Compressive Sensing-Based IoT Applications: A Review
Abstract
:1. Introduction
2. IoT Framework
3. Compressive Sensing Overview
3.1. Mathematical Overview
3.2. Sensing Matrix
- Optimal or near-optimal reconstruction performance: The measured data maintain the salient information of the signal for reconstruction purposes.
- Optimized sensing performance: Only a few measurements are required to obtain an optimal (near-optimal) recovery.
- Universality: The sensing matrix maintains a low coherence with almost all sparsifying matrices.
- Low complexity, fast computation and structure-based processing: These features of the sensing matrix are desired for large-scale, real-time sensing applications.
- Hardware friendly: Easy and efficient implementation on hardware is necessary.
3.3. Reconstruction Algorithms
3.3.1. Convex Optimization
3.3.2. Greedy Algorithms
3.4. Distributed Compressive Sensing
4. CS-Based IoT Applications
4.1. Sensing Layer
4.1.1. Adaptive Measurements
4.1.2. Weighted Measurements
4.1.3. CS-Based Data Gathering
4.1.4. Sparse Networks
4.1.5. CS-Based Routing Protocols
4.2. Processing Layer
4.3. Application Layer
4.3.1. Multi-User Detection and Identification
4.3.2. CS-Based Cloud Storage
4.3.3. Mobile Crowd Sensing
4.3.4. Traffic Monitoring
5. Challenges and Research Trends
5.1. CS Encoder Design
- Analog CS [143,144] represents the hardware implementation of the CS acquisition model (Equation (1)) in which the signals are acquired at the sub-Nyquist rate. The CS-based acquired signal is the inner product between the input signal and M random vectors. In fact, the analog CS encoder is designed using random modulator (RM) [145]. The RM is implemented using a mixer, an integrator, and an analog to digital converter (ADC). The mixer performs the inner product between the signal and the measurement matrix in a sub-Nyquist rate. The integrator accumulates the output voltage of the mixer, and it has to be reset after each sample is taken. Finally, the signal is sampled at rate 1/M using the ADC. For more illustrations and implementations, the reader can refer to [146,147].
- Digital CS is performed by sampling the input signal following the Shannon–Nyquist theorem, and then performing M random modulation. In addition, a non-uniform sampler (NUS) [148] technique can be used, where the CS encoder picks an M samples randomly from the whole N dimension vector after the digital conversion. The NUS can be seen as an RM modulator with binary sensing matrix with elements .
- Bellasi et al. [37] examined the implementation of both analog and digital encoders and showed that an inexpensive and energy-efficient digital logic is most suitable to implement CS-based data reduction. Moreover, they investigated two scenarios that can occur often in WSN. In the first scenario, the energy consumption of storage/transmission is dominating the total power balance, thus the superior compression performance of analog CS leads to a significant advantage over digital CS. Instead, in scenarios where signal acquisition and processing are dominant, digital encoders are indeed more energy-efficient. The results hold great promises to extend CS application of CS encoder from small WSNs to massive IoT platforms.
5.2. Structured Sensing Matrix
5.3. Implementation on Multi-Core Platforms
5.4. Data Security
6. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Alaba, F.A.; Othman, M.; Hashem, I.A.T.; Alotaibi, F. Internet of things security: A survey. J. Netw. Comput. Appl. 2017, 88, 10–28. [Google Scholar] [CrossRef]
- Kortuem, G.; Kawsar, F.; Sundramoorthy, V.; Fitton, D. Smart objects as building blocks for the Internet of things. IEEE Internet Comput. 2010, 14, 44–51. [Google Scholar] [CrossRef] [Green Version]
- Holler, J.; Tsiatsis, V.; Mulligan, C.; Avesand, S.; Karnouskos, S.; Boyle, D. From Machine-to-Machine to the Internet of Things: Introduction to a New Age of Intelligence; Academic Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Lazarescu, M.T. Design of a WSN platform for long-term environmental monitoring for IoT applications. IEEE J. Emerg. Sel. Top. Circuits Syst. 2013, 3, 45–54. [Google Scholar] [CrossRef]
- Yang, G.; Xie, L.; Mäntysalo, M.; Zhou, X.; Pang, Z.; Da Xu, L.; Kao-Walter, S.; Chen, Q.; Zheng, L.R. A health-iot platform based on the integration of intelligent packaging, unobtrusive bio-sensor, and intelligent medicine box. IEEE Trans. Ind. Inform. 2014, 10, 2180–2191. [Google Scholar] [CrossRef]
- Donoho, D.L. Compressed sensing. IEEE Trans. Inf. Theory 2006, 52, 1289–1306. [Google Scholar] [CrossRef]
- Candès, E.J.; Romberg, J.; Tao, T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 2006, 52, 489–509. [Google Scholar] [CrossRef]
- Zhang, Z.; Jung, T.P.; Makeig, S.; Rao, B.D. Compressed sensing for energy-efficient wireless telemonitoring of noninvasive fetal ECG via block sparse Bayesian learning. IEEE Trans. Biomed. Eng. 2013, 60, 300–309. [Google Scholar] [CrossRef] [PubMed]
- Jaspan, O.N.; Fleysher, R.; Lipton, M.L. Compressed sensing MRI: A review of the clinical literature. Br. J. Radiol. 2015, 88, 20150487. [Google Scholar] [CrossRef] [PubMed]
- Djelouat, H.; Baali, H.; Amira, A.; Bensaali, F. IoT Based Compressive Sensing for ECG Monitoring. In Proceedings of the 2017 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), Exeter, UK, 21–23 June 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 183–189. [Google Scholar]
- Djelouat, H.; Baali, H.; Amira, A.; Bensaali, F. An Adaptive Joint Sparsity Recovery for Compressive Sensing Based EEG System. Wirel. Commun. Mob. Comput. 2017, 2017, 9823684. [Google Scholar] [CrossRef]
- Djelouat, H.; Zhai, X.; Al Disi, M.; Amira, A.; Bensaali, F. System-on-Chip Solution for Patients Biometric: A Compressive Sensing-Based Approach. IEEE Sens. J. 2018. [Google Scholar] [CrossRef]
- Duarte-Carvajalino, J.M.; Sapiro, G. Learning to sense sparse signals: Simultaneous sensing matrix and sparsifying dictionary optimization. IEEE Trans. Image Process. 2009, 18, 1395–1408. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Da Xu, L.; Wang, X. Compressed sensing signal and data acquisition in wireless sensor networks and Internet of things. IEEE Trans. Ind. Inform. 2013, 9, 2177–2186. [Google Scholar] [CrossRef]
- Karakus, C.; Gurbuz, A.C.; Tavli, B. Analysis of energy efficiency of compressive sensing in wireless sensor networks. IEEE Sens. J. 2013, 13, 1999–2008. [Google Scholar] [CrossRef]
- Fazel, F.; Fazel, M.; Stojanovic, M. Random access compressed sensing for energy-efficient underwater sensor networks. IEEE J. Sel. Areas Commun. 2011, 29, 1660–1670. [Google Scholar] [CrossRef]
- ITU-T Y.2060: Overview of the Internet of Things; ITU: Geneva, Switzerland, 2012.
