [CrossRef]
- Wei, Y.D.; Li, H.; Yue, W. Urban land expansion and regional inequality in transitional China. Landsc. Urban Plan. 2017, 163, 17–31. [Google Scholar] [CrossRef]
- Kim, J.H. Measuring the containment and spillover effects of urban growth boundaries: The case of the Portland metropolitan area. Growth Chang. 2013, 44, 650–675. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Fang, K.; Yang, W.; Wang, D.; Hong, X. Regional environmental efficiency evaluation in China: Analysis based on the super-SBM model with undesirable outputs. Math. Comput. Model. 2013, 58, 1018–1031. [Google Scholar] [CrossRef]
- Verbano, C.; Crema, M. Linking technology innovation strategy, intellectual capital and technology innovation performance in manufacturing SMEs. Technol. Anal. Strateg. Manag. 2016, 28, 524–540. [Google Scholar] [CrossRef]
- Caragliu, A.; Del, B. Smart innovative cities: The impact of Smart City policies on urban innovation. Technol. Forecast. Soc. Chang. 2019, 142, 373–383. [Google Scholar] [CrossRef]
- Shi, D.Q.; Ding, H.; Wei, P.; Liu, J. Can smart city construction reduce environmental pollution. China Ind. Econ. 2018, 363, 119–137. [Google Scholar]
- Tone, K. A slacks-based measure of super-efficiency in data envelopment analysis. Eur. J. Oper. Res. 2002, 143, 32–41. [Google Scholar] [CrossRef] [Green Version]
- Meng, Y.; Zhang, F.R.; An, P.L.; Dong, M.L.; Wang, Z.Y.; Zhao, T. Industrial land-use efficiency and planning in Shunyi, Beijing. Landsc. Urban Plan. 2008, 85, 40–48. [Google Scholar] [CrossRef]
- Ding, C.; Lichtenberg, E. Land and urban economic growth in China. J. Reg. Sci. 2011, 51, 299–317. [Google Scholar] [CrossRef]
- Chen, J.; Gao, M.; Cheng, S.; Hou, W.; Shan, Y. County-level CO2 emissions and sequestration in China during 1997–2017. Sci. Data 2020, 7, 391. [Google Scholar] [CrossRef]
- Cao, X.; Deng, M.; Li, H. How does e-commerce city pilot improve green total factor productivity? Evidence from 230 cities in China. J. Environ. Manag. 2021, 289, 112520. [Google Scholar] [CrossRef]
- Bertrand, M.; Mullainathan, D.S. How Much Should We Trust Differences-in-Differences Estimates? Q. J. Econ. 2004, 119, 249–275. [Google Scholar] [CrossRef] [Green Version]
- Kahn, M.E.; Li, P.; Zhao, D. Water pollution progress at borders: The role of changes in China’s political promotion incentives. Am. Econ. J. Econ. Policy 2015, 7, 223–242. [Google Scholar] [CrossRef] [Green Version]
- Baron, R.M.; Kenny, D.A. The moderator-mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. J. Personal. Soc. Psychol. 1986, 51, 1173–1182. [Google Scholar] [CrossRef]
- Papyrakis, E.; Gerlagh, R. Resource abundance and economic growth in the United States. Eur. Econ. Rev. 2007, 51, 1011–1039. [Google Scholar] [CrossRef]
