The Long-Term Risk Familiarity Effect on Courier Services’ Digital Branding during the COVID-19 Crisis
<p>Proposed conceptual framework.</p> "> Figure 2
<p>Explanatory timeline of the periods used for the study.</p> "> Figure 3
<p>Initial-data process methodology.</p> "> Figure 4
<p>Fuzzy cognitive mapping (FCM) of the variables studied during the “crisis within a crisis effect” period. Blue and red arrows signify positive and negative correlations between variables respectively.</p> "> Figure 5
<p>Scenario 1 results (COVID-19 cases at 0.9).</p> "> Figure 6
<p>Scenario 2 results (COVID-19 cases at 0.9, paid keywords at 0.6).</p> "> Figure 7
<p>Scenario 2 results (COVID-19 cases at 0.9, paid keywords at 0.95).</p> "> Figure 8
<p>Dynamic simulation model implementation.</p> "> Figure 9
<p>“Crisis within a crisis effect” dynamic simulation (FCM scenario 3).</p> ">
Abstract
:1. Introduction
2. Theoretical Background
2.1. Risk Management and Supply Chains
2.2. Risk Perception
2.2.1. Risk Perception Dominant Theories
2.2.2. Risk Familiarity Effects on Perception of General Risks
2.3. Consumer Behavior and Dominant Consumer Behavior Models
2.4. Web Analytics
2.4.1. Web Analytics and Passive Crowdsourcing
2.4.2. Utilization of Web Analytics in SCRM
2.4.3. Web Analytics in SCRM during the COVID-19 Crisis
2.5. Problem Formulation and Research Hypotheses
3. Materials and Methods
3.1. Research Design
3.2. Data Collection Method
3.3. Sample Strategy and Sample Size
4. Results
4.1. Statistical Analysis
4.1.1. Independent Samples t-Tests
4.1.2. Pearson Correlation Coefficient Statistical Analysis
4.2. Fuzzy Cognitive Mapping Analysis
4.3. Predictive and Simulation Model Development
4.4. Dynamic Simulation of “Crisis in a Crisis Effect”
5. Discussion
6. Conclusions
6.1. Theoretical Implications
6.2. Managerial Implications
6.3. Societal Implication
7. Research Limitations and Future Research Proposals
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Branded__Traffic(t) = Branded__Traffic(t − dt) + (PK2BT + PT2BT + GR2BT) * dtINIT | |
Branded__Traffic = PT2BT + PK2BT | |
INFLOWS: | PK2BT = Paid__Keywords * 0.5 |
PT2BT = Paid__Traffic * 0.3 | |
GR2BT = Global_Rank * 0.05 | |
Company__Resources(t) = Company__Resources(t − dt) + (−CR2PK − CR2PT) * dtINIT | |
Company__Resources = 10,000 | |
OUTFLOWS: | CR2PK = Company__Resources * (Percent__CR2PK/100) |
CR2PT = Company__Resources * (Percent_CR2PT/100) | |
Global_Rank(t) = Global_Rank(t − dt) + (PK2GR + PT2GR + NBT2GR − GR2BT) * dtINIT | |
Global_Rank = PK2GR + PT2GR + NBT2GR | |
INFLOWS: | PK2GR = Paid__Keywords * 0.5 |
PT2GR = Paid__Traffic * 0.3 | |
NBT2GR = Non_Branded__Traffic * 0.2 | |
OUTFLOWS: | GR2BT = Global_Rank * 0.05 |
Non_Branded__Traffic(t) = Non_Branded__Traffic(t − dt) + (OK2NBT + OT2NBT − NBT2GR) * dtINIT Non_Branded__Traffic = OK2NBT + OT2NBT | |
INFLOWS: | OK2NBT = Organic__Keywords * 0.4 |
OT2NBT = Organic__Traffic * 0.6 | |
OUTFLOWS: | NBT2GR = Non_Branded__Traffic * 0.2 |
Organic__Keywords(t) = Organic__Keywords(t − dt) + (−OK2NBT) * dtINIT | |
Organic__Keywords = 100 | |
OUTFLOWS: | OK2NBT = Organic__Keywords * 0.4 |
Organic__Traffic(t) = Organic__Traffic(t − dt) + (−OT2NBT) * dtINIT Organic__Traffic = 100 | |
OUTFLOWS: | OT2NBT = Organic__Traffic * 0.6 |
Paid__Keywords(t) = Paid__Keywords(t − dt) + (CR2PK − PK2GR − PK2BT) * dtINIT | |
Paid__Keywords = CR2PK | |
INFLOWS: | CR2PK = Company__Resources * (Percent__CR2PK/100) |
OUTFLOWS: | PK2GR = Paid__Keywords * 0.5 |
PK2BT = Paid__Keywords * 0.5 | |
Paid__Traffic(t) = Paid__Traffic(t − dt) + (CR2PT − PT2BT − PT2GR) * dtINIT Paid__Traffic = CR2PT | |
INFLOWS: | CR2PT = Company__Resources * (Percent_CR2PT/100) |
OUTFLOWS: | PT2BT = Paid__Traffic * 0.3 |
PT2GR = Paid__Traffic * 0.3 |
References
- Adibfar, A.; Gulhare, S.; Srinivasan, S.; Costin, A. Analysis and Modeling of Changes in Online Shopping Behavior Due to COVID-19 Pandemic: A Florida Case Study. Transp. Policy 2022, 126, 162–176. [Google Scholar] [CrossRef] [PubMed]
- Srivatsa Srinivas, S.; Marathe, R.R. Moving towards “Mobile Warehouse”: Last-Mile Logistics during COVID-19 and Beyond. Transp. Res. Interdiscip. Perspect. 2021, 10, 100339. [Google Scholar] [CrossRef]
- Osakwe, C.N.; Hudik, M.; Říha, D.; Stros, M.; Ramayah, T. Critical Factors Characterizing Consumers’ Intentions to Use Drones for Last-Mile Delivery: Does Delivery Risk Matter? J. Retail. Consum. Serv. 2022, 65, 102865. [Google Scholar] [CrossRef]
- Dones, R.L.E.; Young, M.N. Demand on the of Courier Services during COVID-19 Pandemic in the Philippines. In Proceedings of the 2020 7th International Conference on Frontiers of Industrial Engineering (ICFIE), Singapore, 27–29 September 2020; pp. 131–134. [Google Scholar]
- Kunytska, O.; Comi, A.; Danchuk, V.; Vakulenko, K.; Yanishevskyi, S. Optimizing Last Mile Delivering Through the Analysis of Shoppers’ Behaviour. In Decision Support Methods in Modern Transportation Systems and Networks; Sierpiński, G., Macioszek, E., Eds.; Lecture Notes in Networks and Systems; Springer International Publishing: Cham, Switzerland, 2021; Volume 208, pp. 129–147. ISBN 978-3-030-71770-4. [Google Scholar]