- Da Xu, L.; He, W.; Li, S. Internet of things in industries: A survey. IEEE Trans. Ind. Inform. 2014, 10, 2233–2243. [Google Scholar]
- Autili, M.; Inverardi, P.; Tivoli, M. Choreography realizability enforcement through the automatic synthesis of distributed coordination delegates. Sci. Comput. Program. 2018, 160, 3–29. [Google Scholar] [CrossRef]
- Zahariadis, T.; Papadimitriou, D.; Tschofenig, H.; Haller, S.; Daras, P.; Stamoulis, G.D.; Hauswirth, M. Towards a future Internet architecture. In The Future Internet Assembly; Springer: Beilin, Germany, 2011; pp. 7–18. [Google Scholar]
- Miorandi, D.; Sicari, S.; De Pellegrini, F.; Chlamtac, I. Internet of things: Vision, applications and research challenges. Ad Hoc Netw. 2012, 10, 1497–1516. [Google Scholar] [CrossRef]
- Domingo, M.C. An overview of the Internet of Things for people with disabilities. J. Netw. Comput. Appl. 2012, 35, 584–596. [Google Scholar] [CrossRef]
- Jia, X.; Feng, Q.; Fan, T.; Lei, Q. RFID technology and its applications in Internet of Things (IoT). In Proceedings of the 2012 2nd International Conference on Consumer Electronics, Communications and Networks (CECNet), Yichang, China, 21–23 April 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 1282–1285. [Google Scholar]
- Liu, C.H.; Yang, B.; Liu, T. Efficient naming, addressing and profile services in Internet-of-Things sensory environments. Ad Hoc Netw. 2014, 18, 85–101. [Google Scholar] [CrossRef]
- Wu, M.; Lu, T.J.; Ling, F.Y.; Sun, J.; Du, H.Y. Research on the architecture of Internet of things. In Proceedings of the 2010 3rd International Conference on Advanced Computer Theory and Engineering (ICACTE), Chengdu, China, 20–22 August 2010; IEEE: Piscataway, NJ, USA, 2010; Volume 5, pp. V5–V484. [Google Scholar]
- Al-Fuqaha, A.; Guizani, M.; Mohammadi, M.; Aledhari, M.; Ayyash, M. Internet of things: A survey on enabling technologies, protocols, and applications. IEEE Commun. Surv. Tutor. 2015, 17, 2347–2376. [Google Scholar] [CrossRef]
- Schaffers, H.; Komninos, N.; Pallot, M.; Trousse, B.; Nilsson, M.; Oliveira, A. Smart cities and the future Internet: Towards cooperation frameworks for open innovation. In The Future Internet Assembly; Springer: Beilin, Germany, 2011; pp. 431–446. [Google Scholar]
- Zanella, A.; Bui, N.; Castellani, A.; Vangelista, L.; Zorzi, M. Internet of things for smart cities. IEEE Internet Things J. 2014, 1, 22–32. [Google Scholar] [CrossRef]
- He, W.; Yan, G.; Da Xu, L. Developing vehicular data cloud services in the IoT environment. IEEE Trans. Ind. Inform. 2014, 10, 1587–1595. [Google Scholar] [CrossRef]
- Chunli, L. Intelligent transportation based on the Internet of things. In Proceedings of the 2012 2nd International Conference on Consumer Electronics, Communications and Networks (CECNet), Yichang, China, 21–23 April 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 360–362. [Google Scholar]
- Huang, L.; Liu, C. The application mode in urban transportation management based on Internet of things. In Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering, ICCSEE, Hangzhou, China, 22–23 March 2013; pp. 1226–1229. [Google Scholar]
- Ji, Z.; Anwen, Q. The application of Internet of things(IOT) in emergency management system in China. In Proceedings of the 2010 IEEE International Conference on Technologies for Homeland Security (HST), Waltham, MA, USA, 8–10 November 2010; pp. 139–142. [Google Scholar]
- Liu, Z.; Yan, T. Study on multi-view video based on IOT and its application in intelligent security system. In Proceedings of the 2013 International Conference on Mechatronic Sciences, Electric Engineering and Computer (MEC), Shenyang, China, 20–22 December 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 1437–1440. [Google Scholar]
- Chianese, A.; Piccialli, F. Designing a smart museum: When cultural heritage joins IoT. In Proceedings of the 2014 Eighth International Conference on Next Generation Mobile Apps, Services and Technologies (NGMAST), Oxford, UK, 10–12 September 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 300–306. [Google Scholar]
- Kos, A.; Sedlar, U.; Sterle, J.; Volk, M.; Bešter, J.; Bajec, M. Network monitoring applications based on IoT system. Network and Optical Communications (NOC). In Proceedings of the 18th European Conference on Network and Optical Communications (NOC 2013), 8th Conference on Optical Cabling and Infrastructure (OC&I 2013), Graz, Austria, 10–12 July 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 69–74. [Google Scholar]
- Chen, F.; Chandrakasan, A.P.; Stojanovic, V.M. Design and analysis of a hardware-efficient compressed sensing architecture for data compression in wireless sensors. IEEE J. Solid-State Circuits 2012, 47, 744–756. [Google Scholar] [CrossRef]
- Bellasi, D.E.; Benini, L. Energy-efficiency analysis of analog and digital compressive sensing in wireless sensors. IEEE Trans. Circuits Syst. I Regul. Pap. 2015, 62, 2718–2729. [Google Scholar] [CrossRef]
- Donoho, D.L.; Huo, X. Uncertainty principles and ideal atomic decomposition. IEEE Trans. Inf. Theory 2001, 47, 2845–2862. [Google Scholar] [CrossRef] [Green Version]
- Muthukrishnan, S. Data Streams: Algorithms and Applications; Now Publishers Inc.: Delft, The Netherlands, 2005. [Google Scholar]
- Chen, S.S.; Donoho, D.L.; Saunders, M.A. Atomic decomposition by basis pursuit. SIAM J. Sci. Comput. 1998, 20, 33–61. [Google Scholar] [CrossRef]
- Candes, E.J. The restricted isometry property and its implications for compressed sensing. Comptes Rendus Math. 2008, 346, 589–592. [Google Scholar] [CrossRef]
- Candes, E.; Tao, T. The Dantzig selector: Statistical estimation when p is much larger than n. Ann. Stat. 2007, 35, 2313–2351. [Google Scholar] [CrossRef]
- Figueiredo, M.A.; Nowak, R.D.; Wright, S.J. Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems. IEEE J. Sel. Top. Signal Process. 2007, 1, 586–597. [Google Scholar] [CrossRef]
- Mallat, S.G.; Zhang, Z. Matching pursuits with time-frequency dictionaries. IEEE Trans. Signal Process. 1993, 41, 3397–3415. [Google Scholar] [CrossRef] [Green Version]