- Groizard, J.L.; Ranjan, P.; Rodriguez-Lopez, A. Trade costs and job flows: Evidence from establishment level data. Econ. Inq. 2015, 53, 173–204. [Google Scholar] [CrossRef] [Green Version]
Variable | Obs. | Mean | Std. Dev. | Min | Max |
---|---|---|---|---|---|
lnGLE | 2128 | −1.139 | 0.534 | −2.659 | 0.668 |
Treat | 2128 | 0.204 | 0.403 | 0 | 1 |
Post | 2128 | 0.357 | 0.479 | 0 | 1 |
inf | 2128 | 0.011 | 0.009 | 4.29 × 10−4 | 0.201 |
inno | 2128 | 19.811 | 26.332 | 0.217 | 244.550 |
lnpgdp | 2128 | 9.359 | 0.544 | 7.662 | 10.842 |
fdigdp | 2128 | 0.017 | 0.019 | 0 | 0.182 |
sci | 2128 | 16.662 | 16.838 | 0.145 | 193.758 |
fe | 2128 | 0.642 | 0.209 | 0.247 | 5.613 |
gov | 2128 | 0.065 | 0.026 | 0.018 | 0.204 |
Variable | lnGLE | Treat | Post | lnpgdp | Fdigdp | Sci | Fe | Gov |
---|---|---|---|---|---|---|---|---|
lnGLE | 1.000 | |||||||
treat | −0.026 | 1.000 | ||||||
post | 0.325 | 0.000 | 1.000 | |||||
lnpgdp | 0.100 | 0.385 | 0.081 | 1.000 | ||||
fdigdp | −0.012 | 0.200 | −0.096 | 0.400 | 1.000 | |||
sci | 0.170 | 0.213 | 0.348 | 0.278 | 0.213 | 1.000 | ||
fe | 0.026 | 0.159 | 0.102 | 0.243 | 0.011 | 0.123 | 1.000 | |
gov | 0.233 | 0.168 | 0.372 | 0.382 | 0.279 | 0.552 | 0.179 | 1.000 |
Variable | Did | Treat | Gov | Sci | Lnpgdp | Post | Fdigdp | Fe | Mean VIF |
---|---|---|---|---|---|---|---|---|---|
VIF | 1.88 | 1.75 | 1.73 | 1.60 | 1.52 | 1.50 | 1.30 | 1.09 | 1.55 |
1/VIF | 0.53 | 0.57 | 0.58 | 0.63 | 0.66 | 0.67 | 0.77 | 0.91 | 0.66 |
Variable | (1) | (2) | (3) | (4) |
---|---|---|---|---|
lnGLE | lnGLE | lnGLE | lnGLE | |
Treat × Post | 0.152 *** | 0.148 *** | ||
(0.032) | (0.032) | |||
Treat × year2005 | −0.076 | |||
(0.079) | ||||
Treat × year2006 | −0.021 | |||
(0.079) | ||||
Treat × year2007 | 0.073 | |||
(0.079) | ||||
Treat × year2008 | 0.020 | |||
(0.079) | ||||
Treat × year2009 | 0.027 | |||
(0.079) | ||||
Treat × year2010 | −0.020 | |||
(0.079) | ||||
Treat × year2011 | 0.049 | |||
(0.079) | ||||
Treat × year2012 | 0.101 | |||
(0.079) | ||||
Treat × year2013 | 0.164 *** | 0.183 ** | ||
(0.059) | (0.079) | |||
Treat × year2014 | 0.171 *** | 0.190 ** | ||
(0.059) | (0.080) | |||
Treat × year2015 | 0.172 *** | 0.191 ** | ||
(0.060) | (0.080) | |||
Treat × year2016 | 0.117 * | 0.136 * | ||
(0.060) | (0.080) | |||
Treat × year2017 | 0.113 * | 0.133 * | ||
(0.060) | (0.080) | |||
lnpgdp | 0.434 *** | 0.434 *** | 0.443 *** | |
(0.055) | (0.055) | (0.055) | ||
fdigdp | 0.082 | 0.110 | 0.131 | |
(0.533) | (0.534) | (0.535) | ||
sci | 0.0018 *** | 0.0018 *** | 0.0017 *** | |
(6.568) | (6.601) | (6.652) | ||
fe | −0.072 | −0.071 | −0.073 | |
(0.047) | (0.047) | (0.047) | ||
gov | −1.716 *** | −1.734 *** | −1.753 *** | |
(0.607) | (0.608) | (0.609) | ||
_cons | −1.173 *** | −5.035 *** | −5.038 *** | −5.113 *** |
(0.023) | (0.505) | (0.506) | (0.508) | |
N | 2128 | 2128 | 2128 | 2128 |
adj. R2 | 0.274 | 0.302 | 0.301 | 0.300 |