- Rosillo-Díaz, E.; Blanco-Encomienda, F.J.; Crespo-Almendros, E. A Cross-Cultural Analysis of Perceived Product Quality, Perceived Risk and Purchase Intention in e-Commerce Platforms. J. Enterp. Inf. Manag. 2019, 33, 139–160. [Google Scholar] [CrossRef]
- Ha, H.-Y. The Effects of Consumer Risk Perception on Pre-Purchase Information in Online Auctions: Brand, Word-of-Mouth, and Customized Information. J. Comput.-Mediat. Commun. 2002, 8, JCMC813. [Google Scholar] [CrossRef]
- Praharjo, A. The Impact of Electronic Word of Mouth on Repurchase Intention Mediated by Brand Loyalty and Repurchase Intention. Ph.D. Thesis, Universitas Brawijaya, Malang, Indonesia, 2016. [Google Scholar]
- Huifeng, P.; Ha, H.-Y. Temporal Effects of Online Customer Reviews on Restaurant Visit Intention: The Role of Perceived Risk. J. Hosp. Mark. Manag. 2021, 30, 825–844. [Google Scholar] [CrossRef]
- Huifeng, P.; Ha, H.-Y.; Lee, J.-W. Perceived Risks and Restaurant Visit Intentions in China: Do Online Customer Reviews Matter? J. Hosp. Tour. Manag. 2020, 43, 179–189. [Google Scholar] [CrossRef]
- Teo, T.S.H.; Liu, J. Consumer Trust in E-Commerce in the United States, Singapore and China. Omega 2007, 35, 22–38. [Google Scholar] [CrossRef]
- Huang, W.; Schrank, H.; Dubinsky, A.J. Effect of Brand Name on Consumers’ Risk Perceptions of Online Shopping. J. Consum. Behav. Int. Res. Rev. 2004, 4, 40–50. [Google Scholar] [CrossRef]
- Tzavlopoulos, Ι.; Gotzamani, K.; Andronikidis, A.; Vassiliadis, C. Determining the Impact of E-Commerce Quality on Customers’ Perceived Risk, Satisfaction, Value and Loyalty. Int. J. Qual. Serv. Sci. 2019, 11, 576–587. [Google Scholar] [CrossRef]
- Corbitt, B.J.; Thanasankit, T.; Yi, H. Trust and E-Commerce: A Study of Consumer Perceptions. Electron. Commer. Res. Appl. 2003, 2, 203–215. [Google Scholar] [CrossRef]
- Suguna, M.; Shah, B.; Raj, S.K.; Suresh, M. A Study on the Influential Factors of the Last Mile Delivery Projects during COVID-19 Era. Oper. Manag. Res. 2022, 15, 399–412. [Google Scholar] [CrossRef]
- Wang, X.; Kim, W.; Holguín-Veras, J.; Schmid, J. Adoption of Delivery Services in Light of the COVID Pandemic: Who and How Long? Transp. Res. Part A Policy Pract. 2021, 154, 270–286. [Google Scholar] [CrossRef]
- Hassan, S.; Awan, M.; Bhaumik, A. COVID-19-Quarantine-and-Consumer-Behavior-That-Change-the-Trends-of-Business-Sustainability-Development. Acad. Strateg. Manag. J. 2020, 19, 577. [Google Scholar]
- Roggeveen, A.L.; Sethuraman, R. How the COVID-19 Pandemic May Change the World of Retailing. J. Retail. 2020, 96, 169–171. [Google Scholar] [CrossRef]
- Sakas, D.P.; Kamperos, I.D.G.; Reklitis, P. Estimating Risk Perception Effects on Courier Companies’ Online Customer Behavior during a Crisis, Using Crowdsourced Data. Sustainability 2021, 13, 12725. [Google Scholar] [CrossRef]
- Sheth, J. Impact of COVID-19 on Consumer Behavior: Will the Old Habits Return or Die? J. Bus. Res. 2020, 117, 280–283. [Google Scholar] [CrossRef] [PubMed]
- Zwanka, R.J.; Buff, C. COVID-19 Generation: A Conceptual Framework of the Consumer Behavioral Shifts to Be Caused by the COVID-19 Pandemic. J. Int. Consum. Mark. 2021, 33, 58–67. [Google Scholar] [CrossRef]
- Rahmanov, F.; Mursalov, M.; Rosokhata, A. Consumer Behavior in Digital Era: Impact of COVID 19. Mark. Manag. Innov. 2021, 5, 243–251. [Google Scholar] [CrossRef]
- Gu, S.; Ślusarczyk, B.; Hajizada, S.; Kovalyova, I.; Sakhbieva, A. Impact of the COVID-19 Pandemic on Online Consumer Purchasing Behavior. J. Theor. Appl. Electron. Commer. Res. 2021, 16, 2263–2281. [Google Scholar] [CrossRef]
- Mason, A.; Narcum, J.; Mason, K. Changes in Consumer Decision-Making Resulting from the COVID-19 Pandemic. J. Cust. Behav. 2020, 19, 299–321. [Google Scholar] [CrossRef]
- Valaskova, K.; Durana, P.; Adamko, P. Changes in Consumers’ Purchase Patterns as a Consequence of the COVID-19 Pandemic. Mathematics 2021, 9, 1788. [Google Scholar] [CrossRef]
- Di Crosta, A.; Ceccato, I.; Marchetti, D.; La Malva, P.; Maiella, R.; Cannito, L.; Cipi, M.; Mammarella, N.; Palumbo, R.; Verrocchio, M.C.; et al. Psychological Factors and Consumer Behavior during the COVID-19 Pandemic. PLoS ONE 2021, 16, e0256095. [Google Scholar] [CrossRef] [PubMed]
- Laato, S.; Islam, A.K.M.N.; Farooq, A.; Dhir, A. Unusual Purchasing Behavior during the Early Stages of the COVID-19 Pandemic: The Stimulus-Organism-Response Approach. J. Retail. Consum. Serv. 2020, 57, 102224. [Google Scholar] [CrossRef]
- Ventriglio, A.; Watson, C.; Bhugra, D. Pandemics, Panic and Prevention: Stages in the Life of COVID-19 Pandemic. Int. J. Soc. Psychiatry 2020, 66, 733–734. [Google Scholar] [CrossRef] [PubMed]
- Gefen, D. E-Commerce: The Role of Familiarity and Trust. Omega 2000, 28, 725–737. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, T.; Alhinho, M.; Rita, P.; Dhillon, G. Modelling and Testing Consumer Trust Dimensions in E-Commerce. Comput. Hum. Behav. 2017, 71, 153–164. [Google Scholar] [CrossRef] [Green Version]
