Single-Cell Assessment of Human Stem Cell-Derived Mesolimbic Models and Their Responses to Substances of Abuse
<p>Development of forebrain and midbrain organoids compatible with early assembloid generation. (<b>A</b>) Morphogen gradients associated with patterning the developing mesolimbic pathway. (<b>B</b>) Previously developed 3D forebrain organoid models (“Bagley” and “Xiang-Tanaka”) (Bagley 2017 [<a href="#B32-organoids-03-00009" class="html-bibr">32</a>], Xiang & Tanaka 2017 [<a href="#B38-organoids-03-00009" class="html-bibr">38</a>]), whole brian organoids models (“Lancaster”) (Lancaster 2013 [<a href="#B34-organoids-03-00009" class="html-bibr">34</a>]) and new forebrain and midbrain organoid models (“Rudibaugh1” and “Rudibaugh2”, respectively) with key patterning factors used, their indicated activities, and targeted regional specifications. (<b>C</b>) Immunostaining quantification of D90 forebrain, midbrain, and whole-brain organoids. (<b>D</b>) Immunostaining quantification of D90 midbrain and whole-brain organoids. (<b>E</b>) Immunostaining quantification of the ratio of DARPP32+ to TH+ regions in D90 forebrain, midbrain, and whole-brain organoids. (<b>C</b>–<b>E</b>) Error bars represent 95% confidence intervals for n = 4 biological replicates with 3 organoids per replicate. * <span class="html-italic">p</span> < 0.05, one-way ANOVA with Tukey–Kramer post hoc analysis. (<b>F</b>,<b>G</b>) RT-qPCR of D90 forebrain organoids, midbrain organoids, and hPSCs relative to GAPDH for (<b>F</b>) MSN markers DARPP32, A2A, TAC1, and PENK and (<b>G</b>) DN markers TH, NURR1, DAT, and DDC. Error bars represent 95% confidence intervals for n = 5 replicates with 3 organoids per replicate. * <span class="html-italic">p</span> < 0.05, one-way ANOVA with Tukey–Kramer post hoc analysis.</p> "> Figure 2
<p>scRNAseq reveals heterogeneous compositions and distinct enrichments of GABAergic subtypes in seven 3D and 2D striatal models. (<b>A</b>) Table of the different striatal protocols used in the sequencing experiment (Arber 2015 [<a href="#B22-organoids-03-00009" class="html-bibr">22</a>], Fjodorova 2015 [<a href="#B20-organoids-03-00009" class="html-bibr">20</a>], Wu 2018 [<a href="#B47-organoids-03-00009" class="html-bibr">47</a>], Nicoleau 2013 [<a href="#B21-organoids-03-00009" class="html-bibr">21</a>], Bagley 2017 [<a href="#B32-organoids-03-00009" class="html-bibr">32</a>], Xiang & Tanaka 2017 [<a href="#B38-organoids-03-00009" class="html-bibr">38</a>]). (<b>B</b>) UMAP plot shows positions of the 8 different identified cell types across all cells in the dataset. (<b>C</b>) Dot plot of select marker genes used for cell-type identification for all cells in the dataset. (<b>D</b>) Cell-type percentages of the three 3D organoid protocols and four 2D protocols show significant heterogeneity. (<b>E</b>) UMAP plots show the relative position of the GABAergic neurons in the seven different 2D and 3D culture models. Light shading indicates all cells in the protocol. (<b>F</b>) UMAP plots show the relative position of the five GABAergic neuron subclusters arranged from most to fewest number of cells. (<b>G</b>) Violin plots show GABAergic neurons in Bagley organoids have higher expression of the striatal marker genes <span class="html-italic">ARPP21</span>, <span class="html-italic">BCL11B</span> (<span class="html-italic">CTIP2</span>), and <span class="html-italic">FOXP1</span> than the GABAergic neurons in the Xiang-Tanaka and Rudibaugh1 models. The color coding in panels E and G correspond to protocols used * false discovery rate <span class="html-italic">q</span> < 0.05 relative to the other protocols.</p> "> Figure 3
<p>Cell-type-specific differential gene expression to dopamine, cocaine, and morphine. (<b>A</b>) Schematic of the six different conditions evaluated, the compounds used, and the duration of compound exposure (Bagley 2017 [<a href="#B32-organoids-03-00009" class="html-bibr">32</a>]). (<b>B</b>) Number of up- and downregulated DEGs separated by cell type and condition. DEG defined as log2FC > |0.5|, expression in over 20% of sequenced cells, and false discovery rate <span class="html-italic">q</span> < 0.05 relative to ascorbic acid-dosed controls. (<b>C</b>) Venn diagrams comparing the DEGs across the 5 different cell types, keeping the compound regimen constant. (<b>D</b>) UMAP plots show the relative positions of all cells from Bagley organoids and Bagley–Rudibaugh2 assembloids.</p> "> Figure 4