- Krstulovic, S.; Gribonval, R. MPTK: Matching pursuit made tractable. In Proceedings of the 2006 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Toulouse, France, 14–19 May 2006; IEEE: Piscataway, NJ, USA, 2006; Volume 3, p. III. [Google Scholar]
- Tropp, J.A.; Gilbert, A.C. Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inf. Theory 2007, 53, 4655–4666. [Google Scholar] [CrossRef]
- Needell, D.; Tropp, J.A. CoSaMP: Iterative signal recovery from incomplete and inaccurate samples. Appl. Comput. Harmon. Anal. 2009, 26, 301–321. [Google Scholar] [CrossRef]
- Dai, W.; Milenkovic, O. Subspace pursuit for compressive sensing signal reconstruction. IEEE Trans. Inf. Theory 2009, 55, 2230–2249. [Google Scholar] [CrossRef]
- Needell, D.; Vershynin, R. Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit. Found. Comput. Math. 2009, 9, 317–334. [Google Scholar] [CrossRef]
- Donoho, D.L.; Tsaig, Y.; Drori, I.; Starck, J.L. Sparse solution of underdetermined systems of linear equations by stagewise orthogonal matching pursuit. IEEE Trans. Inf. Theory 2012, 58, 1094–1121. [Google Scholar] [CrossRef]
- Liu, E.; Temlyakov, V.N. The orthogonal super greedy algorithm and applications in compressed sensing. IEEE Trans. Inf. Theory 2012, 58, 2040–2047. [Google Scholar] [CrossRef]
- Blanchard, J.D.; Tanner, J. Performance comparisons of greedy algorithms in compressed sensing. Numer. Linear Algebra Appl. 2015, 22, 254–282. [Google Scholar] [CrossRef]
- Cartis, C.; Thompson, A. A new and improved quantitative recovery analysis for iterative hard thresholding algorithms in compressed sensing. IEEE Trans. Inf. Theory 2015, 61, 2019–2042. [Google Scholar] [CrossRef]
- Foucart, S.; Rauhut, H. A Mathematical Introduction to Compressive Sensing; Birkhäuser: Basel, Switzerland, 2013; Volume 1. [Google Scholar]
- Avonds, Y.; Liu, Y.; Van Huffel, S. Simultaneous greedy analysis pursuit for compressive sensing of multi-channel ECG signals. In Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Chicago, IL, USA, 6–30 August 2014; IEEE: Piscataway, NJ, USA; pp. 6385–6388. [Google Scholar]
- Baron, D.; Duarte, M.F.; Wakin, M.B.; Sarvotham, S.; Baraniuk, R.G. Distributed compressive sensing. arXiv, 2009; arXiv:0901.3403. [Google Scholar]
- Tropp, J.A. Algorithms for simultaneous sparse approximation. Part II: Convex relaxation. Signal Process. 2006, 86, 589–602. [Google Scholar] [CrossRef] [Green Version]
- Tropp, J.A.; Gilbert, A.C.; Strauss, M.J. Algorithms for simultaneous sparse approximation. Part I: Greedy pursuit. Signal Process. 2006, 86, 572–588. [Google Scholar] [CrossRef]
- He, D.; Zeadally, S. An analysis of RFID authentication schemes for Internet of things in healthcare environment using elliptic curve cryptography. IEEE Internet Things J. 2015, 2, 72–83. [Google Scholar] [CrossRef]
- Rogers, A.; Jones, E.; Oleynikov, D. Radio frequency identification (RFID) applied to surgical sponges. Surg. Endosc. 2007, 21, 1235–1237. [Google Scholar] [CrossRef] [PubMed]
- Amendola, S.; Lodato, R.; Manzari, S.; Occhiuzzi, C.; Marrocco, G. RFID technology for IoT-based personal healthcare in smart spaces. IEEE Internet Things J. 2014, 1, 144–152. [Google Scholar] [CrossRef]
- Khan, M.S.; Islam, M.S.; Deng, H. Design of a reconfigurable RFID sensing tag as a generic sensing platform toward the future Internet of things. IEEE Internet Things J. 2014, 1, 300–310. [Google Scholar] [CrossRef]
- Attaran, A.; Rashidzadeh, R. Chipless Radio Frequency Identification Tag for IoT Applications. IEEE Internet Things J. 2016, 3, 1310–1318. [Google Scholar] [CrossRef]
- Islam, S.M.R.; Kwak, D.; Kabir, M.H.; Hossain, M.; Kwak, K.S. The Internet of Things for Health Care: A Comprehensive Survey. IEEE Access 2015, 3, 678–708. [Google Scholar] [CrossRef]
- Mainetti, L.; Patrono, L.; Vilei, A. Evolution of wireless sensor networks towards the Internet of things: A survey. In Proceedings of the 2011 19th International Conference on Software, Telecommunications and Computer Networks (SoftCOM), Split, Croatia, 15–17 September 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 1–6. [Google Scholar]
- Christin, D.; Reinhardt, A.; Mogre, P.S.; Steinmetz, R. Wireless sensor networks and the Internet of things: Selected challenges. In Proceedings of the 2009 8th GI/ITG Kuvs FachgesprÄch Drahtlose Sensornetze, Hamburg, Germany, 13–14 August 2009; pp. 31–34. [Google Scholar]
- Colitti, W.; Steenhaut, K.; De Caro, N. Integrating wireless sensor networks with the web. In Proceedings of the Extending Internet Low Power Lossy Netw (IP+ SN 2011), Chicago, IL, USA, 11 April 2011. [Google Scholar]
- Harrison, R.R.; Watkins, P.T.; Kier, R.J.; Lovejoy, R.O.; Black, D.J.; Greger, B.; Solzbacher, F. A Low-Power Integrated Circuit for a Wireless 100-Electrode Neural Recording System. IEEE J. Solid-State Circuits 2007, 42, 123–133. [Google Scholar] [CrossRef]
- Razzaque, M.A.; Bleakley, C.; Dobson, S. Compression in wireless sensor networks: A survey and comparative evaluation. ACM Trans. Sens. Netw. (TOSN) 2013, 10, 5. [Google Scholar] [CrossRef]
- Verma, N.; Shoeb, A.; Bohorquez, J.; Dawson, J.; Guttag, J.; Chandrakasan, A.P. A micro-power EEG acquisition SoC with integrated feature extraction processor for a chronic seizure detection system. IEEE J. Solid-State Circuits 2010, 45, 804–816. [Google Scholar] [CrossRef]
- Mamaghanian, H.; Khaled, N.; Atienza, D.; Vandergheynst, P. Compressed sensing for real-time energy-efficient ECG compression on wireless body sensor nodes. IEEE Trans. Biomed. Eng. 2011, 58, 2456–2466. [Google Scholar] [CrossRef] [PubMed]
- Gedik, B.; Liu, L.; Yu, P.S. ASAP: An Adaptive Sampling Approach to Data Collection in Sensor Networks. IEEE Trans. Parallel Distrib. Syst. 2007, 18, 1766–1783. [Google Scholar] [CrossRef]
- Abate, F.; Huang, V.K.L.; Monte, G.; Paciello, V.; Pietrosanto, A. A Comparison Between Sensor Signal Preprocessing Techniques. IEEE Sens. J. 2015, 15, 2479–2487. [Google Scholar] [CrossRef]
- Monte, G. Sensor signal preprocessing techniques for analysis and prediction. In Proceedings of the 2008 34th Annual Conference of IEEE Industrial Electronics, IECON 2008, Orlando, FL, USA, 11–13 November 2008; IEEE: Piscataway, NJ, USA, 2008; pp. 1788–1793. [Google Scholar]
