Sensorless Estimation of Human Joint Torque for Robust Tracking Control of Lower-Limb Exoskeleton Assistive Gait Rehabilitation
<p>Conceptual design of the hip–knee human–exoskeleton system. The directions of the hip torque and knee torque are shown. The angles of rotations and direction of the rotations at the hip and knee were also shown. The <math display="inline"><semantics><mrow><msub><mi>τ</mi><mi>h</mi></msub><mfenced><mi>t</mi></mfenced></mrow></semantics></math> and <math display="inline"><semantics><mrow><msub><mi>τ</mi><mi>k</mi></msub><mfenced><mi>t</mi></mfenced></mrow></semantics></math> were the human-contributed hip and knee torques. These two joints’ torques are unknown and, therefore, can be estimated by the observer. <math display="inline"><semantics><mrow><msub><mi>M</mi><mn>1</mn></msub><mo>,</mo><mo> </mo><msub><mi>l</mi><mn>1</mn></msub><mrow><mo> </mo><mi>and</mi></mrow><mo> </mo><msub><mi>M</mi><mn>2</mn></msub><mo>,</mo><mo> </mo><msub><mi>l</mi><mn>2</mn></msub><mo> </mo></mrow></semantics></math> are the masses and lengths of the links connecting hip to knee and knee to ankle.</p> "> Figure 2
<p>Conceptual ISMC block diagram showing the equivalent and switching control. In addition, the nominal and actual system are also shown. <math display="inline"><semantics><mrow><mi>r</mi><mo>,</mo><mo> </mo><mi>x</mi><mo>,</mo><mo> </mo><mi>u</mi><mfenced><mi>t</mi></mfenced><mo>,</mo></mrow></semantics></math> are the reference hip/knee position input, the measured hip/knee position and the total control signal of the exoskeleton motors, respectively. The equivalent control which is designed to achieve desire positioning of the hip/knee is <math display="inline"><semantics><mrow><msub><mi>u</mi><mrow><mi>e</mi><mi>q</mi></mrow></msub><mo>=</mo><mi>K</mi><mi>x</mi><mfenced><mi>t</mi></mfenced><mo>+</mo><mi>N</mi><mi>r</mi><mfenced><mi>t</mi></mfenced></mrow></semantics></math>, <math display="inline"><semantics><mrow><mi>ϕ</mi><mfenced><mi>t</mi></mfenced></mrow></semantics></math> is the human torque which was considered as disturbance in this work, and <math display="inline"><semantics><mrow><msub><mi>u</mi><mrow><mi>s</mi><mi>w</mi></mrow></msub><mo>=</mo><mo>−</mo><mi>Γ</mi><mfenced><mi>t</mi></mfenced><mo>∗</mo><mrow><mi>tan</mi><mi mathvariant="normal">h</mi></mrow><mfenced><mrow><mi>s</mi><mfenced><mi>t</mi></mfenced></mrow></mfenced></mrow></semantics></math> is the switching control signal that addresses the disturbance rejections.</p> "> Figure 3
<p>Conceptual MESOISMC block diagram showing the Modified ISMC with ESO. The modification terms are <math display="inline"><semantics><mrow><mi>β</mi><mover accent="true"><mi>e</mi><mo stretchy="false">^</mo></mover></mrow></semantics></math>. This figure is the modification of <a href="#jsan-12-00053-f002" class="html-fig">Figure 2</a> which shows the cascade combination of the <span class="html-italic">MESOISMC</span> where <math display="inline"><semantics><mrow><mi>r</mi><mo>,</mo><mo> </mo><mi>x</mi><mo>,</mo><mo> </mo><mi>u</mi><mfenced><mi>t</mi></mfenced><mo> </mo></mrow></semantics></math> are the reference hip/knee position input, the measured hip/knee position, and the total control signal of the exoskeleton motors, respectively. The equivalent control which is designed to achieve desired positioning of the hip/knee is <math display="inline"><semantics><mrow><msub><mi>u</mi><mrow><mi>e</mi><mi>q</mi></mrow></msub><mo>=</mo><mi>K</mi><mi>x</mi><mfenced><mi>t</mi></mfenced><mo>+</mo><mi>N</mi><mi>r</mi><mfenced><mi>t</mi></mfenced></mrow></semantics></math>, <math display="inline"><semantics><mrow><mi>ϕ</mi><mfenced><mi>t</mi></mfenced></mrow></semantics></math> is the human torque, which was considered as disturbance in this work, and <math display="inline"><semantics><mrow><msub><mi>u</mi><mrow><mi>s</mi><mi>w</mi></mrow></msub><mo>=</mo><mo>−</mo><mi>Γ</mi><mfenced><mi>t</mi></mfenced><mo>∗</mo><mrow><mi>tanh</mi></mrow><mfenced><mrow><mi>s</mi><mfenced><mi>t</mi></mfenced></mrow></mfenced></mrow></semantics></math> is the switching control signal that addresses the disturbance rejections.</p> "> Figure 4