<p>Gene set enrichment analysis of cell-type-specific responses to dopamine, cocaine, and morphine. (<b>A</b>) Counts of the top activated cell-signaling and synapse-related pathways based on the 20 unique cell-type-specific DEG analyses performed for Bagley forebrain organoids and Bagley–Rudibaugh assembloids exposed to the three substances. (<b>B</b>–<b>D</b>) Heat maps of differentially expressed genes from (<b>B</b>) interneurons in Bagley–Rudibaugh2 assembloids exposed to morphine. (<b>C</b>) Progenitors in Bagley–Rudibaugh2 assembloids exposed to cocaine. (<b>D</b>) Glutamatergic neurons in Bagley organoids exposed to morphine. (<b>B</b>–<b>D</b>) All genes shown have false discovery rate <span class="html-italic">q</span> < 0.05 relative to ascorbic acid-dosed controls. n ≥ 2 biological replicates of 2–3 assembloids/organoids per condition.</p> "> Figure 5
<p>Bulk analysis reveals roles for eIF2 and TGF-β signaling pathways. (<b>A</b>) GSEA shows that the Bagley dopamine, Bagley morphine, and Bagley–Rudibaugh2 morphine conditions exhibit downregulation of EIF2 signaling. The Bagley–Rudibaugh2 cocaine condition exhibits upregulation of TGF-β-linked pathways. The z-score measures the statistical likelihood of pathway activation relative to canonical pathway gene-expression patterns. (<b>B</b>) The Bagley dopamine, Bagley morphine, and Bagley–Rudibaugh2 morphine conditions show upregulation of the EIF2AK3 gene linked with ER stress and EIF2 phosphorylation. Error bars represent 95% confidence intervals for n ≥ 2 biological replicates with 3 organoids per replicate. (<b>C</b>) Cocaine dosing causes upregulation of MAPKKK genes in Bagley–Rudibaugh2 assembloids. Error bars represent 95% confidence intervals for n ≥ 3 biological replicates with 3 organoids per replicate. (<b>D</b>) Heat map of select, ECM-related DEGs following cocaine exposure. (<b>B</b>–<b>D</b>) All genes shown have log2FC > |0.5|, expression in over 20% of cells, and false discovery rate <span class="html-italic">q</span> < 0.05 relative to ascorbic acid-dosed controls.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. hESC Cell Lines
2.2. Organoid Cultures
2.3. Assembloids
2.4. Cryosectioning and Immunohistochemistry
2.5. Real-Time Quantitative PCR
2.6. Compound Treatment Experiments
2.7. Dissociation and Library Preparation for Single-Cell Sequencing
2.8. Data Processing for Single-Cell Sequencing
2.9. Statistical Analysis
3. Results
3.1. Development of Striatal and Midbrain Organoids Compatible with Early Assembloid Generation
3.2. scRNAseq Reveals Heterogeneous Compositions and Distinct Enrichments of GABAergic Subtypes in Seven 3D and 2D Striatal Models
3.3. Cell-Type-Specific Differential Gene-Expression Responses to Dopamine, Cocaine, and Morphine
3.4. Gene Set Enrichment Analysis of Cell-Type-Specific Responses to Dopamine, Cocaine, and Morphine
3.5. Bulk Analysis Reveals Roles for eIF2 and TGF-β Signaling
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thompson, L.W. The Dopamine Hypothesis of Schizophrenia. Perspect. Psychiatr. Care 1990, 26, 18–23. [Google Scholar] [CrossRef]
- Gerfen, C.R.; Bolam, J.P. The Neuroanatomical Organization of the Basal Ganglia. Handb. Behav. Neurosci. 2010, 20, 3–28. [Google Scholar] [CrossRef]
- Surmeier, D.J.; Carrillo-Reid, L.; Bargas, J. Dopaminergic modulation of striatal neurons, circuits, and assemblies. Neuroscience 2011, 198, 3–18. [Google Scholar] [CrossRef]
- Hyman, S.E.; Malenka, R.C.; Nestler, E.J. Neural Mechanisms of Addiction: The Role of Reward-Related Learning and Memory. Annu. Rev. Neurosci. 2006, 29, 565–598. [Google Scholar] [CrossRef]
- Nestler, E.J. Molecular basis of long-term plasticity underlying addiction. Nat. Rev. Neurosci. 2001, 2, 119–128. [Google Scholar] [CrossRef]