- Monte, G.; Huang, V.; Liscovsky, P.; Marasco, D.; Agnello, A. Standard of things, first step: Understanding and normalizing sensor signals. In Proceedings of the 2013 39th Annual Conference of the IEEE Industrial Electronics Society, IECON, Vienna, Austria, 10–13 November 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 118–123. [Google Scholar]
- Fragkiadakis, A.; Charalampidis, P.; Tragos, E. Adaptive compressive sensing for energy efficient smart objects in IoT applications. In Proceedings of the 2014 4th International Conference on Wireless Communications, Vehicular Technology, Information Theory and Aerospace & Electronic Systems (VITAE), Aalborg, Denmark, 11–14 May 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 1–5. [Google Scholar]
- Charalampidis, P.; Fragkiadakis, A.G.; Tragos, E.Z. Rate-adaptive compressive sensing for iot applications. In Proceedings of the 2015 IEEE 81st Vehicular Technology Conference (VTC Spring), Glasgow, Scotland, 11–14 May 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 1–5. [Google Scholar]
- Peel, L.; Clauset, A. Detecting change points in the large-scale structure of evolving networks. arXiv, 2014; arXiv:1403.0989. [Google Scholar]
- Lee, H.; Oh, H.; Lee, S.; Bovik, A.C. Visually weighted compressive sensing: Measurement and reconstruction. IEEE Trans. Image Process. 2013, 22, 1444–1455. [Google Scholar] [PubMed]
- Lee, H.; Jo, S.K.; Lee, N.; Lee, H.W. A method for co-existing heterogeneous IoT environments based on compressive sensing. In Proceedings of the 2016 18th International Conference on Advanced Communication Technology (ICACT), Pyeongchang, Korea, 31 January–31 February 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 206–209. [Google Scholar]
- Luo, C.; Wu, F.; Sun, J.; Chen, C.W. Efficient Measurement Generation and Pervasive Sparsity for Compressive Data Gathering. IEEE Trans. Wirel. Commun. 2010, 9, 3728–3738. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Qi, X.; Wang, Y.; Moscibroda, T. Efficient data gathering using Compressed Sparse Functions. In Proceedings of the 2013 Proceedings IEEE INFOCOM, Turin, Italy, 14–19 April 2013; pp. 310–314. [Google Scholar]
- Xiang, L.; Luo, J.; Vasilakos, A. Compressed data aggregation for energy efficient wireless sensor networks. Proceedings of 2011 8th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks (SECON), Salt Lake City, UT, USA, 27–30 June 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 46–54. [Google Scholar]
- Liu, X.Y.; Zhu, Y.; Kong, L.; Liu, C.; Gu, Y.; Vasilakos, A.V.; Wu, M.Y. CDC: Compressive data collection for wireless sensor networks. IEEE Trans. Parallel Distrib. Syst. 2015, 26, 2188–2197. [Google Scholar] [CrossRef]
- Biswas, S.; Morris, R. Opportunistic routing in multi-hop wireless networks. ACM Sigcomm Comput. Commun. Rev. 2004, 34, 69–74. [Google Scholar] [CrossRef]
- Du, R.; Gkatzikis, L.; Fischione, C.; Xiao, M. Energy efficient sensor activation for water distribution networks based on compressive sensing. IEEE J. Sel. Areas Commun. 2015, 33, 2997–3010. [Google Scholar] [CrossRef]
- Chen, W.; Wassell, I.J. Optimized node selection for compressive sleeping wireless sensor networks. IEEE Trans. Veh. Technol. 2016, 65, 827–836. [Google Scholar] [CrossRef]
- Cao, D.Y.; Yu, K.; Zhuo, S.G.; Hu, Y.H.; Wang, Z. On the implementation of compressive sensing on wireless sensor network. In Proceedings of the 2016 IEEE First International Conference on Internet-of-Things Design and Implementation (IoTDI), Berlin, Germany, 4–8 April 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 229–234. [Google Scholar]
- Zhang, B.; Liu, Y.; He, J.; Zou, Z. An energy efficient sampling method through joint linear regression and compressive sensing. In Proceedings of the 2013 Fourth International Conference on Intelligent Control and Information Processing (ICICIP), Beijing, China, 9–11 June 2013; pp. 447–450. [Google Scholar]
- Lee, S.; Pattem, S.; Sathiamoorthy, M.; Krishnamachari, B.; Ortega, A. Compressed Sensing and Routing in Multi-Hop Networks; University of Southern California CENG Technical Report; University of Southern California: Los Angeles, CA, USA, 2009. [Google Scholar]
- Caione, C.; Brunelli, D.; Benini, L. Distributed compressive sampling for lifetime optimization in dense wireless sensor networks. IEEE Trans. Ind. Inform. 2012, 8, 30–40. [Google Scholar] [CrossRef]
- Masoum, A.; Meratnia, N.; Havinga, P.J. A distributed compressive sensing technique for data gathering in wireless sensor networks. Procedia Comput. Sci. 2013, 21, 207–216. [Google Scholar] [CrossRef]
- Zhang, B.; Mor, N.; Kolb, J.; Chan, D.S.; Lutz, K.; Allman, E.; Wawrzynek, J.; Lee, E.A.; Kubiatowicz, J. The Cloud is Not Enough: Saving IoT from the Cloud. In Proceedings of the HotCloud 2015, Santa Clara, CA, USA, 6–7 July 2015. [Google Scholar]
- Datta, S.K.; Bonnet, C.; Nikaein, N. An IoT gateway centric architecture to provide novel M2M services. In Proceedings of the 2014 IEEE World Forum on Internet of Things (WF-IoT), Seoul, Korea, 6–8 March 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 514–519. [Google Scholar]
- Piyare, R. Internet of things: Ubiquitous home control and monitoring system using android based smart phone. Int. J. Internet Things 2013, 2, 5–11. [Google Scholar]
- Samie, F.; Bauer, L.; Henkel, J. IoT technologies for embedded computing: A survey. In Proceedings of the 2016 International Conference on Hardware/Software Codesign and System Synthesis (CODES + ISSS), Pittsburgh, PA, USA, 2–7 October 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1–10. [Google Scholar]
- Brzoza-Woch, R.; Nawrocki, P. FPGA-Based Web Services–Infinite Potential or a Road to Nowhere? IEEE Internet Comput. 2016, 20, 44–51. [Google Scholar] [CrossRef]
- Septimus, A.; Steinberg, R. Compressive sampling hardware reconstruction. In Proceedings of the 2010 IEEE International Symposium on Circuits and Systems (ISCAS), Paris, France, 30 May–2 June 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 3316–3319. [Google Scholar]
- Stanislaus, J.L.; Mohsenin, T. High performance compressive sensing reconstruction hardware with QRD process. In Proceedings of the 2012 IEEE International Symposium on Circuits and Systems (ISCAS), Seoul, Korea, 20–23 May 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 29–32. [Google Scholar]
- Bai, L.; Maechler, P.; Muehlberghuber, M.; Kaeslin, H. High-speed compressed sensing reconstruction on FPGA using OMP and AMP. In Proceedings of the 2012 19th IEEE International Conference on Electronics, Circuits and Systems (ICECS), Seville, Spain, 9–12 December 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 53–56. [Google Scholar]
- Ren, F.; Dorrace, R.; Xu, W.; Marković, D. A single-precision compressive sensing signal reconstruction engine on FPGAs. In Proceedings of the 2013 23rd International Conference on Field Programmable Logic and Applications (FPL), Porto, Portugal, 2–4 September 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 1–4. [Google Scholar]
- Rabah, H.; Amira, A.; Mohanty, B.K.; Almaadeed, S.; Meher, P.K. FPGA implementation of orthogonal matching pursuit for compressive sensing reconstruction. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2015, 23, 2209–2220. [Google Scholar] [CrossRef]
- Kulkarni, A.; Jafari, A.; Shea, C.; Mohsenin, T. CS-based secured big data processing on FPGA. In Proceedings of the 2016 IEEE 24th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM), Washington, DC, USA, 1–3 May 2016; IEEE: Piscataway, NJ, USA, 2016; p. 201. [Google Scholar]
- Kulkarni, A.; Stanislaus, J.L.; Mohsenin, T. Parallel heterogeneous architectures for efficient omp compressive sensing reconstruction. In Proceedings of the 2014 SPIE Sensing Technology + Applications, International Society for Optics and Photonics, Baltimore, MD, USA, 5–9 May 2014; p. 91090G. [Google Scholar]
- Quan, Y.; Li, Y.; Gao, X.; Xing, M. FPGA Implementation of real-time Compressive Sensing with partial Fourier Dictionary. Int. J. Antennas Propag. 2016, 2016. [Google Scholar] [CrossRef]
- Borghi, A.; Darbon, J.; Peyronnet, S.; Chan, T.F.; Osher, S. A simple compressive sensing algorithm for parallel many-core architectures. J. Signal Process. Syst. 2013, 71, 1–20. [Google Scholar] [CrossRef]
- El-Sayed, M.; Koch, P.; Moullec, Y.L. Architectural design space exploration of an FPGA-based compressed sampling engine: Application to wireless heart-rate monitoring. In Proceedings of the 2015 Nordic Circuits and Systems Conference (NORCAS): NORCHIP International Symposium on System-on-Chip (SoC), Oslo, Norway, 26–28 October 2015; pp. 1–5. [Google Scholar]
- Yu, Z.; Su, J.; Yang, F.; Su, Y.; Zeng, X.; Zhou, D.; Shi, W. Fast compressive sensing reconstruction algorithm on FPGA using Orthogonal Matching Pursuit. In Proceedings of the 2016 IEEE International Symposium on Circuits and Systems (ISCAS), Montreal, QC, Canada, 22–25 May 2016; pp. 249–252. [Google Scholar]
- Kulkarni, A.; Mohsenin, T. Low Overhead Architectures for OMP Compressive Sensing Reconstruction Algorithm. IEEE Trans. Circuits Syst. I Regul. Pap. 2017, 64, 1468–1480. [Google Scholar] [CrossRef]
- Maechler, P.; Greisen, P.; Sporrer, B.; Steiner, S.; Felber, N.; Burg, A. Implementation of greedy algorithms for LTE sparse channel estimation. In Proceedings of the 2010 Conference Record of the Forty Fourth Asilomar Conference on Signals, Systems and Computers (ASILOMAR), Pacific Grove, CA, USA, 7–10 November 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 400–405. [Google Scholar]
- Fang, Y.; Chen, L.; Wu, J.; Huang, B. GPU implementation of orthogonal matching pursuit for compressive sensing. In Proceedings of the 2011 IEEE 17th International Conference on Parallel and Distributed Systems (ICPADS), Tainan, Taiwan, 7–9 December 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 1044–1047. [Google Scholar]
- Kulkarni, A.; Mohsenin, T. Accelerating compressive sensing reconstruction OMP algorithm with CPU, GPU, FPGA and domain specific many-core. In Proceedings of the 2015 IEEE International Symposium on Circuits and Systems (ISCAS), Lisbon, Portugal, 24–27 May 2015; pp. 970–973. [Google Scholar]
- Blache, P.; Rabah, H.; Amira, A. High level prototyping and FPGA implementation of the orthogonal matching pursuit algorithm. In Proceedings of the 2012 11th International Conference on Information Science, Signal Processing and their Applications (ISSPA), Montreal, QC, Canada, 2–5 July 2012; pp. 1336–1340. [Google Scholar]
- Zhu, H.; Giannakis, G.B. Exploiting sparse user activity in multiuser detection. IEEE Trans. Commun. 2011, 59, 454–465. [Google Scholar] [CrossRef]
- Schepker, H.F.; Dekorsy, A. Sparse multi-user detection for CDMA transmission using greedy algorithms. In Proceedings of the 2011 8th International Symposium on Wireless Communication Systems (ISWCS), Aachen, Germany, 6–9 November 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 291–295. [Google Scholar]
- Schepker, H.F.; Dekorsy, A. Compressive sensing multi-user detection with block-wise orthogonal least squares. In Proceedings of the 2012 IEEE 75th Vehicular Technology Conference (VTC Spring), Yokohama, Japan, 6–9 May 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 1–5. [Google Scholar]
- Choi, J. Joint device identification and data detection in physical layer for many devices in IoT. In Proceedings of the 2016 International Conference on Information and Communication Technology Convergence (ICTC), Jeju Island, Korea, 19–21 October 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 85–89. [Google Scholar]
- Choi, J. Two-Stage Multiple Access for Many Devices of Unique Identifications over Frequency-Selective Fading Channels. IEEE Internet Things J. 2016, 4, 16–171. [Google Scholar] [CrossRef]
- Choi, J. Sparse index multiple access for multi-carrier systems with precoding. J. Commun. Netw. 2016, 18, 439–445. [Google Scholar]
- Choi, J.W.; Shim, B. Sparse Detection of Non-Sparse Signals for Large-Scale Wireless Systems. arXiv, 2015; arXiv:1512.01683. [Google Scholar]
- Wang, B.; Mir, T.; Jiao, R.; Dai, L. Dynamic multi-user detection based on structured compressive sensing for IoT-oriented 5G systems. In Proceedings of the 2016 URSI Asia-Pacific Radio Science Conference (URSI AP-RASC), Seoul, Korea, 21–25 August 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 431–434. [Google Scholar]
- Liu, J.; Cheng, H.Y.; Liao, C.C.; Wu, A.Y.A. Scalable compressive sensing-based multi-user detection scheme for Internet-of-Things applications. In Proceedings of the 2015 IEEE Workshop on Signal Processing Systems (SiPS), Hangzhou, China, 14–16 October 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 1–6. [Google Scholar]
- Monsees, F.; Bockelmann, C.; Wübben, D.; Dekorsy, A. Sparsity aware multiuser detection for machine to machine communication. In Proceedings of the 2012 IEEE Globecom Workshops (GC Wkshps), Anaheim, CA, USA, 3–7 December 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 1706–1711. [Google Scholar]
- Bockelmann, C.; Schepker, H.F.; Dekorsy, A. Compressive sensing based multi-user detection for machine-to-machine communication. Trans. Emerg. Telecommun. Technol. 2013, 24, 389–400. [Google Scholar] [CrossRef]
- Swirszcz, G.; Abe, N.; Lozano, A.C. Grouped orthogonal matching pursuit for variable selection and prediction. In Proceedings of the 2009 Advances in Neural Information Processing Systems, Vancouver, BC, Canada, 7–10 December 2009; pp. 1150–1158. [Google Scholar]
- Anagnostopoulos, T.; Zaslavsy, A.; Medvedev, A.; Khoruzhnicov, S. Top—k Query Based Dynamic Scheduling for IoT-enabled Smart City Waste Collection. In Proceedings of the 2015 16th IEEE International Conference on Mobile Data Management, Pittsburgh, PA, USA, 15–18 June 2015; Volume 2, pp. 50–55. [Google Scholar]
- Zhang, J.; Yan, Y.; Chen, L.J.; Wang, M.; Moscibroda, T.; Zhang, Z. Impression Store: Compressive Sensing-based Storage for Big Data Analytics. In Proceedings of the HotCloud 2014, Philadelphia, PA, USA, 17–20 June 2014. [Google Scholar]
- Chen, Y.S.; Tsou, Y.T. Compressive Sensing-Based Adaptive Top-k Query over Compression Domain in Wireless Sensor Networks. In Proceedings of the 2017 IEEE Wireless Communications and Networking Conference (WCNC), San Francisco, CA, USA, 19–22 March 2017; pp. 1–6. [Google Scholar]
- Wang, L.; Zhang, D.; Wang, Y.; Chen, C.; Han, X.; M’hamed, A. Sparse mobile crowdsensing: challenges and opportunities. IEEE Commun. Mag. 2016, 54, 161–167. [Google Scholar] [CrossRef]
- Hsieh, H.P.; Lin, S.D.; Zheng, Y. Inferring air quality for station location recommendation based on urban big data. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Sydney, Australia, 10–13 August 2015; ACM: New York, NY, USA, 2015; pp. 437–446. [Google Scholar]
- Kong, L.; Xia, M.; Liu, X.Y.; Wu, M.Y.; Liu, X. Data loss and reconstruction in sensor networks. In Proceedings of the 2013 Proceedings IEEE INFOCOM, Turin, Italy, 14–19 April 2013; pp. 1654–1662. [Google Scholar]
- Wang, L.; Zhang, D.; Yang, D.; Lim, B.Y.; Ma, X. Differential location privacy for sparse mobile crowdsensing. In Proceedings of the 2016 IEEE 16th International Conference on Data Mining (ICDM), Barcelona, Spain, 12–15 December 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1257–1262. [Google Scholar]
- Wang, L.; Zhang, D.; Pathak, A.; Chen, C.; Xiong, H.; Yang, D.; Wang, Y. CCS-TA: Quality-guaranteed online task allocation in compressive crowdsensing. In Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, Osaka, Japan, 7–11 September 2015; ACM: New York, NY, USA, 2015; pp. 683–694. [Google Scholar]
- Chen, H.; Guo, B.; Yu, Z.; Chen, L.; Ma, X. A generic framework for constraint-driven data selection in mobile crowd photographing. IEEE Internet Things J. 2017, 4, 284–296. [Google Scholar] [CrossRef]
- Xu, L.; Hao, X.; Lane, N.D.; Liu, X.; Moscibroda, T. More with less: Lowering user burden in mobile crowdsourcing through compressive sensing. In Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, Osaka, Japan, 7–11 September 2015; ACM: New York, NY, USA, 2015; pp. 659–670. [Google Scholar]
- Yang, B.; Kaul, M.; Jensen, C.S. Using Incomplete Information for Complete Weight Annotation of Road Networks. IEEE Trans. Knowl. Data Eng. 2014, 26, 1267–1279. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, Z.; Zhu, H.; Li, M.; Zhang, Q. A compressive sensing approach to urban traffic estimation with probe vehicles. IEEE Trans. Mob. Comput. 2013, 12, 2289–2302. [Google Scholar] [CrossRef]
- Liu, Z.; Li, Z.; Li, M.; Xing, W.; Lu, D. Mining Road Network Correlation for Traffic Estimation via Compressive Sensing. IEEE Trans. Intell. Transp. Syst. 2016, 17, 1880–1893. [Google Scholar] [CrossRef]
- Najafabadi, M.M.; Villanustre, F.; Khoshgoftaar, T.M.; Seliya, N.; Wald, R.; Muharemagic, E. Deep learning applications and challenges in big data analytics. J. Big Data 2015, 2, 1. [Google Scholar] [CrossRef]
- Nguyen, M.T.; Teague, K.A. Compressive sensing based random walk routing in wireless sensor networks. Ad Hoc Netw. 2017, 54, 99–110. [Google Scholar] [CrossRef]
- Caione, C.; Brunelli, D.; Benini, L. Compressive sensing optimization for signal ensembles in WSNs. IEEE Trans. Ind. Inform. 2014, 10, 382–392. [Google Scholar] [CrossRef]
- Mamaghanian, H.; Khaled, N.; Atienza, D.; Vandergheynst, P. Design and exploration of low-power analog to information conversion based on compressed sensing. IEEE J. Emerg. Sel. Top. Circuits Syst. 2012, 2, 493–501. [Google Scholar] [CrossRef]
- Pareschi, F.; Albertini, P.; Frattini, G.; Mangia, M.; Rovatti, R.; Setti, G. Hardware-algorithms co-design and implementation of an analog-to-information converter for biosignals based on compressed sensing. IEEE Trans. Biomed. Circuits Syst. 2016, 10, 149–162. [Google Scholar] [CrossRef] [PubMed]
- Gangopadhyay, D.; Allstot, E.G.; Dixon, A.M.; Natarajan, K.; Gupta, S.; Allstot, D.J. Compressed sensing analog front-end for bio-sensor applications. IEEE J. Solid-State Circuits 2014, 49, 426–438. [Google Scholar] [CrossRef]
- Kirolos, S.; Laska, J.; Wakin, M.; Duarte, M.; Baron, D.; Ragheb, T.; Massoud, Y.; Baraniuk, R. Analog-to-information conversion via random demodulation. In Proceedings of the 2006 IEEE Dallas/CAS Workshop on Design, Applications, Integration and Software, Madrid, Spain, 29–30 October 2006; IEEE: Piscataway, NJ, USA, 2006; pp. 71–74. [Google Scholar]
- Chen, X.; Yu, Z.; Hoyos, S.; Sadler, B.M.; Silva-Martinez, J. A sub-Nyquist rate sampling receiver exploiting compressive sensing. IEEE Trans. Circuits Syst. I Regul. Pap. 2011, 58, 507–520. [Google Scholar] [CrossRef]
- Baheti, P.K.; Garudadri, H. An ultra low power pulse oximeter sensor based on compressed sensing. In Proceedings of the 2009 Sixth International Workshop on Wearable and Implantable Body Sensor Networks, BSN 2009, Berkeley, CA, USA, 3–5 June 2009; IEEE: Piscataway, NJ, USA, 2009; pp. 144–148. [Google Scholar]
- Candès, E.J.; Wakin, M.B. An introduction to compressive sampling. IEEE Signal Process. Mag. 2008, 25, 21–30. [Google Scholar] [CrossRef]
- Mendelson, S.; Pajor, A.; Tomczak-Jaegermann, N. Uniform uncertainty principle for Bernoulli and subgaussian ensembles. Constr. Approx. 2008, 28, 277–289. [Google Scholar] [CrossRef]
- Candes, E.J.; Tao, T. Near-optimal signal recovery from random projections: Universal encoding strategies? IEEE Trans. Inf. Theory 2006, 52, 5406–5425. [Google Scholar] [CrossRef]
- Davenport, M.A. Random Observations on Random Observations: Sparse Signal Acquisition and Processing. Ph.D. Thesis, Rice University, Houston, TX, USA, 2010. [Google Scholar]
- Ravelomanantsoa, A.; Rabah, H.; Rouane, A. Simple deterministic measurement matrix: Application to EMG signals. In Proceedings of the 2014 26th International Conference on Microelectronics (ICM), Doha, Qatar, 14–17 December 2014; pp. 76–79. [Google Scholar]
- Bah, B.; Tanner, J. Vanishingly sparse matrices and expander graphs, with application to compressed sensing. IEEE Trans. Inf. Theory 2013, 59, 7491–7508. [Google Scholar] [CrossRef]
- He, Z.; Ogawa, T.; Haseyama, M. The simplest measurement matrix for compressed sensing of natural images. In Proceedings of the 2010 IEEE International Conference on Image Processing, Hong Kong, China, 26–29 September 2010; pp. 4301–4304. [Google Scholar]
- Munir, A.; Gordon-Ross, A.; Ranka, S. Multi-core embedded wireless sensor networks: Architecture and applications. IEEE Trans. Parallel Distrib. Syst. 2014, 25, 1553–1562. [Google Scholar] [CrossRef]
- Murphy, M.; Alley, M.; Demmel, J.; Keutzer, K.; Vasanawala, S.; Lustig, M. Fast l1 SPIRiT Compressed Sensing Parallel Imaging MRI: Scalable Parallel Implementation and Clinically Feasible Runtime. IEEE Trans. Med Imaging 2012, 31, 1250–1262. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.H.; Ji, J. Compressed sensing MRI with multichannel data using multicore processors. Magn. Reson. Med. 2010, 64, 1135–1139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, D.S.; Gore, J.C.; Yankeelov, T.E.; Welch, E.B. Real-time compressive sensing MRI reconstruction using GPU computing and split Bregman methods. Int. J. Biomed. Imaging 2012, 2012. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Trzasko, J.; Smelyanskiy, M.; Haider, C.; Dubey, P.; Manduca, A. High-performance 3D compressive sensing MRI reconstruction using many-core architectures. J. Biomed. Imaging 2011, 2011, 2. [Google Scholar] [CrossRef] [PubMed]
- Bortolotti, D.; Mangia, M.; Bartolini, A.; Rovatti, R.; Setti, G.; Benini, L. Energy-Aware Bio-signal Compressed Sensing Reconstruction on the WBSN-gateway. IEEE Trans. Emerg. Top. Comput. 2016. [Google Scholar] [CrossRef]
- Rachlin, Y.; Baron, D. The secrecy of compressed sensing measurements. In Proceedings of the 2008 46th Annual Allerton Conference on Communication, Control, and Computing, Monticello, IL, USA, 23–26 September 2008; pp. 813–817. [Google Scholar]
- Kailkhura, B.; Liu, S.; Wimalajeewa, T.; Varshney, P.K. Measurement Matrix Design for Compressed Detection With Secrecy Guarantees. IEEE Wirel. Commun. Lett. 2016, 5, 420–423. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, B.; Ren, K.; Roveda, J.M.; Chen, C.W.; Xu, Z. A privacy-aware cloud-assisted healthcare monitoring system via compressive sensing. In Proceedings of the 2014 IEEE INFOCOM, Toronto, ON, Canada, 27 April–2 May 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 2130–2138. [Google Scholar]
- Peng, H.; Tian, Y.; Kurths, J.; Li, L.; Yang, Y.; Wang, D. Secure and Energy-Efficient Data Transmission System Based on Chaotic Compressive Sensing in Body-to-Body Networks. IEEE Trans. Biomed. Circuits Syst. 2017, 11, 558–573. [Google Scholar] [CrossRef] [PubMed]
- Hu, P.; Xing, K.; Cheng, X.; Wei, H.; Zhu, H. Information leaks out: Attacks and countermeasures on compressive data gathering in wireless sensor networks. In Proceedings of the 2014 IEEE INFOCOM, Toronto, ON, Canada, 27 April–2 May 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 1258–1266. [Google Scholar] [Green Version]
- Singh, S.; Jeong, Y.S.; Park, J.H. A survey on cloud computing security: Issues, threats, and solutions. J. Netw. Comput. Appl. 2016, 75, 200–222. [Google Scholar] [CrossRef]
- Wu, X.; Yang, P.; Tang, S.; Zheng, X.; Xiong, Y. Privacy preserving RSS map generation for a crowdsensing network. IEEE Wirel. Commun. 2015, 22, 42–48. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, B.; Ren, K.; Roveda, J.M. Privacy-Assured Outsourcing of Image Reconstruction Service in Cloud. IEEE Trans. Emerg. Top. Comput. 2013, 1, 166–177. [Google Scholar] [CrossRef]
- Kang, L.W.; Muchtar, K.; Wei, J.D.; Lin, C.Y.; Chen, D.Y.; Yeh, C.H. Privacy-preserving multimedia cloud computing via compressive sensing and sparse representation. In Proceedings of the 2012 International Conference on Information Security and Intelligence Control (ISIC), Yunlin, Taiwan, 14–16 August 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 246–249. [Google Scholar]
- Wang, Q.; Zeng, W.; Tian, J. A compressive sensing based secure watermark detection and privacy preserving storage framework. IEEE Trans. Image Process. 2014, 23, 1317–1328. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhou, J.; Zhang, L.Y.; Chen, F.; Lei, X. Support-set-assured parallel outsourcing of sparse reconstruction service for compressive sensing in multi-clouds. In Proceedings of the 2015 International Symposium on Security and Privacy in Social Networks and Big Data (SocialSec), Hangzhou, China, 16–18 November 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 1–6. [Google Scholar]
- Jyothish, L.G.; Veena, V.; Soman, K. A cryptographic approach to video watermarking based on compressive sensing, arnold transform, sum of absolute deviation and SVD. In Proceedings of the 2013 Annual International Conference on Emerging Research Areas and 2013 International Conference on Microelectronics, Communications and Renewable Energy (AICERA/ICMiCR), Kerala, India, 4–6 June 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 1–5. [Google Scholar]
- Bianchi, T.; Bioglio, V.; Magli, E. Analysis of one-time random projections for privacy preserving compressed sensing. IEEE Trans. Inf. Forensics Secur. 2016, 11, 313–327. [Google Scholar] [CrossRef]
IoT Layer | Description |
---|---|
Sensing layer | Collect physical data entities (temperature, ECG blood pressure) using different sensors and convert the collected measurements into digital signal. |
Processing layer | The Processing Layer provides mainly transient data storage for the data received from the sensors and performs local data processing, executes real-time actions, and up-links the data to the cloud. |
Application layer | The task of the Application Layer is based on the information routed from the processing layer to perform data analysis and develops diverse IoT services. |
Algorithm | Minimum Number of Measurements | Complexity |
---|---|---|
BP | ||
OMP | ||
CoSaMP | ||
SP | ||
Stagewise OMP | ) |
References | Platform | Data Size | Reconstruction Time | Max Frequency (MHz) |
---|---|---|---|---|
[100] | FPGA (Virtex6) | 512 | 360 s | 100 |
[99] | FPGA (Virtex5) | 128 × 128 | 13.7 s | 165 |
[105] | FPGA (Virtex7) | 128 | 391.8 s | 165 |
[101] | FPGA (Kintex-7) | 1024 | 39.9 s | 53.7 |
[104] | FPGA (Virtex5) | 256 × 256 | 9.32 s | N/A |
[102] | FPGA (Virtex6) | 1024 | 340 s | 119 |
[109] | ASIC | 256 | 10.17 s | 196 |
[113] | GPU (NVIDIA GTX480) | 81922 | 15 ms | N/A |
IoT Layer | Approach | Features | Main Attribute |
---|---|---|---|
Sensing Layer | Adaptive measurements [76,77] | Optimize CF value | • Sparsity change detection based on QoS [76] |
• Sparsity change detection using CPM [77] | |||
CS-based sparse | Energy efficiency | • Alternate the selection of the active sensors at each time slot [86] | |
Networking [86,87,88,89] | High reconstruction quality | • Nodes activation based on data reconstruct in the previous time slot [87] | |
• Divide network into clusters, each with only one single reference node [89]. | |||
Weighted measurements [79,80] | Optimize CF value | • Applicable on heterogeneous IoT platform | |
• Assign for each sensor a CF value depending on its importance in the application | |||
CS-based data gathering [81,83,90,92] | Data gathering | • CDG for multi-hope: Compress and route to the next node [81] | |
Low communication cost | • CSF: each node sparsifies the data and route the sparse functions to the sink [82] | ||
Low error rate | • (MECDA) approach: select the best route that consumes the minimum power [83]. | ||
• CDC: each sensor selects its route based on opportunistic routing protocols [84]. | |||
CS-based Routing [90,91,92,140] | Extend nodes lifetime Better signal quality | • Build routing path by choosing sensing matrix that minimize the coherence with sparsyfing basis [90] | |
• Utilize BP algorithm to recover the ensemble measurements [92] | |||
• Build the Sensing matrix by minimizing the coherence | |||
• Hybrid routing approach using PF and DCS [91] | |||
• Random walk (RN)with DCS [140] | |||
Processing Layer | FPGA-based OMP | Fast execution | • Adopt Q-R decomposition (QRD) to solve the LS problem [99] |
implementation | • Implement a parallel vector multiplication unit (VMU) to solve LS problem [100] | ||
[99,100,102,103,104,105,106,107,108,109] | High performance | • Cholesky factorization method to solve the LS problem to [102] | |
• FFT approach to perform the correlation operation (coefficients selection) [105] | |||
CPU/GPU-based | Easy implementation | • Matrix inversion update method [111] | |
OMP implementation | • LU decomposition for solving the LS problem [112] | ||
[99,110,111,112] | |||
Application layer | Multi-user detection [114,115,116,117,118,120,121] | Active users identification Enhance data detection | • User detection in networks with CDMA based transmission [114,115,116] |
• Joint identification and detection in massive IoT with MC-CDMA [117,118,120,121] | |||
Cloud data Storing | Efficient storage | • CS-based Top-k query data retrieval approach [127] | |
[126,127,128] | • A 2-stage compression architecture [128] | ||
Traffic Monitoring [136,137,138] | Reduce number of required probes | • Multiple linear regression (MLR) mode based on CS to estimate the entire road traffic from a small set of measurements | |
low cost | • Explore the correlation between the road status to reduce required probe of entire road map estimation | ||
Sparse MCS | Low cost Reduce energy expenditure User privacy | • Allocate small of cells with specific monitoring tasks | |
[89,132,133,134,135] | • Estimate the whole cell ensemble information from the small set of collected data | ||
• User privacy enforcement [132] | |||
• Reduce number of required participants for data collection [135] | |||
• Minimize the number of cells to collect information [133,134] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Djelouat, H.; Amira, A.; Bensaali, F. Compressive Sensing-Based IoT Applications: A Review. J. Sens. Actuator Netw. 2018, 7, 45. https://doi.org/10.3390/jsan7040045
Djelouat H, Amira A, Bensaali F. Compressive Sensing-Based IoT Applications: A Review. Journal of Sensor and Actuator Networks. 2018; 7(4):45. https://doi.org/10.3390/jsan7040045
Chicago/Turabian StyleDjelouat, Hamza, Abbes Amira, and Faycal Bensaali. 2018. "Compressive Sensing-Based IoT Applications: A Review" Journal of Sensor and Actuator Networks 7, no. 4: 45. https://doi.org/10.3390/jsan7040045
APA StyleDjelouat, H., Amira, A., & Bensaali, F. (2018). Compressive Sensing-Based IoT Applications: A Review. Journal of Sensor and Actuator Networks, 7(4), 45. https://doi.org/10.3390/jsan7040045