- Qiu, R.; Zhu, X. The Relationship Between Public Risk Familiarity and Mental Health During the COVID-19 Epidemic: A Moderated Mediation Model. Front. Psychol. 2022, 13, 945928. [Google Scholar] [CrossRef] [PubMed]
- Mori, T.; Nagata, T.; Ikegami, K.; Hino, A.; Tateishi, S.; Tsuji, M.; Matsuda, S.; Fujino, Y.; Mori, K.; The CORoNaWork Project. Effect of COVID-19 Infection Related Experiences on Outing Behaviors When a State of Emergency Is Declared: A Cohort Study. medRxiv 2021. [Google Scholar] [CrossRef]
- Thun, J.-H.; Hoenig, D. An Empirical Analysis of Supply Chain Risk Management in the German Automotive Industry. Int. J. Prod. Econ. 2009, 131, 242–249. [Google Scholar] [CrossRef]
- Tang, C.S. Perspectives in Supply Chain Risk Management. Int. J. Prod. Econ. 2006, 103, 451–488. [Google Scholar] [CrossRef]
- Jüttner, U.; Peck, H.; Christopher, M. Supply Chain Risk Management: Outlining an Agenda for Future Research. Int. J. Logist. Res. Appl. 2003, 6, 197–210. [Google Scholar] [CrossRef] [Green Version]
- Goh, M.; Lim, J.; Meng, F. A Stochastic Model for Risk Management in Global Supply Chain Networks. Eur. J. Oper. Res. 2007, 182, 164–173. [Google Scholar] [CrossRef]
- Ho, W.; Zheng, T.; Yildiz, H.; Talluri, S. Supply Chain Risk Management: A Literature Review. Int. J. Prod. Res. 2015, 53, 5031–5069. [Google Scholar] [CrossRef]
- Tang, O.; Musa, N. Identifying Risk Issues and Research Advancements in Supply Chain Risk Management. Int. J. Prod. Econ. 2011, 133, 25–34. [Google Scholar] [CrossRef] [Green Version]
- Chionis, D.; Karanikas, N. Risk Perception and Risk Communication from a Systems Perspective: A Study on Safety Behavioural Intervention Frameworks and Functions. Syst. Pr. Action Res. 2022, 35, 711–746. [Google Scholar] [CrossRef]
- Weinstein, N.D. Unrealistic Optimism about Future Life Events. J. Personal. Soc. Psychol. 1980, 39, 806–820. [Google Scholar] [CrossRef]
- Douglas, M.; Wildavsky, A. Risk and Culture: An Essay on Selection of Technological and Environmental Dangers. Rev. Fr. Sociol. 1982, 28, 178–181. [Google Scholar]
- Kahan, D.M. Cultural Cognition as a Conception of the Cultural Theory of Risk. In Handbook of Risk Theory: Epistemology, Decision Theory, Ethics, and Social Implications of Risk; Roeser, S., Hillerbrand, R., Sandin, P., Peterson, M., Eds.; Springer: Dordrecht, The Netherlands, 2012; pp. 725–759. ISBN 978-94-007-1433-5. [Google Scholar]
- Fischhoff, B.; Slovic, P.; Lichtenstein, S.; Read, S.; Combs, B. How Safe Is Safe Enough? A Psychometric Study of Attitudes Toward Technological Risks and Benefits. Policy Sci. 1978, 9, 127–152. [Google Scholar] [CrossRef]
- Siegrist, M.; Keller, C.; Kiers, H.A.L. A New Look at the Psychometric Paradigm of Perception of Hazards. Risk Anal. 2005, 25, 211–222. [Google Scholar] [CrossRef]
- Marris, C.; Langford, I.; Saunderson, T.; O’Riordan, T. Exploring the “Psychometric Paradigm”: Comparisons between Aggregate and Individual Analyses. Risk Anal. 1997, 17, 303–312. [Google Scholar] [CrossRef]
- Bronfman, N.C.; Cifuentes, L.A. Risk Perception in a Developing Country: The Case of Chile. Risk Anal. 2003, 23, 1271–1285. [Google Scholar] [CrossRef]
- Wiegman, O.; Gutteling, J.M.; Cadet, B. Perception of Nuclear Energy and Coal in France and the Netherlands. Risk Anal. 1995, 15, 513–521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poumadere, M.; Mays, C.; Slovic, P.; Flynn, J.; Johnson, S. What Lies behind Public Acceptance? Comparison of US and French Perceptions of the Nuclear Power Option. In Proceedings of the International Atomic Energy Agency Meeting of the Nuclear Power Option, Vienna, Austria, 7 September 1995. [Google Scholar]
- Wallach, M.A.; Kogan, N.; Bem, D.J. Diffusion of Responsibility and Level of Risk Taking in Groups. J. Abnorm. Soc. Psychol. 1964, 68, 263–274. [Google Scholar] [CrossRef] [PubMed]
- Flanders, J.P.; Thistlethwaite, D.L. Effects of Familiarization and Group Discussion upon Risk Taking. J. Personal. Soc. Psychol. 1967, 5, 91–97. [Google Scholar] [CrossRef]
- Teger, A.I.; Pruitt, D.G.; Jean, R.S.; Haaland, G.A. A Reexamination of the Familiarization Hypothesis in Group Risk Taking. J. Exp. Soc. Psychol. 1970, 6, 346–350. [Google Scholar] [CrossRef]
- Weber, E.U.; Siebenmorgen, N.; Weber, M. Communicating Asset Risk: How Name Recognition and the Format of Historic Volatility Information Affect Risk Perception and Investment Decisions. Risk Anal. 2005, 25, 597–609. [Google Scholar] [CrossRef] [PubMed]
- Mullet, E.; Ciutad, N.; Rivière-Shafighi, S. Cognitive Processes Involved in the Assessment of Health Hazards’ Severity. Health Risk Soc. 2004, 6, 277–288. [Google Scholar] [CrossRef]
- Royne, M.B.; Fox, A.K.; Deitz, G.D.; Gibson, T. The Effects of Health Consciousness and Familiarity with DTCA on Perceptions of Dietary Supplements. J. Consum. Aff. 2014, 48, 515–534. [Google Scholar] [CrossRef]
- Schiffman, L.G.; Kanuk, L.L.; Kumar, S.R.; Wisenblit, J. Consumer Behavior. 10th edition. Available online: https://repository.iimb.ac.in/handle/2074/12722 (accessed on 18 March 2022).