- Nestler, E.J. Historical review: Molecular and cellular mechanisms of opiate and cocaine addiction. Trends Pharmacol. Sci. 2004, 25, 210–218. [Google Scholar] [CrossRef] [PubMed]
- Renthal, W.; Kumar, A.; Xiao, G.; Wilkinson, M.; Covington, H.; Maze, I.; Sikder, D.; Robison, A.; LaPlant, Q.; Dietz, D.; et al. Genome-wide Analysis of Chromatin Regulation by Cocaine Reveals a Role for Sirtuins. Neuron 2009, 62, 335–348. [Google Scholar] [CrossRef]
- Fabio, M.C.; Vivas, L.M.; Pautassi, R.M. Prenatal ethanol exposure alters ethanol-induced Fos immunoreactivity and dopaminergic activity in the mesocorticolimbic pathway of the adolescent brain. Neuroscience 2015, 301, 221–234. [Google Scholar] [CrossRef] [PubMed]
- Walker, B.M.; Koob, G.F. Pharmacological evidence for a motivational role of κ-opioid systems in ethanol dependence. Neuropsychopharmacology 2008, 33, 643–652. [Google Scholar] [CrossRef]
- Méndez, M.; Leriche, M.; Calva, J.C. Acute ethanol administration differentially modulates μ opioid receptors in the rat meso-accumbens and mesocortical pathways. Mol. Brain Res. 2001, 94, 148–156. [Google Scholar] [CrossRef]
- Renthal, W.; Nestler, E.J. Epigenetic mechanisms in drug addiction and depression. In Principales of Psychiatric Genetics; Nurnberger, J.I., Berrettini, W., Eds.; Cambridge University Press: Cambridge, UK, 2012; pp. 79–89. [Google Scholar] [CrossRef]
- Evans, A.E.; Kelly, C.M.; Precious, S.V.; Rosser, A.E. Molecular Regulation of Striatal Development: A Review. Anat. Res. Int. 2012, 2012, 106529. [Google Scholar] [CrossRef] [PubMed]
- Robinson, T.E.; Kolb, B. Persistent structural modifications in nucleus accumbens and prefrontal cortex neurons produced by previous experience with amphetamine. J. Neurosci. 1997, 17, 8491–8497. [Google Scholar] [CrossRef]
- Adinoff, B. Contextual determinants of infant affective response. Harv. Rev. Psychiatry 2004, 12, 305–320. [Google Scholar] [CrossRef] [PubMed]
- Desai, R.J.; Huybrechts, K.F.; Hernandez-Diaz, S.; Mogun, H.; Patorno, E.; Kaltenbach, K.; Kerzner, L.; Bateman, B. Exposure to prescription opioid analgesics in utero and risk of neonatal abstinence syndrome: Population based cohort study. BMJ 2015, 350, h2102. [Google Scholar] [CrossRef] [PubMed]
- Nakabeppu, Y.; Nathans, D. A naturally occurring truncated form of FosB that inhibits Fos/Jun transcriptional activity. Cell 1991, 64, 751–759. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Wilkinson, M.; Liu, X.; Purushothaman, I.; Ferguson, D.; Vialou, V.; Maze, I.; Shao, N.; Kennedy, P.; Koo, J.; et al. Chronic cocaine-regulated epigenomic changes in mouse nucleus accumbens. Genome Biol. 2014, 15, R65. [Google Scholar] [CrossRef] [PubMed]
- Nestler, E.J.; Barrot, M.; Self, D.W. ΔFosB: A sustained molecular switch for addiction. Proc. Natl. Acad. Sci. USA 2001, 98, 11042–11046. [Google Scholar] [CrossRef] [PubMed]
- Taura, J.; Valle-León, M.; Sahlholm, K.; Watanabe, M.; Van Craenenbroeck, K.; Fernández-Dueñas, V.; Ferré, S.; Ciruela, F. Behavioral control by striatal adenosine A2A-dopamine D2 receptor heteromers. Genes Brain Behav. 2018, 17, e12432. [Google Scholar] [CrossRef] [PubMed]
- Fjodorova, M.; Noakes, Z.; Li, M. How to make striatal projection neurons. Neurogenesis 2015, 2, e1100227. [Google Scholar] [CrossRef]
- Nicoleau, C.; Varela, C.; Bonnefond, C.; Maury, Y.; Bugi, A.; Aubry, L.; Viegas, P.; Bourgois-Rocha, F.; Peschanski, M.; Perrier, A. Embryonic stem cells neural differentiation qualifies the role of Wnt/β-Catenin signals in human telencephalic specification and regionalization. Stem Cells 2013, 31, 1763–1774. [Google Scholar] [CrossRef]
- Arber, C.; Precious, S.V.; Cambray, S.; Risner-Janiczek, J.; Kelly, C.; Noakes, Z.; Fjodorova, M.; Heuer, A.; Ungless, M.; Rodríguez, T.; et al. Activin a directs striatal projection neuron differentiation of human pluripotent stem cells. Development 2015, 142, 1375–1386. [Google Scholar] [CrossRef] [PubMed]
- Itskovitz-Eldor, J.; Schuldiner, M.; Karsenti, D.; Eden, A.; Yanuka, O.; Amit, M.; Soreq, H.; Benvenisty, N. Differentiation of human embryonic stem cells into embryoid bodies compromising the three embryonic germ layers. Mol. Med. 2000, 6, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Conley, B.J.; Young, J.C.; Trounson, A.O.; Mollard, R. Derivation, propagation and differentiation of human embryonic stem cells. Int. J. Biochem. Cell Biol. 2004, 36, 555–567. [Google Scholar] [CrossRef] [PubMed]
- Dang, J.; Tiwari, S.K.; Agrawal, K.; Hui, H.; Qin, Y.; Rana, T.M. Glial cell diversity and methamphetamine-induced neuroinflammation in human cerebral organoids. Mol. Psychiatry 2020, 26, 1194–1207. [Google Scholar] [CrossRef] [PubMed]
- Qian, X.; Nguyen, H.N.; Song, M.M.; Hadiono, C.; Ogden, S.; Hammack, C.; Yao, B.; Hamersky, G.; Jacob, F.; Zhong, C.; et al. Brain-Region-Specific Organoids Using Mini-bioreactors for Modeling ZIKV Exposure. Cell 2016, 165, 1238–1254. [Google Scholar] [CrossRef]
- Monzel, A.S.; Smits, L.M.; Hemmer, K.; Hachi, S.; Moreno, E.; van Wuellen, T.; Jarazo, J.; Walter, J.; Brüggemann, I.; Boussaad, I.; et al. Derivation of Human Midbrain-Specific Organoids from Neuroepithelial Stem Cells. Stem Cell Rep. 2017, 8, 1144–1154. [Google Scholar] [CrossRef] [PubMed]
- Jo, J.; Xiao, Y.; Sun, A.X.; Cukuroglu, E.; Tran, H.D.; Göke, J.; Tan, Z.Y.; Saw, T.Y.; Tan, C.P.; Lokman, H.; et al. Midbrain-like Organoids from Human Pluripotent Stem Cells Contain Functional Dopaminergic and Neuromelanin-Producing Neurons. Cell Stem Cell 2016, 19, 248–257. [Google Scholar] [CrossRef]
- Kele, J.; Simplicio, N.; Ferri, A.L.M.; Mira, H.; Guillemot, F.; Arenas, E.; Ang, S.L. Neurogenin 2 is required for the development of ventral midbrain dopaminergic neurons. Development 2006, 133, 495–505. [Google Scholar] [CrossRef]
- Cambray, S.; Arber, C.; Little, G.; Dougalis, A.G.; De Paola, V.; Ungless, M.A.; Li, M.; Rodríguez, T.A. Activin induces cortical interneuron identity and differentiation in embryonic stem cell-derived telencephalic neural precursors. Nat. Commun. 2012, 3, 841. [Google Scholar] [CrossRef]
- Kriks, S.; Shim, J.W.; Piao, J.; Ganat, Y.M.; Wakeman, D.R.; Xie, Z.; Carrillo-Reid, L.; Auyeung, G.; Antonacci, C.; Buch, A.; et al. Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson’s disease. Nature 2011, 480, 547–551. [Google Scholar] [CrossRef]
- Bagley, J.A.; Reumann, D.; Bian, S.; Lévi-Strauss, J.; Knoblich, J.A. Fused cerebral organoids model interactions between brain regions. Nat. Methods 2017, 14, 743–751. [Google Scholar] [CrossRef] [PubMed]
- Kelava, I.; Lancaster, M.A. Stem Cell Models of Human Brain Development. Cell Stem Cell 2016, 18, 736–748. [Google Scholar] [CrossRef] [PubMed]
- Lancaster, M.A.; Renner, M.; Martin, C.A.; Wenzel, D.; Bicknell, L.S.; Hurles, M.E.; Homfray, T.; Penninger, J.M.; Jackson, A.P.; Knoblich, J.A. Cerebral organoids model human brain development and microcephaly. Nature 2013, 501, 373–379. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.T.; Chen, J.; Kindberg, A.A.; Bendriem, R.M.; Spivak, C.E.; Williams, M.P.; Richie, C.T.; Handreck, A.; Mallon, B.S.; Lupica, C.R.; et al. CYP3A5 Mediates Effects of Cocaine on Human Neocorticogenesis: Studies using an in vitro 3D Self-Organized hPSC Model with a Single Cortex-like Unit. Neuropsychopharmacology 2017, 42, 774–784. [Google Scholar] [CrossRef] [PubMed]
- Han, J.J. FDA Modernization Act 2.0 allows for alternatives to animal testing. Artif. Organs 2023, 47, 449–450. [Google Scholar] [CrossRef] [PubMed]
- Tong, T.; Qi, Y.; Rollins, D.; Bussiere, L.D.; Dhar, D.; Miller, C.L.; Yu, C.; Wang, Q. Rational design of oral drugs targeting mucosa delivery with gut organoid platforms. Bioact. Mater. 2023, 30, 116–128. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Y.; Tanaka, Y.; Patterson, B.; Kang, Y.J.; Govindaiah, G.; Roselaar, N.; Cakir, B.; Kim, K.Y.; Lombroso, A.P.; Hwang, S.M.; et al. Fusion of Regionally Specified hPSC-Derived Organoids Models Human Brain Development and Interneuron Migration. Cell Stem Cell 2017, 21, 383–398.e7. [Google Scholar] [CrossRef] [PubMed]
- Qian, X.; Jacob, F.; Song, M.M.; Nguyen, H.N.; Song, H.; Ming, G.L. Generation of human brain region–specific organoids using a miniaturized spinning bioreactor. Nat. Protoc. 2018, 13, 565–580. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Li, F.; Stubblefield, E.A.; Blanchard, B.; Richards, T.L.; Larson, G.A.; He, Y.; Huang, Q.; Tan, A.C.; Zhang, D.; et al. Direct reprogramming of human fibroblasts into dopaminergic neuron-like cells. Cell Res. 2012, 22, 321–332. [Google Scholar] [CrossRef]
- Iannielli, A.; Ugolini, G.S.; Cordiglieri, C.; Bido, S.; Rubio, A.; Colasante, G.; Valtorta, M.; Cabassi, T.; Rasponi, M.; Broccoli, V.; et al. Reconstitution of the Human Nigro-striatal Pathway on-a-Chip Reveals OPA1-Dependent Mitochondrial Defects and Loss of Dopaminergic Synapses. Cell Rep. 2019, 29, 4646–4656.e4. [Google Scholar] [CrossRef]
- Fasano, C.; Bourque, M.J.; Lapointe, G.; Leo, D.; Thibault, D.; Haber, M.; Kortleven, C.; DesGroseillers, L.; Murai, K.K.; Trudeau, L.É. Dopamine facilitates dendritic spine formation by cultured striatal medium spiny neurons through both D1 and D2 dopamine receptors. Neuropharmacology 2013, 67, 432–443. [Google Scholar] [CrossRef] [PubMed]
- Friling, S.; Andersson, E.; Thompson, L.H.; Jonsson, M.E.; Hebsgaard, J.B.; Nanou, E.; Alekseenko, Z.; Marklund, U.; Kjellander, S.; Volakakis, N.; et al. Efficient production of mesencephalic dopamine neurons by Lmxla expression in embryonic stem cells. Proc. Natl. Acad. Sci. USA 2009, 106, 7613–7618. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, C.M.; Tavakoli, T.; Jamias, C.; Park, S.S.; Maudsley, S.; Martin, B.; Phillips, T.M.; Yao, P.J.; Itoh, K.; Ma, W.; et al. Stromal factors SDF1α, sFRP1, and VEGFD induce dopaminergic neuron differentiation of human pluripotent stem cells. J. Neurosci. Res. 2012, 90, 1367–1381. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.; Chen, J.; Deng, X.; Liu, Y.; Rao, M.S.; Cadet, J.L.; Freed, W.J. An in vitro model of human dopaminergic neurons derived from embryonic stem cells: MPP+ toxicity and GDNF neuroprotection. Neuropsychopharmacology 2006, 31, 2708–2715. [Google Scholar] [CrossRef] [PubMed]
- Conforti, P.; Bocchi, V.D.; Campus, I.; Scaramuzza, L.; Galimberti, M.; Lischetti, T.; Talpo, F.; Pedrazzoli, M.; Murgia, A.; Ferrari, I.; et al. In vitro-derived medium spiny neurons recapitulate human striatal development and complexity at single-cell resolution. Cell Rep. Methods 2022, 2, 100367. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Zhang, D.; Bi, C.; Mi, T.; Zhu, W.; Xia, L.; Teng, Z.; Hu, B.; Wu, Y. A Chemical Recipe for Generation of Clinical-Grade Striatal Neurons from hESCs. Stem Cell Rep. 2018, 11, 635–650. [Google Scholar] [CrossRef] [PubMed]
- Centeno, E.G.Z.; Cimarosti, H.; Bithell, A. 2D versus 3D human induced pluripotent stem cell-derived cultures for neurodegenerative disease modelling. Mol. Neurodegener. 2018, 13, 27. [Google Scholar] [CrossRef]
- Miura, Y.; Li, M.Y.; Birey, F.; Ikeda, K.; Revah, O.; Thete, M.V.; Park, J.Y.; Puno, A.; Lee, S.H.; Porteus, M.H.; et al. Generation of human striatal organoids and cortico-striatal assembloids from human pluripotent stem cells. Nat. Biotechnol. 2020, 38, 1421–1430. [Google Scholar] [CrossRef] [PubMed]
- Miura, Y.; Li, M.Y.; Revah, O.; Yoon, S.J.; Narazaki, G.; Pașca, S.P. Engineering brain assembloids to interrogate human neural circuits. Nat. Protoc. 2022, 17, 15–35. [Google Scholar] [CrossRef]
- Zhao, Z.; Chen, X.; Dowbaj, A.M.; Sljukic, A.; Bratlie, K.; Lin, L.; Fong, E.L.S.; Balachander, G.M.; Chen, Z.; Soragni, A.; et al. Organoids. Nat. Rev. Methods Prim. 2022, 2, 94. [Google Scholar] [CrossRef]
- Czerniecki, S.M.; Cruz, N.M.; Harder, J.L.; Menon, R.R.; Annis, J.; Otto, E.A.; Gulieva, R.E.; Islas, L.V.; Kim, Y.K.; Tran, L.M.; et al. hESC-Derived Thalamic Organoids Form Reciprocal Projections When Fused with Cortical Organoids. Cell Stem Cell 2017, 21, 487–497.e7. [Google Scholar] [CrossRef] [PubMed]
- Kanton, S.; Boyle, M.J.; He, Z.; Santel, M.; Weigert, A.; Sanchís-Calleja, F.; Guijarro, P.; Sidow, L.; Fleck, J.S.; Han, D.; et al. Organoid single-cell genomic atlas uncovers human-specific features of brain development. Nature 2019, 574, 418–422. [Google Scholar] [CrossRef] [PubMed]
- Sheng, Y.; Filichia, E.; Shick, E.; Preston, K.L.; Phillips, K.A.; Cooperman, L.; Lin, Z.; Tesar, P.; Hoffer, B.; Luo, Y. Using iPSC-derived human DA neurons from opioid-dependent subjects to study dopamine dynamics. Brain Behav. 2016, 6, e00491. [Google Scholar] [CrossRef] [PubMed]
- Kirkeby, A.; Nolbrant, S.; Tiklova, K.; Heuer, A.; Kee, N.; Cardoso, T.; Ottosson, D.R.; Lelos, M.J.; Rifes, P.; Dunnett, S.B.; et al. Predictive Markers Guide Differentiation to Improve Graft Outcome in Clinical Translation of hESC-Based Therapy for Parkinson’s Disease. Cell Stem Cell 2017, 20, 135–148. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Yin, F.; Meng, H.Q.; Ling, L.; Hu-He, T.N.; Li, P.; Zhang, C.X.; Yu, S.; Duan, D.S.; Fan, H.X. Differentiation of mesenchymal stem cells into dopaminergic neuron-like cells in vitro. Biomed. Environ. Sci. 2005, 18, 36–42. [Google Scholar] [PubMed]
- Myung, S.C.; Lee, Y.E.; Ji, Y.K.; Chung, S.; Yoon, H.C.; Kim, D.S.; Kang, S.M.; Lee, H.; Kim, M.H.; Kim, J.H.; et al. Highly efficient and large-scale generation of functional dopamine neurons from human embryonic stem cells. Proc. Natl. Acad. Sci. USA 2008, 105, 3392–3397. [Google Scholar] [CrossRef] [PubMed]
- Chinta, S.J.; Andersen, J.K. Dopaminergic neurons. Int. J. Biochem. Cell Biol. 2004, 37, 942–946. [Google Scholar] [CrossRef] [PubMed]
- Hendrickx, M.; Van, X.H.; Leyns, L. Anterior-posterior patterning of neural differentiated embryonic stem cells by canonical Wnts, Fgfs, Bmp4 and their respective antagonists. Dev. Growth Differ. 2009, 51, 687–698. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Kleyman, M.; Chen, J.; Alikaya, A.; Rothenhoefer, K.M.; Ozturk, B.E.; Wirthlin, M.; Bostan, A.C.; Fish, K.; Byrne, L.C.; et al. Transcriptional and anatomical diversity of medium spiny neurons in the primate striatum. Curr. Biol. 2021, 31, 5473–5486.e6. [Google Scholar] [CrossRef]
- Matsushima, A.; Pineda, S.S.; Crittenden, J.R.; Lee, H.; Galani, K.; Mantero, J.; Tombaugh, G.; Kellis, M.; Heiman, M.; Graybiel, A.M. Transcriptional vulnerabilities of striatal neurons in human and rodent models of Huntington’s disease. Nat. Commun. 2023, 14, 1386715. [Google Scholar] [CrossRef]
- Roman, K.M.; Dinasarapu, A.R.; VanSchoiack, A.; Ross, P.M.; Kroeppler, D.; Jinnah, H.A.; Hess, E.J. Spiny projection neurons exhibit transcriptional signatures within subregions of the dorsal striatum. Cell Rep. 2023, 42, 113435. [Google Scholar] [CrossRef]
- Ojeda, J.; Ávila, A. Early Actions of Neurotransmitters During Cortex Development and Maturation of Reprogrammed Neurons. Front. Synaptic Neurosci. 2019, 11, 33. [Google Scholar] [CrossRef]
- Sanes, D.H.; Reh, T.A.; Harris, W.A. Axon Growth and Guidance. In Development of the Nervous System, 3rd ed.; Sanes, D.H., Reh, T.A., Harris, W.A., Eds.; Academic Press: Cambridge, MA, USA, 2012; pp. 105–142. [Google Scholar] [CrossRef]
- Liu, H.; Ren, C.; Zhu, B.; Wang, L.; Liu, W.; Shi, J.; Lin, J.; Xia, X.; Zeng, F.; Chen, J.; et al. High-efficient transfection of human embryonic stem cells by single-cell plating and starvation. Stem Cells Dev. 2016, 25, 477–491. [Google Scholar] [CrossRef]
- Velasco, B.; Mohamed, E.; Sato-Bigbee, C. Endogenous and exogenous opioid effects on oligodendrocyte biology and developmental brain myelination. Neurotoxicol. Teratol. 2021, 86, 107002. [Google Scholar] [CrossRef]
- Savell, K.E.; Zipperly, M.E.; Tuscher, J.J.; Duke, C.G.; Phillips, R.A.; Bauman, A.J.; Thukral, S.; Sultan, F.A.; Goska, N.A.; Ianov, L.; et al. A dopamine-induced gene expression signature regulates neuronal function and cocaine response. bioRxiv 2019. bioRxiv:2019:781872. [Google Scholar] [CrossRef]
- Badisa, R.B.; Wi, S.; Jones, Z.; Mazzio, E.; Zhou, Y.; Rosenberg, J.T.; Latinwo, L.M.; Grant, S.C.; Goodman, C.B. Cellular and molecular responses to acute cocaine treatment in neuronal-like N2a cells: Potential mechanism for its resistance in cell death. Cell Death Discov. 2018, 4, 76. [Google Scholar] [CrossRef]
- Willner, D.; Cohen-Yeshurun, A.; Avidan, A.; Ozersky, V.; Shohami, E.; Leker, R.R. Short term morphine exposure in vitro alters proliferation and differentiation of neural progenitor cells and promotes apoptosis via Mu receptors. PLoS ONE 2014, 9, e103043. [Google Scholar] [CrossRef]
- Marshall, J.J.; Mason, J.O. Mouse vs man: Organoid models of brain development & disease. Brain Res. 2019, 1724, 146427. [Google Scholar] [CrossRef]
- Koo, B.; Choi, B.; Park, H.; Yoon, K.J. Past, Present, and Future of Brain Organoid Technology. Mol. Cells 2019, 42, 617–627. [Google Scholar] [CrossRef]
- Ohtani, N.; Goto, T.; Waeber, C.; Bhide, P.G. Dopamine modulates cell cycle in the lateral ganglionic eminence. J. Neurosci. 2003, 23, 2840–2850. [Google Scholar] [CrossRef]
- Popolo, M.; McCarthy, D.M.; Bhide, P.G. Influence of dopamine on precursor cell proliferation and differentiation in the embryonic mouse telencephalon. Dev. Neurosci. 2004, 26, 229–244. [Google Scholar] [CrossRef] [PubMed]
- Kippin, T.E.; Kapur, S.; Van Der Kooy, D. Dopamine specifically inhibits forebrain neural stem cell proliferation, suggesting a novel effect of antipsychotic drugs. J. Neurosci. 2005, 25, 5815–5823. [Google Scholar] [CrossRef] [PubMed]
- Russo, S.J.; Dietz, D.M.; Dumitriu, D.; Malenka, R.C.; Nestler, E.J. The Addicted Synapse: Mechanisms of Synaptic and Structural Plasticity in Nucleus Accumbens. Trends Neurosci. 2011, 33, 267–276. [Google Scholar] [CrossRef]
- Tan, K.Z.; Cunningham, A.M.; Joshi, A.; Oei, J.L.; Ward, M.C. Expression of kappa opioid receptors in developing rat brain—Implications for perinatal buprenorphine exposure. Reprod. Toxicol. 2018, 78, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Stiene-Martin, A.; Knapp, P.E.; Martin, K.; Gurwell, J.A.; Ryan, S.; Thornton, S.R.; Smith, F.L.; Hauser, K.F. Opioid system diversity in developing neurons, astroglia, and oligodendroglia in the subventricular zone and striatum: Impact on gliogenesis in vivo. Glia 2001, 36, 78–88. [Google Scholar] [CrossRef]
- Boggess, T.; Williamson, J.C.; Niebergall, E.B.; Sexton, H.; Mazur, A.; Egleton, R.D.; Grover, L.M.; Risher, W.C. Alterations in Excitatory and Inhibitory Synaptic Development within the Mesolimbic Dopamine Pathway in a Mouse Model of Prenatal Drug Exposure. Front. Pediatr. 2021, 9, 794544. [Google Scholar] [CrossRef]
- Konijnenberg, C.; Melinder, A. Prenatal exposure to methadone and buprenorphine: A review of the potential effects on cognitive development. Child. Neuropsychol. 2011, 17, 495–519. [Google Scholar] [CrossRef]
- Mohan, V.; Edamakanti, C.R.; Pathak, A. Editorial: Role of extracellular matrix in neurodevelopment and neurodegeneration. Front. Cell Neurosci. 2023, 17, 1135555. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.T.; Chen, J.; Hayashi, T.; Tsai, S.Y.; Sanchez, J.F.; Errico, S.L.; Amable, R.; Su, T.P.; Lowe, R.H.; Huestis, M.A.; et al. A mechanism for the inhibition of neural progenitor cell proliferation by cocaine. PLoS Med. 2008, 5, e117. [Google Scholar] [CrossRef] [PubMed]
- Martins, S.G.; Zilhão, R.; Thorsteinsdóttir, S.; Carlos, A.R. Linking Oxidative Stress and DNA Damage to Changes in the Expression of Extracellular Matrix Components. Front. Genet. 2021, 12, 673002. [Google Scholar] [CrossRef] [PubMed]
- Kyriakis, J.M.; Avruch, J. MAP Kinase Pathways. In Compendium of Inflammatory Diseases; Parnham, M.J., Ed.; Springer: Basel, Switzerland, 2016; pp. 892–908. [Google Scholar] [CrossRef]
- Poon, H.F.; Abdullah, L.; Mullan, M.A.; Mullan, M.J.; Crawford, F.C. Cocaine-induced oxidative stress precedes cell death in human neuronal progenitor cells. Neurochem. Int. 2007, 50, 69–73. [Google Scholar] [CrossRef] [PubMed]
- Nasiraei-Moghadam, S.; Sherafat, M.A.; Safari, M.S.; Moradi, F.; Ahmadiani, A.; Dargahi, L. Reversal of prenatal morphine exposure-induced memory deficit in male but not female rats. J. Mol. Neurosci. 2013, 50, 58–69. [Google Scholar] [CrossRef]
- Yao, H.; Wu, W.; Cerf, I.; Zhao, H.W.; Wang, J.; Negraes, P.D.; Muotri, A.R.; Haddad, G.G. Methadone interrupts neural growth and function in human cortical organoids. Stem Cell Res. 2020, 49, 102065. [Google Scholar] [CrossRef]
- Zhu, H.; Zhuang, D.; Lou, Z.; Lai, M.; Fu, D.; Hong, Q.; Liu, H.; Zhou, W. Akt and its phosphorylation in nucleus accumbens mediate heroin-seeking behavior induced by cues in rats. Addict. Biol. 2021, 26, e13013. [Google Scholar] [CrossRef]
- Lu, L.; Koya, E.; Zhai, H.; Hope, B.T.; Shaham, Y. Role of ERK in cocaine addiction. Trends Neurosci. 2006, 29, 695–703. [Google Scholar] [CrossRef] [PubMed]
- Gancarz-Kausch, A.M.; Schroeder, G.L.; Panganiban, C.; Adank, D.; Humby, M.S.; Kausch, M.A.; Clark, S.D.; Dietz, D.M. Transforming growth factor beta receptor 1 is increased following abstinence from cocaine self-administration, but not cocaine sensitization. PLoS ONE 2013, 8, e83834. [Google Scholar] [CrossRef]
- Edlund, S.; Landström, M.; Heldin, C.H.; Aspenström, P. Transforming growth factor-β-induced mobilization of actin cytoskeleton requires signaling by small GTPases Cdc42 and RhoA. Mol. Biol. Cell 2002, 13, 902–914. [Google Scholar] [CrossRef]
- Wrana, J.L. Signaling by the TGFβ superfamily. Cold Spring Harb. Perspect. Biol. 2013, 5, a011197. [Google Scholar] [CrossRef]
- Meyers, E.A.; Kessler, J.A. TGF-β Family Signaling in Neural and Neuronal Differentiation, Development, and Function. Cold Spring Harb. Perspect. Biol. 2017, 9, a022244. [Google Scholar] [CrossRef] [PubMed]
- Aldrich, A.; Kielian, T. Central nervous system fibrosis is associated with fibrocyte-like infiltrates. Am. J. Pathol. 2011, 179, 2952–2962. [Google Scholar] [CrossRef]
- Meiser, J.; Weindl, D.; Hiller, K. Complexity of dopamine metabolism. Cell Commun. Signal 2013, 11, 34. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Yang, L.; Hu, G.; Chen, X.; Niu, F.; Yuan, L.; Liu, H.; Xiong, H.; Arikkath, J.; Buch, S. Regulation of morphine-induced synaptic alterations: Role of oxidative stress, ER stress, and autophagy. J. Cell Biol. 2016, 215, 245–258. [Google Scholar] [CrossRef] [PubMed]
- Biswas, K.; Alexander, K.; Francis, M.M. Reactive Oxygen Species: Angels and Demons in the Life of a Neuron. NeuroSci 2022, 3, 130–145. [Google Scholar] [CrossRef]
- Cnop, M.; Toivonen, S.; Igoillo-Esteve, M.; Salpea, P. Endoplasmic reticulum stress and eIF2α phosphorylation: The Achilles heel of pancreatic β cells. Mol. Metab. 2017, 6, 1024–1039. [Google Scholar] [CrossRef] [PubMed]
- Ercan, E.; Han, J.M.; Di Nardo, A.; Winden, K.; Han, M.J.; Hoyo, L.; Saffari, A.; Leask, A.; Geschwind, D.H.; Sahin, M. Neuronal CTGF/CCN2 negatively regulates myelination in a mouse model of tuberous sclerosis complex. J. Exp. Med. 2017, 214, 681–697. [Google Scholar] [CrossRef] [PubMed]
- Singh, D.; Srivastava, S.K.; Chaudhuri, T.K.; Upadhyay, G. Multifaceted role of matrix metalloproteinases (MMPs). Front. Mol. Biosci. 2015, 2, 19. [Google Scholar] [CrossRef] [PubMed]
- Adil, M.M.; Gaj, T.; Rao, A.T.; Kulkarni, R.U.; Fuentes, C.M.; Ramadoss, G.N.; Ekman, F.K.; Miller, E.W.; Schaffer, D.V. hPSC-Derived Striatal Cells Generated Using a Scalable 3D Hydrogel Promote Recovery in a Huntington Disease Mouse Model. Stem Cell Rep. 2018, 10, 1481–1491. [Google Scholar] [CrossRef]
- Kindberg, A.A.; Bendriem, R.M.; Spivak, C.E.; Chen, J.; Handreck, A.; Lupica, C.R.; Liu, J.; Freed, W.J.; Lee, C.T. An in vitro model of human neocortical development using pluripotent stem cells: Cocaine-induced cytoarchitectural alterations. DMM Dis. Model. Mech. 2014, 7, 1397–1405. [Google Scholar] [CrossRef]
- White, F.J.; Kalivas, P.W. Neuroadaptations involved in amphetamine and cocaine addiction. Drug Alcohol. Depend. 1998, 51, 141–153. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rudibaugh, T.P.; Tam, R.W.; Estridge, R.C.; Stuppy, S.R.; Keung, A.J. Single-Cell Assessment of Human Stem Cell-Derived Mesolimbic Models and Their Responses to Substances of Abuse. Organoids 2024, 3, 126-147. https://doi.org/10.3390/organoids3020009
Rudibaugh TP, Tam RW, Estridge RC, Stuppy SR, Keung AJ. Single-Cell Assessment of Human Stem Cell-Derived Mesolimbic Models and Their Responses to Substances of Abuse. Organoids. 2024; 3(2):126-147. https://doi.org/10.3390/organoids3020009
Chicago/Turabian StyleRudibaugh, Thomas P., Ryan W. Tam, R. Chris Estridge, Samantha R. Stuppy, and Albert J. Keung. 2024. "Single-Cell Assessment of Human Stem Cell-Derived Mesolimbic Models and Their Responses to Substances of Abuse" Organoids 3, no. 2: 126-147. https://doi.org/10.3390/organoids3020009
APA StyleRudibaugh, T. P., Tam, R. W., Estridge, R. C., Stuppy, S. R., & Keung, A. J. (2024). Single-Cell Assessment of Human Stem Cell-Derived Mesolimbic Models and Their Responses to Substances of Abuse. Organoids, 3(2), 126-147. https://doi.org/10.3390/organoids3020009