City fixed effects | Yes | Yes | Yes | Yes |
Year fixed effects | Yes | Yes | Yes | Yes |
Variable | (1) | (2) | (3) | (4) |
---|---|---|---|---|
PSM-DID | One-Time-Period Control Variable Lag | 1–99% Winsorization | Exclude the Sample of Provincial Capitals City | |
lnGLE | lnGLE | lnGLE | lnGLE | |
Treat × Post | 0.148 *** | 0.149 *** | 0.173 *** | 0.144 *** |
(0.032) | (0.032) | (0.031) | (0.034) | |
lnpgdp | 0.434 *** | 0.345 *** | 0.213 *** | 0.409 *** |
(0.055) | (0.058) | (0.053) | (0.054) | |
fdigdp | 0.082 | −0.296 | 0.920 * | −1.029 * |
(0.533) | (0.548) | (0.549) | (0.557) | |
sci | 0.0018 *** | 0.0023 *** | 0.0016 ** | 0.0013 * |
(6.568) | (7.152) | (7.531) | (6.655) | |
fe | −0.072 | −0.014 | −0.162 ** | −0.079 * |
(0.047) | (0.047) | (0.079) | (0.047) | |
gov | −1.716 *** | −2.392 *** | −1.873 *** | −1.785 *** |
(0.607) | (0.612) | (0.607) | (0.603) | |
_cons | −5.035 *** | −4.499 *** | −2.656 *** | −4.761 *** |
(0.505) | (0.533) | (0.493) | (0.502) | |
N | 2128 | 1976 | 2128 | 2030 |
adj. R2 | 0.302 | 0.329 | 0.171 | 0.304 |
City fixed effects | Yes | Yes | Yes | Yes |
Year fixed effects | Yes | Yes | Yes | Yes |
Variable | (1) | (2) | (3) | (4) | (5) |
---|---|---|---|---|---|
Small-Sized Cities | Medium-Sized Cities | Large-Sized Cities | Very-Large-Sized Cities | Mega Cities and Above | |
Population | Less than 50 | 50~100 | ≥100 | 100~500 | >500 |
(Ten thousand) | lnGLE | lnGLE | lnGLE | lnGLE | lnGLE |
Treat × Post | 1.209 | 0.168 | 0.154 *** | 0.128 *** | 0.238 *** |
(0.749) | (0.173) | (0.033) | (0.036) | (0.063) | |
lnpgdp | 2.515 | 0.447 ** | 0.387 *** | 0.195 *** | 0.257 |
(1.829) | (0.222) | (0.059) | (0.060) | (0.182) | |
fdigdp | 42.673 | 1.938 | 0.001 | −0.013 | 1.849 |
(74.705) | (1.807) | (0.564) | (0.566) | (1.877) | |
sci | −0.127 | −0.001 | 0.002 *** | 26.363 *** | 0.005 *** |
(651.691) | (25.105) | (7.052) | (8.984) | (18.581) | |
fe | −0.933 | 0.411 | −0.071 | −0.124 | 0.013 |
(1.778) | (0.263) | (0.048) | (0.095) | (0.054) | |
gov | 8.295 | 3.945 | −1.473 ** | −1.985 *** | −0.110 |
(9.119) | (2.827) | (0.638) | (0.675) | (2.146) | |
_cons | −25.601 | −5.632 ** | −4.633 *** | −2.471 *** | −3.808 ** |
(16.961) | (2.141) | (0.542) | (0.572) | (1.661) | |
N | 23 | 91 | 2014 | 1454 | 496 |
adj. R2 | 0.511 | 0.307 | 0.309 | 0.138 | 0.426 |
City fixed effects | Yes | Yes | Yes | Yes | Yes |
Year fixed effects | Yes | Yes | Yes | Yes | Yes |
Variable | (1) | (2) | (3) | (4) | (5) | (6) |
---|---|---|---|---|---|---|
Human Capital | Financial Development | Information Infrastructure | ||||
Low | High | Low | High | Low | High | |
Treat × Post | −0.196 ** | 0.239 *** | −0.073 | 0.310 *** | 0.083 | 0.191 *** |
(0.077) | (0.034) | (0.056) | (0.044) | (0.074) | (0.036) | |
lnpgdp | 0.388 *** | 0.648 *** | 0.348 *** | 0.506 *** | 0.460 *** | 0.727 *** |