- Jisana, T.K. Consumer Behaviour Models: An Overview. Sai Om J. Commer. Manag. 2014, 1, 34–43. [Google Scholar]
- Tidwell, P. Compensatory Versus Non-Compensatory Choice Strategies in Limited Problem Solving Consumer Behavior: Engel-Kollat-Blackwell Versus Howard Models. In Proceedings of the 1996 Academy of Marketing Science (AMS) Annual Conference; Wilson, E.J., Hair, J.F., Eds.; Developments in Marketing Science: Proceedings of the Academy of Marketing Science; Springer International Publishing: Cham, Switzerland, 2015; pp. 220–224. ISBN 978-3-319-13143-6. [Google Scholar]
- Reddipalli, R. Howard Sheth Model of Consumer Behaviour on Buying a Smartphone. SSRN J. 2020. [CrossRef]
- Sherman, E.; Mathur, A.; Smith, R.B. Store Environment and Consumer Purchase Behavior: Mediating Role of Consumer Emotions. Psychol. Mark. 1997, 14, 361–378. [Google Scholar] [CrossRef]
- Vignali, C. Benetton’s Brand Position Explored and Developed through Nicosia’s Consumer-Behaviour Model. J. Text. Inst. 1999, 90, 48–59. [Google Scholar] [CrossRef]
- Zaichkowsky, J.L. Consumer Behavior: Yesterday, Today, and Tomorrow. Bus. Horiz. 1991, 34, 51–59. [Google Scholar] [CrossRef]
- Dimanche, F.; Havitz, M.E. Consumer Behavior and Tourism:: Review and Extension of Four Study Areas. J. Travel Tour. Mark. 1995, 3, 37–57. [Google Scholar] [CrossRef]
- Sirgy, M.J. Self-Concept in Consumer Behavior: A Critical Review. J. Consum. Res. 1982, 9, 287. [Google Scholar] [CrossRef]
- Borgo, R.; Micallef, L.; Bach, B.; McGee, F.; Lee, B. Information Visualization Evaluation Using Crowdsourcing. Comput. Graph. Forum 2018, 37, 573–595. [Google Scholar] [CrossRef] [Green Version]
- Loukis, E.; Charalabidis, Y.; Androutsopoulou, A. Evaluating a Passive Social Media Citizensourcing Innovation. In Proceedings of the Electronic Government; Tambouris, E., Janssen, M., Scholl, H.J., Wimmer, M.A., Tarabanis, K., Gascó, M., Klievink, B., Lindgren, I., Parycek, P., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 305–320. [Google Scholar]
- Connors, J.P.; Lei, S.; Kelly, M. Citizen Science in the Age of Neogeography: Utilizing Volunteered Geographic Information for Environmental Monitoring. Ann. Assoc. Am. Geogr. 2012, 102, 1267–1289. [Google Scholar] [CrossRef]
- Arts, K.; Melero, Y.; Webster, G.; Sharma, N.; Tintarev, N.; Tait, E.; Mellish, C.; Sripada, S.; MacMaster, A.-M.; Sutherland, H.; et al. On the Merits and Pitfalls of Introducing a Digital Platform to Aid Conservation Management: Volunteer Data Submission and the Mediating Role of Volunteer Coordinators. J. Environ. Manag. 2020, 265, 110497. [Google Scholar] [CrossRef]
- Ciceri, E. Humans in the Loop: Optimization of Active and Passive Crowdsourcing, Politecnico Di Milano. Ph.D. Thesis, Polytechnic University of Milan, Milan, Italy, 2015. [Google Scholar]
- Sakas, D.P.; Giannakopoulos, N.T. Harvesting Crowdsourcing Platforms’ Traffic in Favour of Air Forwarders’ Brand Name and Sustainability. Sustainability 2021, 13, 8222. [Google Scholar] [CrossRef]
- Weischedel, B.; Matear, S.; Deans, K.R. The Use of Emetrics in Strategic Marketing Decisions: A Preliminary Investigation. Int. J. Internet Mark. Advert. 2005, 2, 109. [Google Scholar] [CrossRef]
- Kirsh, I.; Joy, M. Splitting the Web Analytics Atom: From Page Metrics and KPIs to Sub-Page Metrics and KPIs. In Proceedings of the 10th International Conference on Web Intelligence, Mining and Semantics, Biarritz, France, 30 June 2020; Association for Computing Machinery: New York, NY, USA; pp. 33–43. [Google Scholar] [CrossRef]
- Mani, V.; Delgado, C.; Hazen, B.; Patel, P. Mitigating Supply Chain Risk via Sustainability Using Big Data Analytics: Evidence from the Manufacturing Supply Chain. Sustainability 2017, 9, 608. [Google Scholar] [CrossRef]
- Järvinen, J.; Karjaluoto, H. The Use of Web Analytics for Digital Marketing Performance Measurement. Ind. Mark. Manag. 2015, 50, 117–127. [Google Scholar] [CrossRef] [Green Version]
- Phippen, A.; Sheppard, L.; Furnell, S. A Practical Evaluation of Web Analytics. Internet Res. 2004, 14, 284–293. [Google Scholar] [CrossRef]
- Akkus, I.E.; Chen, R.; Hardt, M.; Francis, P.; Gehrke, J. Non-Tracking Web Analytics. In Proceedings of the 2012 ACM conference on Computer and communications security, New York, NY, USA, 16 October 2012; Association for Computing Machinery: New York, NY, USA; pp. 687–698. [Google Scholar]
- Sakas, D.P.; Reklitis, D.P. The Impact of Organic Traffic of Crowdsourcing Platforms on Airlines’ Website Traffic and User Engagement. Sustainability 2021, 13, 8850. [Google Scholar] [CrossRef]
- Schlüter, F. Procedure Model for Supply Chain Digitalization Scenarios for a Data-Driven Supply Chain Risk Management. In Revisiting Supply Chain Risk; Zsidisin, G.A., Henke, M., Eds.; Springer Series in Supply Chain Management; Springer International Publishing: Cham, Switzerland, 2019; Volume 7, pp. 137–154. ISBN 978-3-030-03812-0. [Google Scholar]
- Baryannis, G.; Validi, S.; Dani, S.; Antoniou, G. Supply Chain Risk Management and Artificial Intelligence: State of the Art and Future Research Directions. Int. J. Prod. Res. 2019, 57, 2179–2202. [Google Scholar] [CrossRef]
- Fan, Y.; Heilig, L.; Voß, S. Supply Chain Risk Management in the Era of Big Data. In Design, User Experience, and Usability: Design Discourse; Marcus, A., Ed.; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2015; Volume 9186, pp. 283–294. ISBN 978-3-319-20885-5. [Google Scholar]
- He, M.; Ji, H.; Wang, Q.; Ren, C.; Lougee, R. Big Data Fueled Process Management of Supply Risks: Sensing, Prediction, Evaluation and Mitigation. In Proceedings of the Winter Simulation Conference 2014, Savanah, GA, USA, 7–10 December 2014; pp. 1005–1013. [Google Scholar]
- Shang, Y.; Dunson, D.; Song, J.-S. Exploiting Big Data in Logistics Risk Assessment via Bayesian Nonparametrics. Oper. Res. 2017, 65, 1574–1588. [Google Scholar] [CrossRef] [Green Version]
- Er Kara, M.; Oktay Fırat, S.Ü.; Ghadge, A. A Data Mining-Based Framework for Supply Chain Risk Management. Comput. Ind. Eng. 2020, 139, 105570. [Google Scholar] [CrossRef]
- Aday, S.; Aday, M.S. Impact of COVID-19 on the Food Supply Chain. Food Qual. Saf. 2020, 4, 167–180. [Google Scholar] [CrossRef]
- Rizou, M.; Galanakis, I.M.; Aldawoud, T.M.S.; Galanakis, C.M. Safety of Foods, Food Supply Chain and Environment within the COVID-19 Pandemic. Trends Food Sci. Technol. 2020, 102, 293–299. [Google Scholar] [CrossRef]
- Armani, A.M.; Hurt, D.E.; Hwang, D.; McCarthy, M.C.; Scholtz, A. Low-Tech Solutions for the COVID-19 Supply Chain Crisis. Nat. Rev. Mater. 2020, 5, 403–406. [Google Scholar] [CrossRef] [PubMed]
- Sarkis, J. Supply Chain Sustainability: Learning from the COVID-19 Pandemic. Int. J. Oper. Prod. Manag. 2020, 41, 63–73. [Google Scholar] [CrossRef]
- Mollenkopf, D.A.; Ozanne, L.K.; Stolze, H.J. A Transformative Supply Chain Response to COVID-19. J. Serv. Manag. 2021, 32, 190–202. [Google Scholar] [CrossRef]
- Bag, S.; Dhamija, P.; Luthra, S.; Huisingh, D. How Big Data Analytics Can Help Manufacturing Companies Strengthen Supply Chain Resilience in the Context of the COVID-19 Pandemic. Int. J. Logist. Manag. 2021. [Google Scholar] [CrossRef]
- Chatterjee, S.; Chaudhuri, R.; Shah, M.; Maheshwari, P. Big Data Driven Innovation for Sustaining SME Supply Chain Operation in Post COVID-19 Scenario: Moderating Role of SME Technology Leadership. Comput. Ind. Eng. 2022, 168, 108058. [Google Scholar] [CrossRef]
- Gupta, R.; Srivastava, P.; Sharma, S.; Alrasheedi, M. Leveraging Big Data to Accelerate Supply Chain Management in COVID-19. In The Big Data-Driven Digital Economy: Artificial and Computational Intelligence; Musleh Al-Sartawi, A.M.A., Ed.; Studies in Computational Intelligence; Springer International Publishing: Cham, Switzerland, 2021; Volume 974, pp. 1–19. ISBN 978-3-030-73056-7. [Google Scholar]
- Sheng, J.; Amankwah-Amoah, J.; Khan, Z.; Wang, X. COVID-19 Pandemic in the New Era of Big Data Analytics: Methodological Innovations and Future Research Directions. Br. J. Manag. 2021, 32, 1164–1183. [Google Scholar] [CrossRef]
- Rinaldi, M.; Murino, T.; Bottani, E. The Impact Of COVID-19 On Logistic Systems: An Italian Case Study. IFAC-Pap. 2021, 54, 1035–1040. [Google Scholar] [CrossRef]
- Nagao, T.; Ijuin, H.; Yamada, T.; Nagasawa, K.; Zhou, L. COVID-19 Disruption Strategy for Redesigning Global Supply Chain Network across TPP Countries. Logistics 2021, 6, 2. [Google Scholar] [CrossRef]
- OECD. Available online: https://www.oecd.org/coronavirus/policy-responses/conectando-empresas-y-consumidores-durante-covid-19-trade-in-parcels-d18de131/ (accessed on 14 April 2022).
- Brandtner, P.; Darbanian, F.; Falatouri, T.; Udokwu, C. Impact of COVID-19 on the Customer End of Retail Supply Chains: A Big Data Analysis of Consumer Satisfaction. Sustainability 2021, 13, 1464. [Google Scholar] [CrossRef]
- Jin, D.-H.; Kim, H.-J. Integrated Understanding of Big Data, Big Data Analysis, and Business Intelligence: A Case Study of Logistics. Sustainability 2018, 10, 3778. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Wang, X. Dynamic Supply Chain Decisions Based on Networked Sensor Data: An Application in the Chilled Food Retail Chain. Int. J. Prod. Res. 2017, 55, 5127–5141. [Google Scholar] [CrossRef] [Green Version]
- Iglesias-Sánchez, P.P.; Jambrino-Maldonado, C.; de Las Heras-Pedrosa, C.; Frías Villegas, N.; Olivares-Delgado, F. Brand’s Communications in COVID-19. Social Role during and after Lockdown. Cogent Soc. Sci. 2022, 8, 2053271. [Google Scholar] [CrossRef]
- Semrush-Online Marketing Can Be Easy. Available online: https://www.semrush.com/ (accessed on 21 March 2022).
- SEO Glossary|Semrush. Available online: https://www.semrush.com/kb/925-glossary (accessed on 18 March 2022).
- What Is Organic Traffic? Definition-Omniconvert. Available online: https://www.omniconvert.com/what-is/organic-traffic/ (accessed on 18 May 2021).
- Bagdasarova, I. What Is Branded Traffic and How to Increase It. Available online: https://www.promodo.com/blog/branded-traffic-why-its-crucial-for-ecommerce-and-how-to-increase-it/ (accessed on 18 May 2021).
- Burby, J.; Brown, A. WAA Standards Committee Web Analytics Definitions, Version 4.0; Web Analytics Association: Washington, DC, USA, 2007. [Google Scholar]
- World Top Courier Companies by Market Value as on 2020. Available online: https://www.value.today/world-top-companies/courier?title=&field_headquarters_of_company_target_id&field_company_category_primary_target_id&field_market_value_jan_2020_value_1=&page=0 (accessed on 18 May 2021).
- Global Shipping & Logistics Services|UPS-United States. Available online: https://www.ups.com/us/en/Home.page (accessed on 21 March 2022).
- Royal Mail|Royal Mail Group Ltd. Available online: https://www.royalmail.com/ (accessed on 21 March 2022).
- The New FedEx.Com-Tracking, Shipping & Locations. Available online: https://www.fedex.com/en-us/home.html (accessed on 21 March 2022).
- Global Logistics-International Shipping |DHL Home|. Available online: https://www.dhl.com/us-en/home.html (accessed on 21 March 2022).
- Track & Trace. Available online: https://www.sf-express.com/cn/en/dynamic_function/waybill/ (accessed on 21 March 2022).
- Ceylan, R.; Özbay, Y. Comparison of FCM, PCA and WT Techniques for Classification ECG Arrhythmias Using Artificial Neural Network. Expert Syst. Appl. 2007, 33, 286–295. [Google Scholar] [CrossRef]
- Terzi, M.C.; Sakas, D.P.; Vlachos, D. Marketing Dynamic Simulation Modelling in High Tech Laboratories. Key Eng. Mater. 2011, 495, 23–27. [Google Scholar] [CrossRef]
- Dimitrios, N.K.; Sakas, D.P.; Vlachos, D.S. The Contribution of Dynamic Simulation Model of Depiction of Knowledge, in the Leading Process of High Technology Companies. Key Eng. Mater. 2013, 543, 406–409. [Google Scholar] [CrossRef]
- Dimitrios, N.K.; Sakas, D.P.; Vlachos, D.S. Analysis of Strategic Leadership Simulation Models in Non-Profit Organizations. Procedia-Soc. Behav. Sci. 2013, 73, 276–284. [Google Scholar] [CrossRef] [Green Version]
- Dimitrios, N.K.; Sakas, D.P.; Vlachos, D.S. Modeling the Scientific Dimension of Academic Conferences. Procedia-Soc. Behav. Sci. 2014, 147, 576–585. [Google Scholar] [CrossRef] [Green Version]
- Sakas, D.P.; Vlachos, D.S.; Nasiopoulos, D.K. Modeling the Development of the Online Conference’s Services. Libr. Rev. 2016, 65, 160–184. [Google Scholar] [CrossRef]
- Sakas, D.P.; Konstantopoulos, N.; Triantafyllopoulos, Y.; Simos, T.E.; Maroulis, G. Contribution of the Executives in Bank Sector Mergers: Application with a Simulation Model. In Proceedings of the AIP Conference Proceedings, Corfu, Greece, 25–30 September 2007; Volume 963, pp. 1054–1057. [Google Scholar]
- Reiner, G. Customer-Oriented Improvement and Evaluation of Supply Chain Processes Supported by Simulation Models. Int. J. Prod. Econ. 2005, 96, 381–395. [Google Scholar] [CrossRef]
- Georgiadis, P.; Vlachos, D.; Iakovou, E. A System Dynamics Modeling Framework for the Strategic Supply Chain Management of Food Chains. J. Food Eng. 2005, 70, 351–364. [Google Scholar] [CrossRef]
- Pitty, S.S.; Li, W.; Adhitya, A.; Srinivasan, R.; Karimi, I.A. Decision Support for Integrated Refinery Supply Chains. Comput. Chem. Eng. 2008, 32, 2767–2786. [Google Scholar] [CrossRef]
- Adhitya, A.; Srinivasan, R.; Karimi, I.A. Supply Chain Risk Management through HAZOP and Dynamic Simulation. In Computer Aided Chemical Engineering; Elsevier: Amsterdam, The Netherlands, 2008; Volume 25, pp. 37–42. ISBN 978-0-444-53227-5. [Google Scholar]
- Mielczarek, B.; Uziałko-Mydlikowska, J. Application of Computer Simulation Modeling in the Health Care Sector: A Survey. Simulation 2012, 88, 197–216. [Google Scholar] [CrossRef]
- Johnson, O.A.; Hall, P.S.; Hulme, C. NETIMIS: Dynamic Simulation of Health Economics Outcomes Using Big Data. PharmacoEconomics 2016, 34, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Sarlis, A.S.; Drivas, I.C.; Sakas, D.P. Implementation and Dynamic Simulation Modeling of Search Engine Optimization Processes. Improvement of Website Ranking. In Strategic Innovative Marketing; Kavoura, A., Sakas, D.P., Tomaras, P., Eds.; Springer Proceedings in Business and Economics; Springer International Publishing: Cham, Switzerland, 2017; pp. 437–443. ISBN 978-3-319-56287-2. [Google Scholar]
- Oghazi, P.; Karlsson, S.; Hellström, D.; Mostaghel, R.; Sattari, S. From Mars to Venus: Alteration of Trust and Reputation in Online Shopping. J. Innov. Knowl. 2021, 6, 197–202. [Google Scholar] [CrossRef]
- Sakas, D.; Vlachos, D.; Nasiopoulos, D. Modelling Strategic Management for the Development of Competitive Advantage, Based on Technology. J. Syst. Inf. Technol. 2014, 16, 187–209. [Google Scholar] [CrossRef]
- Videira, N.; Antunes, P.; Santos, R. Engaging Stakeholders in Environmental and Sustainability Decisions with Participatory System Dynamics Modeling. In Environmental Modeling with Stakeholders; Gray, S., Paolisso, M., Jordan, R., Gray, S., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 241–265. ISBN 978-3-319-25051-9. [Google Scholar]
- Lie, H.; Rich, K.M.; Burkart, S. Participatory System Dynamics Modelling for Dairy Value Chain Development in Nicaragua. Dev. Pract. 2017, 27, 785–800. [Google Scholar] [CrossRef]
- Ali, B. Impact of COVID-19 on Consumer Buying Behavior toward Online Shopping in Iraq. J. Econ. Stud. 2020, 18, 267–280. [Google Scholar]
- Sajid, S.; Rashid, R.M.; Haider, W. Changing Trends of Consumers’ Online Buying Behavior During COVID-19 Pandemic With Moderating Role of Payment Mode and Gender. Front. Psychol. 2022, 13, 919334. [Google Scholar] [CrossRef]
- European Commission New Consumer Survey Shows Impact of COVID-19 and Popularity of ‘greener’ Choices. Available online: https://ec.europa.eu/commission/presscorner/detail/en/ip_21_1104 (accessed on 16 October 2022).
- Liew, P.S.; Liew, W.N.; Lim, C.S.; Lin, J.Y.; Qonitah, S.I. The Impact of COVID-19 Pandemic on Consumer Behavior: J&T Express Courier Services in Malaysia and Indonesia. Asia Pac. J. Manag. Educ. (APJME) 2022, 5, 65–78. [Google Scholar] [CrossRef]
- Gruenwald, H. Parcel Delivery Services Boom during COVID-19. 2020. Available online: https://www.researchgate.net/profile/Hermann-Gruenwald/publication/343674544_Parcel_Delivery_Services_boom_during_Covid-19/links/5f37d517458515b7292288b3/Parcel-Delivery-Services-boom-during-Covid-19.pdf (accessed on 15 July 2022).
- Izzah, N.; Dilaila, F.; Yao, L. The Growth of Reliance towards Courier Services through E-Business Verified during COVID-19: Malaysia. J. Phys. Conf. Ser. 2021, 1874, 012041. [Google Scholar] [CrossRef]
- Sułkowski, Ł.; Kolasińska-Morawska, K.; Brzozowska, M.; Morawski, P.; Schroeder, T. Last Mile Logistics Innovations in the Courier-Express-Parcel Sector Due to the COVID-19 Pandemic. Sustainability 2022, 14, 8207. [Google Scholar] [CrossRef]
- Guthrie, C.; Fosso-Wamba, S.; Arnaud, J.B. Online Consumer Resilience during a Pandemic: An Exploratory Study of e-Commerce Behavior before, during and after a COVID-19 Lockdown. J. Retail. Consum. Serv. 2021, 61, 102570. [Google Scholar] [CrossRef]
- Ejdys, J.; Gulc, A. Trust in Courier Services and Its Antecedents as a Determinant of Perceived Service Quality and Future Intention to Use Courier Service. Sustainability 2020, 12, 9088. [Google Scholar] [CrossRef]
- Rajendran, S.; Harper, A. Simulation-Based Algorithm for Determining Best Package Delivery Alternatives under Three Criteria: Time, Cost and Sustainability. Transp. Res. Interdiscip. Perspect. 2021, 12, 100484. [Google Scholar] [CrossRef]
- Dewi, H.E.; Aprilia, A.; Hardana, A.E.; Pariasa, I.I.; Sofianti, D.Y.; Prasetyaningrum, D.I. The Impact of Product Familiarity on the Purchase Decisions of Fruits and Vegetables during COVID-19 Pandemic. IOP Conf. Ser. Earth Environ. Sci. 2021, 733, 012060. [Google Scholar] [CrossRef]
- Samad, N.S.A.; Mohamad, S.W.; Muhamad, S.F.; Shaari, N.F.; Rahmat, R. Customer Satisfaction of Pos Laju Malaysia Service During Pandemic COVID-19. In Financial Technology (FinTech), Entrepreneurship, and Business Development; Alareeni, B., Hamdan, A., Eds.; Lecture Notes in Networks and Systems; Springer International Publishing: Cham, Switzerland, 2022; Volume 486, pp. 427–438. ISBN 978-3-031-08086-9. [Google Scholar]
- Maftuchach, V.; Kusnuranti, A.L. The Effect Of Brand Image On Customer Satisfaction Through Quality Of Courier Services During The COVID-19 Pandemic In Indonesia (SAP Express Depok Case Study). Int. J. Soc. Manag. Stud. 2021, 2, 29–39. [Google Scholar] [CrossRef]
- Jun, S.-H. The Effects of Perceived Risk, Brand Credibility and Past Experience on Purchase Intention in the Airbnb Context. Sustainability 2020, 12, 5212. [Google Scholar] [CrossRef]
- Rahmi, S.; Ilyas, G.B.; Tamsah, H.; Munir, A.R. Perceived Risk and Its Role in the Influence of Brand Awareness on Purchase Intention: Study of Shopee Users. J. Siasat Bisnis 2022, 26, 97–109. [Google Scholar] [CrossRef]
- Chi, H. The Impact of Brand Awareness on Consumer Purchase Intention: The Mediating Effect of Perceived Quality and Brand Loyalty. J. Int. Manag. Stud. 2009, 4, 135–144. [Google Scholar]
- Rokicki, T.; Bórawski, P.; Bełdycka-Bórawska, A.; Szeberényi, A.; Perkowska, A. Changes in Logistics Activities in Poland as a Result of the COVID-19 Pandemic. Sustainability 2022, 14, 10303. [Google Scholar] [CrossRef]
- Salim, A.; Dinidiastri, D.I.; An, C.; Affiat, M.R. Effect of Punctuality of Delivery of Goods and Quality of Courier Services on Satisfaction of Customer at JNE Express in the COVID-19 Pandemic. Adv. Transp. Logist. Res. 2021, 4, 924–934. [Google Scholar] [CrossRef]
- Hermann, J.W.; Lin, E.; Pundoor, G. Supply Chain Simulation Modeling Using the Supply Chain Operations Reference Model. In Proceedings of the Volume 1: 23rd Computers and Information in Engineering Conference, Parts A and B, Chicago, IL, USA, 1 January 2003; American Society of Mechanical Engineer: New York, NY, USA; pp. 461–469. [Google Scholar]
- Cope, D.; Fayez, M.S.; Mollaghasemi, M.; Kaylani, A. Supply Chain Simulation Modeling Made Easy: An Innovative Approach. In Proceedings of the 2007 Winter Simulation Conference, Washington, DC, USA, 9–12 December 2007; pp. 1887–1896. [Google Scholar]
- WHO Coronavirus (COVID-19) Dashboard|WHO Coronavirus (COVID-19) Dashboard With Vaccination Data. Available online: https://covid19.who.int/ (accessed on 18 May 2021).
- Kirk, C.P.; Rifkin, L.S. I’ll Trade You Diamonds for Toilet Paper: Consumer Reacting, Coping and Adapting Behaviors in the COVID-19 Pandemic. J. Bus. Res. 2020, 117, 124–131. [Google Scholar] [CrossRef] [PubMed]
- Clements, J.M. Knowledge and Behaviors Toward COVID-19 Among US Residents During the Early Days of the Pandemic: Cross-Sectional Online Questionnaire. JMIR Public Health Surveill. 2020, 6, e19161. [Google Scholar] [CrossRef] [PubMed]
- Lawu, B.J.L. Pengaruh Elemen Brand Knowledge Dan Brand Equity Terhadap Repurchase Intention. J. Manaj. Maranatha 2015, 14. [Google Scholar]
- Statista Package Delivery Methods Worldwide 2021. Available online: https://www.statista.com/statistics/722366/package-delivery-methods-among-millennials-worldwide/ (accessed on 19 October 2022).
- Egozi, L.; Reiss-Hevlin, N.; Dallasheh, R.; Pardo, A. Couriers’ Safety and Health Risks before and during the COVID-19 Pandemic. Int. Arch. Occup. Env. Health 2022, 95, 589–598. [Google Scholar] [CrossRef]
- Rim, S.-C.; Jung, M.-C. Evaluation of Workloads of Package Deliverers Focusing on Their Pickup and Delivery Tasks in Republic of Korea. Sustainability 2022, 14, 5229. [Google Scholar] [CrossRef]
- Miller, L.M.S.; Gee, P.M.; Katz, R.A. The Importance of Understanding COVID-19: The Role of Knowledge in Promoting Adherence to Protective Behaviors. Front. Public Health 2021, 9, 581497. [Google Scholar] [CrossRef]
KPI—Related Variable | Description |
---|---|
Global Ranking | Based on organic rankings and search traffic, the global ranking reflects how much of a presence a domain has on the Internet [100]. “The ranking” nature of the variable categorizes it into ordinal variables. |
Organic Traffic | Organic traffic is a measure that refers to users who arrive at your website as a consequence of unpaid (“organic”) search results [101]. |
Paid Traffic | Paid traffic consists of visitors who land on your website after clicking on an advertisement [100]. |
Branded Traffic | The percentage of website traffic that comes from visitors who have included your brand name in their search queries is referred to as branded traffic [102]. |
Non-branded Traffic | Non-branded traffic is defined as any search query that did not include the company’s name but still resulted in a visit to the site [103]. |
Organic Keyword | Terms that enable a site to rank in the Google Organic results [100]. |
Paid Keyword | Paid keywords or advertising keywords are a method of advertising on search engines using paid keyword research [100]. |
Variables | Levene’s Test for Equality of Variances Significance | t-Test for Equality of Means | ||
---|---|---|---|---|
Significance (2-Tailed) | Mean Difference | Standard Error Difference | ||
Global Ranking | 0.878 | * 0.000 | 1403.183 | 282.934 |
Organic traffic | 0.000 | * 0.000 | −653,489.883 | 1,102,043.342 |
Paid Traffic | 0.765 | 0.776 | 9925.083 | 34,413.750 |
Branded Traffic | 0.376 | * 0.000 | −4,211,666.667 | 716,990.941 |
Non-Branded Traffic | 0.000 | * 0.015 | 1,459,846.667 | 508,017.106 |
Organic Keywords | 0.000 | * 0.000 | −298,472.200 | 33,348.217 |
Paid Keywords | 0.150 | 0.730 | −207.300 | 591.305 |
Variables | Levene’s Test for Equality of Variances Significance | t-Test for Equality of Means | ||
---|---|---|---|---|
Significance (2-Tailed) | Mean Difference | Standard Error Difference | ||
Global Ranking | 0.420 | * 0.029 | 605.267 | 258.399 |
Organic traffic | 0.003 | * 0.000 | 13,625,360.330 | 269,979.690 |
Paid Traffic | 0.011 | * 0.000 | −252,326.017 | 54,921.794 |
Branded Traffic | 0.113 | * 0.000 | −3,708,333.333 | 895,471.6324 |
Non-Branded Traffic | 0.044 | * 0.033 | −2,046,223.333 | 891,100.012 |
Organic Keywords | 0.003 | * 0.000 | −353,031.400 | 34,427.896 |
Paid Keywords | 0.412 | * 0.023 | 775.000 | 316.673 |
Variables | Levene’s Test for Equality of Variances Significance | t-Test for Equality of Means | ||
---|---|---|---|---|
Significance (2-Tailed) | Mean Difference | Standard Error Difference | ||
COVID Cases | 0.004 | * 0.019 | −637,015.504 | 235,857.027 |
Global Ranking | 0.312 | * 0.001 | −797.917 | 218.608 |
Organic traffic | 0.000 | * 0.000 | −7,421,870.450 | 107,941.892 |
Paid Traffic | 0.019 | * 0.000 | −262,251.100 | 55,755.428 |
Branded Traffic | 0.016 | * 0.557 | 503,333.333 | 843,394.416 |
Non-Branded Traffic | 0.000 | * 0.001 | −3,506,070.000 | 733,298.205 |
Organic Keywords | 0.142 | * 0.001 | −54,559.200 | 13,041.621 |
Paid Keywords | 0.001 | * 0.096 | 982.300 | 546.446 |
Variables | Levene’s Test for Equality of Variances Significance | t-Test for Equality of Means | ||
---|---|---|---|---|
Significance (2-Tailed) | Mean Difference | Standard Error Difference | ||
COVID Cases | 0.000 | * 0.000 | −816,999.621 | 74,792.737 |
Global Ranking | 0.463 | * 0.000 | −784.967 | 112.584 |
Organic traffic | 0.159 | 0.572 | −130,797.066 | 223,731.854 |
Paid Traffic | 0.280 | 0.335 | 100,600.067 | 99,285.677 |
Branded Traffic | 0.000 | * 0.019 | −3,430,000.000 | 1,010,715.918 |
Non-Branded Traffic | 0.001 | * 0.020 | 3,486,570.000 | 1,070,762.347 |
Organic Keywords | 0.002 | 0.122 | −36,335.267 | 20,078.535 |
Paid Keywords | 0.055 | 0.972 | 11.9333 | 329.121 |
COVID 2nd 12-Month Period (N = 12) | ||||||||
---|---|---|---|---|---|---|---|---|
COVID-19 CASES | GLOBAL RANKING | ORGANIC TRAFFIC | BRANDED TRAFFIC | NON BRANDED TRAFFIC | ORGANIC KEYWORD | PAID KEYWORD | PAID TRAFFIC | |
COVID-19 CASES | 1 | * 0.614 | ** 0.823 | ** −0.817 | ||||
GLOBAL RANKING | * 0.614 | 1 | ** 0.766 | * −0.732 | ||||
ORGANIC TRAFFIC | 1 | ** 0.721 | ||||||
BRANDED TRAFFIC | ** 0.823 | ** 0.766 | 1 | ** −0.994 | ||||
NON BRANDED TRAFFIC | ** −0.817 | * −0.732 | ** −0.994 | 1 | ||||
ORGANIC KEYWORD | ** 0.721 | 1 | ||||||
PAID KEYWORD | 1 | |||||||
PAID TRAFFIC | 1 |
COVID 2nd 12-Month Period/1st Semi-Period (N = 6) | ||||||||
---|---|---|---|---|---|---|---|---|
COVID-19 CASES | GLOBAL RANKING | ORGANIC TRAFFIC | BRANDED TRAFFIC | NON BRANDED TRAFFIC | ORGANIC KEYWORD | PAID KEYWORD | PAID TRAFFIC | |
COVID-19 CASES | 1 | |||||||
GLOBAL RANKING | 1 | |||||||
ORGANIC TRAFFIC | 1 | ** 0.950 | * 0.828 | |||||
BRANDED TRAFFIC | 1 | * −0.839 | ||||||
NON BRANDED TRAFFIC | ** 0.950 | * −0.839 | 1 | |||||
ORGANIC KEYWORD | 1 | * 0.895 | ||||||
PAID KEYWORD | * 0.828 | * 0.895 | 1 | |||||
PAID TRAFFIC | 1 |
Pearson Correlation COVID 2nd 12-Month Period/2nd Semi-Period (N = 6) | ||||||||
---|---|---|---|---|---|---|---|---|
COVID-19 CASES | GLOBAL RANKING | ORGANIC TRAFFIC | BRANDED TRAFFIC | NON BRANDED TRAFFIC | ORGANIC KEYWORD | PAID KEYWORD | PAID TRAFFIC | |
COVID-19 CASES | 1 | * 0.747 | * −0.736 | |||||
GLOBAL RANKING | 1 | ** −0.964 | ** 0.929 | |||||
ORGANIC TRAFFIC | 1 | |||||||
BRANDED TRAFFIC | * 0.747 | 1 | ** −0.994 | |||||
NON BRANDED TRAFFIC | * −0.736 | ** −0.994 | 1 | |||||
ORGANIC KEYWORD | 1 | |||||||
PAID KEYWORD | ** −0.964 | 1 | * −0.841 | |||||
PAID TRAFFIC | ** 0.929 | * −0.841 | 1 |
Months | Second Period COVID-19 Cases | Branded Traffic | Non Branded Traffic | Global Ranking | Paid Traffic | Paid Keyword |
---|---|---|---|---|---|---|
1 | 567.91 | 169.73 | 157.01 | 169.51 | 131.19 | 116.25 |
2 | 764.04 | 271.29 | 171.57 | 266.47 | 145.90 | 130.53 |
3 | 907.63 | 381.05 | 165.34 | 362.99 | 152.05 | 142.89 |
4 | 1012.74 | 496.81 | 149.86 | 453.97 | 153.75 | 153.34 |
5 | 1089.70 | 617.20 | 131.19 | 537.37 | 153.16 | 161.95 |
6 | 1146.04 | 741.28 | 112.41 | 612.64 | 151.41 | 168.73 |
7 | 1187.29 | 868.37 | 94.97 | 680.03 | 149.07 | 173.74 |
8 | 1217.48 | 997.96 | 79.48 | 740.11 | 146.46 | 176.99 |
9 | 1239.59 | 1129.62 | 66.06 | 793.57 | 143.74 | 178.53 |
10 | 1255.77 | 1263.03 | 54.65 | 841.11 | 140.98 | 178.40 |
11 | 1267.62 | 1397.88 | 45.05 | 883.41 | 138.23 | 176.62 |
12 | 1276.30 | 1533.94 | 37.03 | 921.07 | 135.51 | 173.23 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sakas, D.P.; Kamperos, I.D.G.; Terzi, M.C. The Long-Term Risk Familiarity Effect on Courier Services’ Digital Branding during the COVID-19 Crisis. J. Theor. Appl. Electron. Commer. Res. 2022, 17, 1655-1684. https://doi.org/10.3390/jtaer17040084
Sakas DP, Kamperos IDG, Terzi MC. The Long-Term Risk Familiarity Effect on Courier Services’ Digital Branding during the COVID-19 Crisis. Journal of Theoretical and Applied Electronic Commerce Research. 2022; 17(4):1655-1684. https://doi.org/10.3390/jtaer17040084
Chicago/Turabian StyleSakas, Damianos P., Ioannis Dimitrios G. Kamperos, and Marina C. Terzi. 2022. "The Long-Term Risk Familiarity Effect on Courier Services’ Digital Branding during the COVID-19 Crisis" Journal of Theoretical and Applied Electronic Commerce Research 17, no. 4: 1655-1684. https://doi.org/10.3390/jtaer17040084
APA StyleSakas, D. P., Kamperos, I. D. G., & Terzi, M. C. (2022). The Long-Term Risk Familiarity Effect on Courier Services’ Digital Branding during the COVID-19 Crisis. Journal of Theoretical and Applied Electronic Commerce Research, 17(4), 1655-1684. https://doi.org/10.3390/jtaer17040084