<p>Hip angle tracking. From the figure legend, the reference signal is the desire hip angle, MESOISMC is the tracking angle that resulted from the controlled effort of MESOISMC, and ISMC is the tracking angle achieved from the control effort of ISMC. From this figure, it can be observed that the MESOISMC has better tracking as compared to ISMC. It was observed in the ISMC response that there is a high position tracking error in this figure from 20 s to about 45 s, and later, from 60 s to 80 s. These would cause user discomfort or may injure the user.</p> "> Figure 5
<p>Knee angle tracking. Similarly, in this figure, the reference signal is the desire knee angle, MESOISMC is the tracking angle that resulted from the controlled effort of MESOISMC, and ISMC is the tracking angle achieved from the control effort of ISMC. From the tracking performance, it can be observed that the MESOISMC has better tracking as compared to ISMC. It was observed in this figure there is a high tracking error from 48 s to almost 70 s. This means the user’s knee was not properly tracking the exoskeleton knee motor movement.</p> "> Figure 6
<p>Hip angle tracking error. From this figure, the reader can clearly observe the tracking performance based on the controller with high tracking error. It is seen that the ISMC has the higher tracking error as compared to MESOISMC, which has an error close to zero. This validated the claim made in <a href="#jsan-12-00053-f004" class="html-fig">Figure 4</a> above.</p> "> Figure 7
<p>Knee angle tracking error. The tracking performance based on the controller with a high tracking error can clearly be seen from this figure. The ISMC has the higher tracking error as compared to MESOISMC. This validated the claim made in <a href="#jsan-12-00053-f005" class="html-fig">Figure 5</a> above.</p> "> Figure 8
<p>Hip and knee MAE values. This figure further illustrated the difference in the tracking performance based on the Mean Absolute Error of the MESOISMC and ISMC. The controller with lowest MAE has the high tracking performance.</p> "> Figure 9
<p>Estimated human hip torque. This figure shows the estimated human hip torques with MESOISMC and the formulated ISMC. The estimated torque using MESOISMC shows more accurate results based on the generated high torque at the beginning, which is true for intended motion.</p> "> Figure 10
<p>Estimated human knee torque. The estimated human knee torques is shown in this figure. The estimated torque using MESOISMC shows more accurate results based on the generated high torque at the beginning, which is true for intended motion; a high torque is generated to start walking, which gradually reduces as the motion changes from the stand phase to the swing phase.</p> "> Figure 11
<p>Hip input torque. The control signal is shown in this figure. It is observed that the MESOISMC has a high control signal. This was because of the modified term which helped create rapid convergence performance.</p> "> Figure 12
<p>Knee input torque. A similar case was observed in this figure, where the MESOISMC has high control signal as a result of the added term that modifies the controller effort in achieving rapid convergence performance.</p> "> Figure 13
<p>Estimated hip states <math display="inline"><semantics><mrow><msub><mover accent="true"><mi>x</mi><mo stretchy="false">^</mo></mover><mn>1</mn></msub><mfenced><mi>t</mi></mfenced><mo>,</mo><msub><mover accent="true"><mi>x</mi><mo stretchy="false">^</mo></mover><mn>2</mn></msub><mfenced><mi>t</mi></mfenced><mo>,</mo><mo> </mo><msub><mover accent="true"><mi>x</mi><mo stretchy="false">^</mo></mover><mn>3</mn></msub><mfenced><mi>t</mi></mfenced></mrow></semantics></math>. The estimated states are shown in this figure, and the three estimated parameters are the estimated hip angle position, hip angle velocity, and human hip torque. It can be observed that the estimated hip angle is similar to the desire hip angle shown in <a href="#jsan-12-00053-f004" class="html-fig">Figure 4</a>.</p> "> Figure 14
<p>Effects of different values of <math display="inline"><semantics><mrow><msub><mi>β</mi><mi>h</mi></msub></mrow></semantics></math> on the system performance. It can be observed from this figure that, with a small value of <math display="inline"><semantics><mrow><msub><mi>β</mi><mi>h</mi></msub></mrow></semantics></math>, there exists a steady state error, and when the value is high, it causes vibration/oscillation leading to unstable performance.</p> "> Figure 15
<p>Effects of different values of <math display="inline"><semantics><mrow><msub><mi>β</mi><mi>k</mi></msub></mrow></semantics></math> on the system performance. It can be observed from this figure that, with a small value of <math display="inline"><semantics><mrow><msub><mi>β</mi><mi>k</mi></msub></mrow></semantics></math>, there exists a steady state error, and when the value is high, it causes vibration/oscillation leading to unstable performance.</p> "> Figure 16
<p>Hip angle response for multiple cycles.</p> "> Figure 17
<p>Hip angle tracking error for multiple cycles.</p> "> Figure 18
<p>Knee angle response for multiple cycles.</p> "> Figure 19
<p>Knee angle tracking error for multiple cycles.</p> "> Figure 20
<p>Hip and knee MAE values from multiple cycles.</p> "> Figure 21
<p>Estimated human hip torque for multiple cycles.</p> "> Figure 22
<p>Estimated human knee torque for multiple cycles.</p> "> Figure 23
<p>Hip control signal for multiple cycles.</p> "> Figure 24
<p>Knee control signal for multiple cycles.</p> "> Figure 25
<p>Estimated states for multiple cycles.</p> "> Figure A1
<p>MATLAB Simulink diagram of the proposed controller.</p> ">
Abstract
:1. Introduction
2. Human–Exoskeleton Model and Control Design
2.1. Dynamic Model of Human Exoskeleton
2.2. Integral Sliding Mode Control (ISMC) Design
- Norms 1: rank .
3. Modified Extended State Observer Based Integral Sliding Mode Control
3.1. MESOISMC Design
3.2. Linear Matrix Inequality (LMI) Optimization
3.3. Stability Proof for MESOISMC
4. Implementation
5. Results and Discussions
6. Conclusion and Future Work
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Baud, R.; Manzoori, A.R.; Ijspeert, A.; Bouri, M. Review of control strategies for lower-limb exoskeletons to assist gait. J. Neuroeng. Rehabil. 2021, 18, 119. [Google Scholar] [CrossRef] [PubMed]
- Tiboni, M.; Borboni, A.; Vérité, F.; Bregoli, C.; Amici, C. Sensors and Actuation Technologies in Exoskeletons: A Review. Sensors 2022, 22, 884. [Google Scholar] [CrossRef] [PubMed]
- Campagnini, S.; Liuzzi, P.; Mannini, A.; Riener, R.; Carrozza, M.C. Effects of control strategies on gait in robot-assisted post-stroke lower limb rehabilitation: A systematic review. J. Neuroeng. Rehabil. 2022, 19, 52. [Google Scholar] [CrossRef]
- Shi, D.; Zhang, W.; Zhang, W.; Ding, X. A Review on Lower Limb Rehabilitation Exoskeleton Robots. Chin. J. Mech. Eng. 2019, 32, 74. [Google Scholar] [CrossRef] [Green Version]
- Deng, J.; Wang, P.; Li, M.; Guo, W.; Zha, F.; Wang, X. Structure design of active power-assist lower limb exoskeleton APAL robot. Adv. Mech. Eng. 2017, 9, 9. [Google Scholar] [CrossRef]
- Aftabi, H.; Nasiri, R.; Ahmadabadi, M.N. Simulation-based biomechanical assessment of unpowered exoskeletons for running. Sci. Rep. 2021, 11, 11846. [Google Scholar] [CrossRef]
- Chaichaowarat, R.; Macha, V.; Wannasuphoprasit, W. Passive Knee Exoskeleton Using Brake Torque to Assist Stair Ascent. In Proceedings of the 2020 IEEE Region 10 Conference (TENCON), Osaka, Japan, 16–19 November 2020; pp. 1165–1170. [Google Scholar] [CrossRef]
- Chaichaowarat, R.; Kinugawa, J.; Kosuge, K. Cycling-enhanced Knee Exoskeleton Using Planar Spiral Spring. In Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 18–21 July 2018; Volume 2018, pp. 1–6. [Google Scholar] [CrossRef]
- