Audio Features and Crowdfunding Success: An Empirical Study Using Audio Mining
Abstract
:1. Introduction
2. Literature Reviews
2.1. Crowdfunding Success
2.2. Signaling Theory
2.3. Audio Analytics
3. Hypotheses and Research Model
3.1. Speech Rate and Crowdfunding Success
3.2. Loudness and Crowdfunding Success
3.3. Pitch and Crowdfunding Success
3.4. Emotional Arousal and Crowdfunding Success
3.5. Research Model
4. Materials and Methods
4.1. Data Selected
4.2. Data Preprocessing
4.3. Variables Measures
4.3.1. Independent Variables
4.3.2. Dependent Variable
4.3.3. Control Variables
4.4. Results
4.5. Robustness Checks
5. Conclusions
5.1. Study Summary
5.2. Theoretical Implications
5.3. Practical Implications
5.4. Study Limitations and Future Study Directions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Belleflamme, P.; Lambert, T.; Schwienbacher, A. Crowdfunding: Tapping the Right Crowd. J. Bus. Ventur. 2014, 29, 585–609. [Google Scholar] [CrossRef]
- Chaney, D. A Principal-Agent Perspective on Consumer Co-Production: Crowdfunding and the Redefinition of Consumer Power. Technol. Forecast. Soc. Change 2019, 141, 74–84. [Google Scholar] [CrossRef]
- Glisovic, J.; González, H.; Saltuk, Y.; de Mariz, F. Volume Growth and Valuation Contraction, Global Microfinance Equity Valuation Survey 2012. Glob. Microfinance Equity Valuat. Surv. 2012. [Google Scholar] [CrossRef]
- ReportLinker. Global Crowdfunding Market Overview 2024–2028. Available online: https://www.reportlinker.com/market-report/Online-Investing/494115/Crowdfunding?term=crowdfunding%20statistics&matchtype=b&loc_interest=&loc_physical=2702&utm_group=standard&utm_term=crowdfunding%20statistics&utm_campaign=ppc&utm_source=google_ads&utm_medium=paid_ads&utm_content=transactionnel-4&hsa_acc=7082072004&hsa_cam=15072279998&hsa_grp=136612317091&hsa_ad=568148759031&hsa_src=g&hsa_tgt=kwd-1520371132730&hsa_kw=crowdfunding%20statistics&hsa_mt=b&hsa_net=adwords&hsa_ver=3&gad_source=1&gclid=EAIaIQobChMI8OGP1PmCiAMVCqlmAh0IUwcVEAAYASAAEgI6wPD_BwE (accessed on 20 August 2024).
- Polaris-Market-Research. Crowdfunding Market Size to Grow Usd 72.88 Billion by 2032, at a Cagr of 16.1% from 2024 to 2032. Available online: https://www.globenewswire.com/news-release/2024/08/12/2928427/0/en/Crowdfunding-Market-size-to-grow-USD-72-88-Billion-by-2032-at-a-CAGR-of-16-1-from-2024-to-2032-Polaris-Market-Research.html (accessed on 23 October 2024).
- Statista. Percentage of Successfully Funded Kickstarter Projects as of January 2024. Available online: https://www.statista.com/statistics/235405/kickstarter-project-funding-success-rate/ (accessed on 20 August 2024).
- de Mariz, F. Fintech for Impact: How Can Financial Innovation Advance Inclusion? De Mariz, Frederic. Fintech for Impact: How Can Financial Innovation Advance Inclusion. 2020. Available online: https://ssrn.com/abstract=3715785 (accessed on 22 October 2024).
- Zhao, K.; Zhou, L.; Zhao, X. Multi-Modal Emotion Expression and Online Charity Crowdfunding Success. Decis. Support Syst. 2022, 163, 113842. [Google Scholar] [CrossRef]
- Peng, Y.; Wang, Y.; Li, J.; Yang, Q. Impact of Ai-Oriented Live-Streaming E-Commerce Service Failures on Consumer Disengagement—Empirical Evidence from China. J. Theor. Appl. Electron. Commer. Res. 2024, 19, 1580–1598. [Google Scholar] [CrossRef]
- Chen, J.; Du, M.; Yang, X. How Emotional Cues Affect the Financing Performance in Rewarded Crowdfunding? An Insight into Multimodal Data Analysis. Electron. Commer. Res. 2024, 1–31. Available online: https://link.springer.com/article/10.1007/s10660-024-09841-6#citeas (accessed on 22 October 2024). [CrossRef]
- Yang, Q.; Zhou, Y.; Jiang, Y.; Huo, J. How to Overcome Online Banner Blindness? A Study on the Effects of Creativity. J. Res. Interact. Mark. 2021, 15, 223–242. [Google Scholar] [CrossRef]
- Barnes, S.J. Smooth Talking and Fast Music: Understanding the Importance of Voice and Music in Travel and Tourism Ads Via Acoustic Analytics. J. Travel Res. 2023, 63, 1070–1085. [Google Scholar] [CrossRef]
- Wang, C.L. Editorial—What is an Interactive Marketing Perspective and What are Emerging Research Areas? J. Res. Interact. Mark. 2024, 18, 161–165. [Google Scholar] [CrossRef]
- Wang, C.L. Interactive Marketing is the New Normal. In The Palgrave Handbook of Interactive Marketing; Springer: Berlin/Heidelberg, Germany, 2023; pp. 1–12. [Google Scholar]
- Wang, C.L. Editorial—the Misassumptions About Contributions. J. Res. Interact. Mark. 2022, 16, 1–2. [Google Scholar] [CrossRef]
- Huang, Z.; Zhu, Y.; Hao, A.; Deng, J. How Social Presence Influences Consumer Purchase Intention in Live Video Commerce: The Mediating Role of Immersive Experience and the Moderating Role of Positive Emotions. J. Res. Interact. Mark. 2023, 17, 493–509. [Google Scholar] [CrossRef]
- Frau, M.; Cabiddu, F.; Frigau, L.; Tomczyk, P.; Mola, F. How Emotions Impact the Interactive Value Formation Process During Problematic Social Media Interactions. J. Res. Interact. Mark. 2023, 17, 773–793. [Google Scholar] [CrossRef]
- Mollick, E. The Dynamics of Crowdfunding: An Exploratory Study. J. Bus. Ventur. 2014, 29, 1–16. [Google Scholar] [CrossRef]
- Shi, J.; Yang, K.; Xu, W.; Wang, M. Leveraging Deep Learning with Audio Analytics to Predict the Success of Crowdfunding Projects. J. Supercomput. 2021, 77, 7833–7853. [Google Scholar] [CrossRef]
- Liu, G.; Abolhasani, M.; Hang, H. Disentangling Effects of Subjective and Objective Characteristics of Advertising Music. Eur. J. Mark. 2022, 56, 1153–1183. [Google Scholar] [CrossRef]
- Rutten, S.; Santoro, R.; Hervais-Adelman, A.; Formisano, E.; Golestani, N. Cortical Encoding of Speech Enhances Task-Relevant Acoustic Information. Nat. Hum. Behav. 2019, 3, 974–987. [Google Scholar] [CrossRef]
- La Torre, M.; La Torre, M. Costs and Revenues of Audiovisual Products. In The Economics of the Audiovisual Industry: Financing TV, Film and Web; Springer: Berlin/Heidelberg, Germany, 1999; pp. 35–54. [Google Scholar]
- Blaseg, D.; Schulze, C.; Skiera, B. Consumer Protection on Kickstarter. Mark. Sci. 2020, 39, 211–233. [Google Scholar] [CrossRef]
- Yu, B. How Consumer Opinions are Affected by Marketers: An Empirical Examination by Deep Learning Approach. J. Res. Interact. Mark. 2022, 16, 601–614. [Google Scholar] [CrossRef]
- Yasar, B.; Yılmaz, I.S.; Hatipoğlu, N.; Salih, A. Stretching the Success in Reward-Based Crowdfunding. J. Bus. Res. 2022, 152, 205–220. [Google Scholar] [CrossRef]
- Ba, Z.; Zhao, Y.C.; Song, S.; Zhu, Q. Understanding the Determinants of Online Medical Crowdfunding Project Success in China. Inf. Process. Manag. 2021, 58, 102465. [Google Scholar] [CrossRef]
- Lu, L.; Jiang, W.; Xu, J.; Wang, F. The Importance of Project Description to Charitable Crowdfunding Success: The Mediating Role of Forwarding Times. Front. Psychol. 2022, 13, 845198. [Google Scholar] [CrossRef] [PubMed]
- Cumming, D.J.; Leboeuf, G.; Schwienbacher, A. Crowdfunding Models: Keep-It-All vs. All-Or-Nothing. Financ. Manag. 2020, 49, 331–360. [Google Scholar] [CrossRef]
- Younkin, P.; Kuppuswamy, V. The Colorblind Crowd? Founder Race and Performance in Crowdfunding. Manag. Sci. 2018, 64, 3269–3287. [Google Scholar] [CrossRef]
- Deng, L.; Ye, Q.; Xu, D.; Sun, W.; Jiang, G. A Literature Review and Integrated Framework for the Determinants of Crowdfunding Success. Financ. Innov. 2022, 8, 41. [Google Scholar] [CrossRef]
- Wang, N.; Liang, H.; Xue, Y.; Ge, S. Mitigating Information Asymmetry to Achieve Crowdfunding Success: Signaling and Online Communication. J. Assoc. Inf. Syst. 2021, 22, 773–796. [Google Scholar] [CrossRef]
- Zhu, J.; Jiang, Y.; Wang, Y.; Yang, Q.; Li, W. Richness and Dynamics: How to Improve Virtual Reality Tourism Adoption with Virtual Social Clues. J. Res. Interact. Mark. 2024, 18, 142–158. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, Y.; Wang, X.; Zheng, Q.; Peng, R. How Do Voice Characteristics Affect Tourism Interpretation Purchases? An Empirical Study Based on Voice Mining. J. Travel Res. 2023, 63, 6781386. [Google Scholar] [CrossRef]
- Steigenberger, N.; Wilhelm, H. Extending Signaling Theory to Rhetorical Signals: Evidence from Crowdfunding. Organ. Sci. 2018, 29, 529–546. [Google Scholar] [CrossRef]
- Heil, O.; Robertson, T.S. Toward a Theory of Competitive Market Signaling: A Research Agenda. Strateg. Manag. J. 1991, 12, 403–418. [Google Scholar] [CrossRef]
- Drover, W.; Wood, M.S.; Zacharakis, A. Attributes of Angel and Crowdfunded Investments as Determinants of Vc Screening Decisions. Entrep. Theory Pract. 2017, 41, 323–347. [Google Scholar] [CrossRef]
- Papoutsi, A.; Sodhi, M.S. Does Disclosure in Sustainability Reports Indicate Actual Sustainability Performance? J. Clean. Prod. 2020, 260, 121049. [Google Scholar] [CrossRef]
- Li, L.; Yang, L.; Zhao, M.; Liao, M.; Cao, Y. Exploring the Success Determinants of Crowdfunding for Cultural and Creative Projects: An Empirical Study Based on Signal Theory. Technol. Soc. 2022, 70, 102036. [Google Scholar] [CrossRef]
- Ma, Z.; Palacios, S. Image-Mining: Exploring the Impact of Video Content on the Success of Crowdfunding. J. Mark. Anal. 2021, 9, 265–285. [Google Scholar] [CrossRef]
- Yang, J.; Li, Y.; Calic, G.; Shevchenko, A. How Multimedia Shape Crowdfunding Outcomes: The Overshadowing Effect of Images and Videos on Text in Campaign Information. J. Bus. Res. 2020, 117, 6–18. [Google Scholar] [CrossRef]
- Gold, B.; Morgan, N.; Ellis, D. Speech and Audio Signal Processing: Processing and Perception of Speech and Music, 2nd ed.; Wiley: Oxford, UK, 2011. [Google Scholar]
- Wang, X.; Lu, S.; Li, X.I.; Khamitov, M.; Bendle, N. Audio Mining: The Role of Vocal Tone in Persuasion. J. Consum. Res. 2021, 48, 189–211. [Google Scholar] [CrossRef]
- Liu, S.; Si, G.; Gao, B. Which Voice are You Satisfied with? Understanding the Physician-Patient Voice Interactions on Online Health Platforms. Decis. Support Syst. 2022, 157, 113754. [Google Scholar] [CrossRef]
- Horowitz, S.S. The Universal Sense: How Hearing Shapes the Mind, 2nd ed.; Bloomsbury Publishing: New York, NY, USA, 2012. [Google Scholar]
- Belin, P.; Fecteau, S.; Bedard, C. Thinking the Voice: Neural Correlates of Voice Perception. Trends Cogn. Sci. 2004, 8, 129–135. [Google Scholar] [CrossRef]
- Chang, H.H.; Mukherjee, A.; Chattopadhyay, A. More Voices Persuade: The Attentional Benefits of Voice Numerosity. J. Mark. Res. 2023, 60, 687–706. [Google Scholar] [CrossRef]
- Puligadda, S.; VanBergen, N. The Influence of Sound Logo Instruments on Brand Personality Perceptions: An Investigation of Brand Ruggedness and Sophistication. J. Bus. Res. 2023, 156, 113531. [Google Scholar] [CrossRef]
- Simmonds, L.; Bogomolova, S.; Kennedy, R.; Nenycz-Thiel, M.; Bellman, S. A Dual-Process Model of How Incorporating Audio-Visual Sensory Cues in Video Advertising Promotes Active Attention. Psychol. Mark. 2020, 37, 1057–1067. [Google Scholar] [CrossRef]
- Raney, A.A.; Arpan, L.M.; Pashupati, K.; Brill, D.A. At the Movies, on the Web: An Investigation of the Effects of Entertaining and Interactive Web Content on Site and Brand Evaluations. J. Interact. Mark. 2003, 17, 38–53. [Google Scholar] [CrossRef]
- Sunaga, T. How the Sound Frequency of Background Music Influences Consumers’ Perceptions and Decision Making. Psychol. Mark. 2018, 35, 253–267. [Google Scholar] [CrossRef]
- Zhang, S.; Guo, D.; Li, X. The Rhythm of Shopping: How Background Music Placement in Live Streaming Commerce Affects Consumer Purchase Intention. J. Retail. Consum. Serv. 2023, 75, 103487. [Google Scholar] [CrossRef]
- Knoeferle, K.M.; Woods, A.; Käppler, F.; Spence, C. That Sounds Sweet: Using Cross-Modal Correspondences to Communicate Gustatory Attributes. Psychol. Mark. 2015, 32, 107–120. [Google Scholar] [CrossRef]
- Panda, R.; Malheiro, R.; Paiva, R.P. Audio Features for Music Emotion Recognition: A Survey. IEEE Trans. Affect. Comput. 2023, 14, 68–88. [Google Scholar] [CrossRef]
- Christenson, B.; Ringler, C.; Sirianni, N.J. Speaking Fast and Slow: How Speech Rate of Digital Assistants Affects Likelihood to Use. J. Bus. Res. 2023, 163, 113907. [Google Scholar] [CrossRef]
- Melzner, J.; Raghubir, P. The Sound of Music: The Effect of Timbral Sound Quality in Audio Logos on Brand Personality Perception. J. Mark. Res. 2023, 60, 932–949. [Google Scholar] [CrossRef]
- Johnson, V.; Zhu, Z.; Anguera, R.; Bollinger, J.; Eccles, J.; Hardtke, D.; Breza, M.; Zanto, T.P. Increasing Brand Awareness: Memory for Short Audio Ads. Psychol. Mark. 2021, 38, 1960–1972. [Google Scholar] [CrossRef]
- Klein, K.; Melnyk, V.; Völckner, F. Effects of Background Music on Evaluations of Visual Images. Psychol. Mark. 2021, 38, 2240–2246. [Google Scholar] [CrossRef]
- Hwang, A.H.C.; Oh, J.; Scheinbaum, A.C. Interactive Music for Multisensory E‐Commerce: The Moderating Role of Online Consumer Involvement in Experiential Value, Cognitive Value, and Purchase Intention. Psychol. Mark. 2020, 37, 1031–1056. [Google Scholar]
- Wang, L.; Qian, D.; Li, O. The Cross-Modal Interaction Between Sound Frequency and Color Saturation on Consumer’s Product Size Perception, Preference, and Purchase. Psychol. Mark. 2020, 37, 876–899. [Google Scholar] [CrossRef]
- Imschloss, M.; Kuehnl, C. Feel the Music! Exploring the Cross-Modal Correspondence Between Music and Haptic Perceptions of Softness. J. Retail. 2019, 95, 158–169. [Google Scholar] [CrossRef]
- Ziv, N. Musical Flavor: The Effect of Background Music and Presentation Order on Taste. Eur. J. Mark. 2018, 52, 1485–1504. [Google Scholar] [CrossRef]
- Rodero, E. Do Your Ads Talk Too Fast to Your Audio Audience? How Speech Rates of Audio Commercials Influence Cognitive and Physiological Outcomes. J. Advert. Res. 2020, 60, 337–349. [Google Scholar] [CrossRef]
- Guyer, J.J.; Fabrigar, L.R.; Vaughan-Johnston, T.I. Speech Rate, Intonation, and Pitch: Investigating the Bias and Cue Effects of Vocal Confidence on Persuasion. Personal. Soc. Psychol. Bull. 2019, 45, 389–405. [Google Scholar] [CrossRef]
- Boughanmi, K.; Ansari, A. Dynamics of Musical Success: A Machine Learning Approach for Multimedia Data Fusion. J. Mark. Res. 2021, 58, 1034–1057. [Google Scholar] [CrossRef]
- Yang, C.; Yang, Z.; Zhou, W. Modulating Your Speech Rate: The Effect of Speech Rate on Crowdfunding Performance. Electron. Commer. Res. Appl. 2022, 56, 101211. [Google Scholar] [CrossRef]
- De Waele, A.; Claeys, A.S.; Cauberghe, V. The Organizational Voice: The Importance of Voice Pitch and Speech Rate in Organizational Crisis Communication. Commun. Res. 2019, 46, 1026–1049. [Google Scholar] [CrossRef]
- Wang, D.; Ziano, I.; Hagger, M.S.; Chatzisarantis, N.L. Loudness Perceptions Influence Feelings of Interpersonal Closeness and Protect Against Detrimental Psychological Effects of Social Exclusion. Personal. Soc. Psychol. Bull. 2022, 48, 566–581. [Google Scholar] [CrossRef]
- Zougkou, K.; Weinstein, N.; Paulmann, S. Erp Correlates of Motivating Voices: Quality of Motivation and Time-Course Matters. Soc. Cogn. Affect. Neurosci. 2017, 12, 1687–1700. [Google Scholar] [CrossRef]
- Behler, O.; Uppenkamp, S. Contextual Effects on Loudness Judgments for Sounds with Continuous Changes of Intensity are Reflected in Nonauditory Areas. Hum. Brain Mapp. 2021, 42, 1742–1757. [Google Scholar] [CrossRef]
- Bannister, S. A Vigilance Explanation of Musical Chills? Effects of Loudness and Brightness Manipulations. Music Sci. 2020, 3, 1774915155. [Google Scholar] [CrossRef]
- Fletcher, H. Loudness, Pitch and the Timbre of Musical Tones and their Relation to the Intensity, the Frequency and the Overtone Structure. J. Acoust. Soc. Am. 1934, 6, 59–69. [Google Scholar] [CrossRef]
- Hagtvedt, H.; Brasel, S.A. Cross-Modal Communication: Sound Frequency Influences Consumer Responses to Color Lightness. J. Mark. Res. 2016, 53, 551–562. [Google Scholar] [CrossRef]
- Juslin, P.N.; Laukka, P. Communication of Emotions in Vocal Expression and Music Performance: Different Channels, Same Code? Psychol. Bull. 2003, 129, 770. [Google Scholar] [CrossRef] [PubMed]
- Pourfannan, H.; Mahzoon, H.; Yoshikawa, Y.; Ishiguro, H. Towards a Simultaneously Speaking Bilingual Robot: Primary Study on the Effect of Gender and Pitch of the Robot’S Voice. PLoS ONE 2022, 17, e0278852. [Google Scholar] [CrossRef]
- Reynolds-McIlnay, R.; Morrin, M. Increasing Shopper Trust in Retailer Technological Interfaces Via Auditory Confirmation. J. Retail. 2019, 95, 128–142. [Google Scholar] [CrossRef]
- Zoghaib, A. Persuasion of Voices: The Effects of a Speaker’S Voice Characteristics and Gender on Consumers’ Responses. Rech. Appl. En Mark. 2019, 34, 83–110. [Google Scholar] [CrossRef]
- Buechel, E.C.; Townsend, C. Buying Beauty for the Long Run: (Mis)Predicting Liking of Product Aesthetics. J. Consum. Res. 2018, 45, 275–297. [Google Scholar] [CrossRef]
- Dubey, M.; Farrell, J.; Ang, L. How Accent and Pitch Affect Persuasiveness in Radio Advertising. In Advances in Advertising Research IX; 2018; pp. 117–130. Available online: https://link.springer.com/chapter/10.1007/978-3-658-22681-7_9#citeas (accessed on 22 October 2024).
- Cunningham, S.; Ridley, H.; Weinel, J.; Picking, R. Supervised Machine Learning for Audio Emotion Recognition. Pers. Ubiquitous Comput. 2021, 25, 637–650. [Google Scholar] [CrossRef]
- Noteboom, J.T.; Fleshner, M.; Enoka, R.M. Activation of the Arousal Response Can Impair Performance on a Simple Motor Task. J. Appl. Physiol. 2001, 91, 821–831. [Google Scholar] [CrossRef] [PubMed]
- Saxton, B.T.; Myhre, S.K.; Siyaguna, T.; Rokke, P.D. Do Arousal and Valence Have Separable Influences on Attention Across Time? Psychol. Res. 2020, 84, 259–275. [Google Scholar] [CrossRef] [PubMed]
- Coker, B. Arousal Enhances Herding Tendencies When Decision Making. J. Consum. Behav. 2020, 19, 229–239. [Google Scholar] [CrossRef]
- Hsieh, A.Y.; Lo, S.K.; Hwang, Y. Making Customers More Likely to Come Back: The Role of Background Colour in Triggering Arousal to Influence Memory, Attitude, and Patronage Intention. Electron. Commer. Res. 2022, 24, 2045–2064. [Google Scholar] [CrossRef]
- Lang, A.; Dhillon, K.; Dong, Q. The Effects of Emotional Arousal and Valence on Television Viewers’ Cognitive Capacity and Memory. J. Broadcast. Electron. Media 1995, 39, 313–327. [Google Scholar] [CrossRef]
- Moy, N.; Chan, H.F.; Septianto, F.; Mathmann, F.; Torgler, B. Confidence is Good? Too Much, Not so Much: Exploring the Effects on Crowdfunding Success. J. Bus. Res. 2024, 182, 114711. [Google Scholar] [CrossRef]
- Fan, T.; Gao, L.; Steinhart, Y. The Small Predicts Large Effect in Crowdfunding. J. Consum. Res. 2020, 47, 544–565. [Google Scholar] [CrossRef]
- Takahashi, N.; Mitsufuji, Y. Multi-Scale Multi-Band Densenets for Audio Source Separation. In Proceedings of the 2017 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), New Paltz, NY, USA, 15–18 October 2017; pp. 21–25. [Google Scholar]
- Styler, W. Using Praat for Linguistic Research. Available online: https://wstyler.ucsd.edu/praat/ (accessed on 15 August 2024).
- Zhao, Y.; Cheng, B.; Huang, Y.; Wan, Z. Beyond Words: An Intelligent Human-Machine Dialogue System with Multimodal Generation and Emotional Comprehension. Int. J. Intell. Syst. 2023, 2023, 9267487. [Google Scholar] [CrossRef]
- Rokhsaritalemi, S.; Sadeghi-Niaraki, A.; Choi, S.M. Exploring Emotion Analysis Using Artificial Intelligence, Geospatial Information Systems, and Extended Reality for Urban Services. IEEE Access 2023, 11, 1. [Google Scholar] [CrossRef]
- Acar, O.A.; Dahl, D.W.; Fuchs, C.; Schreier, M. The Signal Value of Crowdfunded Products. J. Mark. Res. 2021, 58, 644–661. [Google Scholar] [CrossRef]
- Anglin, A.H.; Pidduck, R.J. Choose Your Words Carefully: Harnessing the Language of Crowdfunding for Success. Bus. Horiz. 2022, 65, 43–58. [Google Scholar] [CrossRef]
- Mahowald, K.; Fedorenko, E.; Piantadosi, S.T.; Gibson, E. Info/Information Theory: Speakers Choose Shorter Words in Predictive Contexts. Cognition 2013, 126, 313–318. [Google Scholar] [CrossRef] [PubMed]
- Pennebaker, J.W.; Francis, M.E. Cognitive, Emotional, and Language Processes in Disclosure. Cogn. Emot. 1996, 10, 601–626. [Google Scholar] [CrossRef]
- Landis, T. Emotional Words: What’s so Different From Just Words? Cortex 2006, 42, 823–830. [Google Scholar] [CrossRef] [PubMed]
- Kumpulainen, K. The Nature of Peer Interaction in the Social Context Created by the Use of Word Processors. Learn. Instr. 1996, 6, 243–261. [Google Scholar] [CrossRef]
- Yang, Q.; Huo, J.; Li, H.; Xi, Y.; Liu, Y. Can Social Interaction-Oriented Content Trigger Viewers’ Purchasing and Gift-Giving Behaviors? Evidence From Live-Streaming Commerce. Internet Res. 2023, 33, 46–71. [Google Scholar] [CrossRef]
- Crossley, S.; Heintz, A.; Choi, J.S.; Batchelor, J.; Karimi, M.; Malatinszky, A. A Large-Scaled Corpus for Assessing Text Readability. Behav. Res. Methods 2023, 55, 491–507. [Google Scholar] [CrossRef]
- Schwenzow, J.; Hartmann, J.; Schikowsky, A.; Heitmann, M. Understanding Videos at Scale: How to Extract Insights for Business Research. J. Bus. Res. 2021, 123, 367–379. [Google Scholar] [CrossRef]
- Carneiro, T.; Da Nóbrega RV, M.; Nepomuceno, T.; Bian, G.B.; De Albuquerque VH, C.; Reboucas Filho, P.P. Performance Analysis of Google Colaboratory as a Tool for Accelerating Deep Learning Applications. IEEE Access 2018, 6, 61677–61685. [Google Scholar] [CrossRef]
- Yakut, Ö. Diabetes Prediction Using Colab Notebook Based Machine Learning Methods. Int. J. Comput. Exp. Sci. Eng. 2023, 9, 36–41. [Google Scholar] [CrossRef]
- Yang, Q.; Li, H.; Lin, Y.; Jiang, Y.; Huo, J. Fostering Consumer Engagement with Marketer-Generated Content: The Role of Content-Generating Devices and Content Features. Internet Res. 2022, 32, 307–329. [Google Scholar] [CrossRef]
- Hu, A.; Ma, S. Persuading Investors: A Video-Based Study; National Bureau of Economic Research, Inc.: Cambridge, UK, 2021. [Google Scholar]
- Oatley, K.; Johnson-Laird, P.N. Cognitive Approaches to Emotions. Trends Cogn. Sci. 2014, 18, 134–140. [Google Scholar] [CrossRef] [PubMed]
- Wei, K.S. The Impact of Barrage System Fluctuation on User Interaction in Digital Video Platforms: A Perspective from Signaling Theory and Social Impact Theory. J. Res. Interact. Mark. 2023, 17, 602–619. [Google Scholar] [CrossRef]
- Moy, N.; Chan, H.F.; Torgler, B. How Much is Too Much? The Effects of Information Quantity on Crowdfunding Performance. PLoS ONE 2018, 13, e0192012. [Google Scholar] [CrossRef] [PubMed]
- Shneor, R.; Vik, A.A. Crowdfunding Success: A Systematic Literature Review 2010-2017. Balt. J. Manag. 2020, 15, 149–182. [Google Scholar] [CrossRef]
- Ballouli, K.; Heere, B. Sonic Branding in Sport: A Model for Communicating Brand Identity through Musical Fit. Sport Manag. Rev. 2015, 18, 321–330. [Google Scholar] [CrossRef]
- Ngai, E.W.; Wu, Y. Machine Learning in Marketing: A Literature Review, Conceptual Framework, and Research Agenda. J. Bus. Res. 2022, 145, 35–48. [Google Scholar] [CrossRef]
- Wu, Y.; Huang, H. Influence of Perceived Value on Consumers’ Continuous Purchase Intention in Live-Streaming E-Commerce—Mediated by Consumer Trust. Sustainability 2023, 15, 4432. [Google Scholar] [CrossRef]
- Alalwan, A.A. Investigating the Impact of Social Media Advertising Features on Customer Purchase Intention. Int. J. Inf. Manag. 2018, 42, 65–77. [Google Scholar] [CrossRef]
- Gretzel, U.; Fuchs, M.; Baggio, R.; Hoepken, W.; Law, R.; Neidhardt, J.; Xiang, Z. E-Tourism Beyond Covid-19: A Call for Transformative Research. Inf. Technol. Tour. 2020, 22, 187–203. [Google Scholar] [CrossRef]
- Pagani, M.; Racat, M.; Hofacker, C.F. Adding Voice to the Omnichannel and How that Affects Brand Trust. J. Interact. Mark. 2019, 48, 89–105. [Google Scholar] [CrossRef]
- Melitz, J.; Toubal, F. Native Language, Spoken Language, Translation and Trade. J. Int. Econ. 2014, 93, 351–363. [Google Scholar] [CrossRef]
- Yang, Q.; Wang, Y.; Song, M.; Jiang, Y.; Li, Q. Sonic Strategies: Unveiling the Impact of Sound Features in Short Video Ads on Enterprise Market Entry Performance. J. Bus. Bus. Mark. 2024, 1–22. [Google Scholar] [CrossRef]
- Martín-Santana, J.D.; Muela-Molina, C.; Reinares-Lara, E.; Rodríguez-Guerra, M. Effectiveness of Radio Spokesperson’s Gender, Vocal Pitch and Accent and the Use of Music in Radio Advertising. BRQ Bus. Res. Q. 2015, 18, 143–160. [Google Scholar] [CrossRef]
- Zuboff, S. The Age of Surveillance Capitalism: The Fight for a Human Future at the New Frontier of Power; PublicAffairs: New York, NY, USA, 2018. [Google Scholar]
Author | Data Resource | IV | DV | Main Finding |
---|---|---|---|---|
(Hannah H. Chang et al., 2023) [46] | Network data, experiment | Number of voices | Purchasing intention | Using more voices in advertising videos can increase product awareness and favorability, thus enhancing persuasiveness and audience purchase intent. |
(Brett Christenson et al., 2023) [54] | Survey data and experiment | Speech rate | Likelihood of product use | Speech speeds that are too fast or too slow reduce the likelihood of product use, while moderate speeds tend to generate more favorable user feedback. |
(Johann Melzner et al., 2023) [55] | Experiment | Timbre of music | Perceived brand personality | Changing the timbre of music, even with the same sound source, alters the perceived brand personality. |
(Vinith Johnson et al., 2021) [56] | Experiment | Duration of music | Brand impression | Audio ads under 10 s can effectively boost brand and product awareness and impression. |
(Xin Wang et al., 2021) [42] | Experiment | Pitch | Persuasiveness | A low pitch, compared to a high pitch, makes the audience feel more confident in the narrator, enhancing the sense of professionalism and persuasiveness of the product. |
(Kristina Klein et al., 2021) [57] | Experiment | Sound presence | Preference for visual | The presence of sound decreases preference for complex visual effects but increases preference for simple ones. |
(Simmonds et al., 2020) [48] | Experiment | Audio-visual sensory cues | Recall | Audio-visual sensory cues prompt extra internal processing of the brand name, leading to active attention and better memory retention. |
(Angel Hsing-Chi Hwang et al., 2020) [58] | Experiment | Interactivity of music | Purchase intention | Music interactivity boosts e-commerce experiential value for low-participation consumers and enhances cognitive value and purchase intent for high-participation consumers. |
(Lei Wang et al., 2020) [59] | Experiment | Sound frequency | Perceived size of product | Adjusting sound frequency by color saturation and then arousal affects perceived product size, with low frequencies making products seem larger. |
(Monika Imschloss et al., 2019) [60] | Experiment | Softness of music | Haptic perception of product softness | High music softness enhances the haptic perception of product softness, which can lead to positive product reviews and increased purchase intent. |
(Sunaga, 2018) [50] | Experiment | Music frequency | Decision making | Music frequency affects perceived sound distance. Matching it to marketing messages improves consumer evaluations. |
(Naomi Ziv et al., 2018) [61] | Experiment | Pleasantness of music | Preference for product | Pleasant music increases product preference. Products accompanied by pleasant music receive better user evaluations. |
Variable | Mean | SD | Min. | Med. | Max. | N |
---|---|---|---|---|---|---|
Amount Raised | 6358.73 | 46,895.84 | 0 | 6284.28 | 1,523,654.85 | 3263 |
Number of Investors | 155.42 | 753.45 | 0 | 148 | 4265 | 3263 |
Speech Rate | 3.77 | 1.29 | 0.65 | 4.32 | 8.52 | 3263 |
Pitch | 328.42 | 21.85 | 215.25 | 351.25 | 448.36 | 3263 |
Loudness | 49.65 | 8.25 | 25.62 | 45.25 | 91.25 | 3263 |
Emotional Arousal | 28.32 | 5.68 | 6.52 | 21.54 | 52.35 | 3263 |
Functional Words Ratio | 0.44 | 0.12 | 0.14 | 0.35 | 0.85 | 3263 |
Cognitive Words Ratio | 0.16 | 0.10 | 0.04 | 0.21 | 0.38 | 3263 |
Emotional Words Ratio | 0.12 | 0.06 | 0.05 | 0.14 | 0.37 | 3263 |
Social Process Words Ratio | 0.17 | 0.02 | 0.02 | 0.16 | 0.28 | 3263 |
Readability | 0.64 | 0.19 | 0.25 | 0.75 | 1.58 | 3263 |
Image Quality | 93.47 | 10.41 | 67.82 | 87.69 | 178.24 | 3263 |
Variables | Model 1 | Model 2 | Model 3 | Model 4 | ||||
---|---|---|---|---|---|---|---|---|
β | se | β | se | β | se | β | se | |
Speech Rate | 0.132 *** | 0.052 | ||||||
Speech Rate2 | −0.005 *** | 0.002 | ||||||
Pitch | 0.051 *** | 0.064 | ||||||
Pitch2 | −0.011 *** | 0.002 | ||||||
Loudness | 0.132 *** | 0.058 | ||||||
Loudness2 | −0.002 *** | 0.002 | ||||||
Emotional Arousal | 0.085 *** | 0.075 | ||||||
Emotional Arousal2 | −0.006 *** | 0.004 | ||||||
Functional Words Ratio | 0.001 | 0.000 | 0.001 | 0.000 | 0.001 | 0.000 | 0.001 | 0.000 |
Cognitive Words Ratio | 0.001 | 0.000 | 0.001 | 0.000 | 0.001 | 0.000 | 0.001 | 0.000 |
Emotional Words Ratio | 0.020 *** | 0.016 | 0.017 *** | 0.015 | 0.016 *** | 0.015 | 0.016 *** | 0.014 |
Social Process Words Ratio | 0.012 *** | 0.008 | 0.015 *** | 0.007 | 0.015 *** | 0.007 | 0.018 *** | 0.008 |
Readability | 0.032 *** | 0.014 | 0.029 *** | 0.015 | 0.029 *** | 0.015 | 0.030 *** | 0.015 |
Image Quality | 0.002 | 0.001 | 0.002 | 0.001 | 0.002 | 0.001 | 0.002 | 0.001 |
Intercept | 5.28 | 6.52 | 10.85 | 7.68 | ||||
Max VIF | 1.21 | 1.41 | 1.25 | 1.45 | ||||
χ2 | 86.25 | 0.000 | 52.28 | 0.000 | 67.29 | 0.000 | 75.38 | 0.000 |
AIC | 4347.54 | 4215.25 | 4521.42 | 4228.34 | ||||
N | 3263 | 3263 | 3263 | 3263 |
Variables | Model 5 | Model 6 | Model 7 | Model 8 | ||||
---|---|---|---|---|---|---|---|---|
β | se | β | se | β | se | β | se | |
Speech Rate | 0.118 *** | 0.022 | ||||||
Speech Rate2 | −0.010 *** | 0.005 | ||||||
Pitch | 0.165 *** | 0.085 | ||||||
Pitch2 | −0.028 *** | 0.012 | ||||||
Loudness | 0.185 *** | 0.062 | ||||||
Loudness2 | −0.012 *** | 0.008 | ||||||
Emotional Arousal | 0.075 *** | 0.085 | ||||||
Emotional Arousal2 | −0.011 *** | 0.006 | ||||||
Functional Words Ratio | 0.003 | 0.001 | 0.005 | 0.002 | 0.006 | 0.002 | 0.005 | 0.002 |
Cognitive Words Ratio | 0.002 | 0.001 | 0.002 | 0.001 | 0.002 | 0.001 | 0.002 | 0.001 |
Emotional Words Ratio | 0.015 *** | 0.006 | 0.012 *** | 0.006 | 0.016 *** | 0.007 | 0.020 *** | 0.007 |
Social Process Words Ratio | 0.017 *** | 0.005 | 0.018 *** | 0.005 | 0.022 *** | 0.010 | 0.024 *** | 0.012 |
Readability | 0.014 *** | 0.008 | 0.016 *** | 0.006 | 0.018 *** | 0.010 | 0.014 *** | 0.007 |
Image Quality | 0.002 | 0.001 | 0.002 | 0.001 | 0.002 | 0.001 | 0.002 | 0.001 |
Intercept | 4.52 | 5.26 | 7.52 | 6.25 | ||||
Max VIF | 1.52 | 1.61 | 1.20 | 1.75 | ||||
χ2 | 53.25 | 0.000 | 85.25 | 0.000 | 72.62 | 0.000 | 48.28 | 0.000 |
AIC | 2625.84 | 2751.25 | 2552.47 | 2428.25 | ||||
N | 3263 | 3263 | 3263 | 3263 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miao, M.; Wang, Y.; Li, J.; Jiang, Y.; Yang, Q. Audio Features and Crowdfunding Success: An Empirical Study Using Audio Mining. J. Theor. Appl. Electron. Commer. Res. 2024, 19, 3176-3196. https://doi.org/10.3390/jtaer19040154
Miao M, Wang Y, Li J, Jiang Y, Yang Q. Audio Features and Crowdfunding Success: An Empirical Study Using Audio Mining. Journal of Theoretical and Applied Electronic Commerce Research. 2024; 19(4):3176-3196. https://doi.org/10.3390/jtaer19040154
Chicago/Turabian StyleMiao, Miao, Yudan Wang, Jingpeng Li, Yushi Jiang, and Qiang Yang. 2024. "Audio Features and Crowdfunding Success: An Empirical Study Using Audio Mining" Journal of Theoretical and Applied Electronic Commerce Research 19, no. 4: 3176-3196. https://doi.org/10.3390/jtaer19040154
APA StyleMiao, M., Wang, Y., Li, J., Jiang, Y., & Yang, Q. (2024). Audio Features and Crowdfunding Success: An Empirical Study Using Audio Mining. Journal of Theoretical and Applied Electronic Commerce Research, 19(4), 3176-3196. https://doi.org/10.3390/jtaer19040154