(0.085) | (0.073) | (0.090) | (0.083) | (0.084) | (0.095) | |
fdigdp | −1.467 | 1.861 *** | −0.322 | −0.148 | −0.519 | 2.299 *** |
(0.985) | (0.661) | (0.860) | (0.747) | (0.875) | (0.759) | |
sci | 0.003 | 0.0004 | 0.0007 | 0.0012 | 0.004 *** | −0.0005 |
(16.909) | (6.652) | (14.899) | (8.239) | (13.877) | (8.533) | |
fe | −0.121 | −0.022 | −0.244 ** | −0.008 | −0.170 | −0.001 |
(0.116) | (0.048) | (0.112) | (0.053) | (0.107) | (0.045) | |
gov | 0.394 | −3.345 *** | −1.863 * | −1.139 | −0.618 | −2.435 *** |
(0.981) | (0.756) | (1.001) | (0.842) | (0.882) | (0.923) | |
_cons | −4.488 *** | −7.218 *** | −4.109 *** | −5.762 *** | −5.098 *** | −7.981 *** |
(0.761) | (0.700) | (0.832) | (0.768) | (0.763) | (0.902) | |
N | 1064 | 1064 | 1064 | 1064 | 1064 | 1064 |
adj. R2 | 0.167 | 0.436 | 0.297 | 0.242 | 0.018 | 0.412 |
City fixed effects | YES | YES | YES | YES | YES | YES |
Year fixed effects | YES | YES | YES | YES | YES | YES |
Variable | (1) | (2) | (3) | (4) |
---|---|---|---|---|
inf | lnGLE | inno | lnGLE | |
Treat × Post | 0.002 ** | 0.136 *** | 7.845 *** | 0.126 *** |
(0.001) | (0.032) | (1.575) | (0.032) | |
inf | 7.198 *** | |||
(0.946) | ||||
inno | 0.003 *** | |||
(0.000) | ||||
lnpgdp | −0.001 | 0.444 *** | −11.349 *** | 0.465 *** |
(0.001) | (0.054) | (2.654) | (0.054) | |
fdigdp | 0.026 ** | −0.104 | 90.528 *** | −0.168 |
(0.013) | (0.526) | (25.888) | (0.530) | |
sci | −0.000 | 0.002 *** | 0.694 *** | −0.000 |
(0.155) | (6.478) | (319.206) | (7.255) | |
fe | −0.002 * | −0.056 | 3.708 | −0.082 * |
(0.001) | (0.047) | (2.292) | (0.047) | |
gov | 0.027 * | −1.913 *** | −94.382 *** | −1.455 ** |
(0.014) | (0.599) | (29.479) | (0.603) | |
_cons | 0.023 * | −5.202 *** | 105.817 *** | −5.328 *** |
(0.012) | (0.499) | (24.558) | (0.503) | |
N | 2128 | 2128 | 2128 | 2128 |
adj. R2 | −0.041 | 0.321 | 0.548 | 0.314 |
City fixed effects | Yes | Yes | Yes | Yes |
Year fixed effects | Yes | Yes | Yes | Yes |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, A.; Lin, W.; Liu, B.; Wang, H.; Xu, H. Does Smart City Construction Improve the Green Utilization Efficiency of Urban Land? Land 2021, 10, 657. https://doi.org/10.3390/land10060657
Wang A, Lin W, Liu B, Wang H, Xu H. Does Smart City Construction Improve the Green Utilization Efficiency of Urban Land? Land. 2021; 10(6):657. https://doi.org/10.3390/land10060657
Chicago/Turabian StyleWang, Aiping, Weifen Lin, Bei Liu, Hui Wang, and Hong Xu. 2021. "Does Smart City Construction Improve the Green Utilization Efficiency of Urban Land?" Land 10, no. 6: 657. https://doi.org/10.3390/land10060657
APA StyleWang, A., Lin, W., Liu, B., Wang, H., & Xu, H. (2021). Does Smart City Construction Improve the Green Utilization Efficiency of Urban Land? Land, 10(6), 657. https://doi.org/10.3390/land10060657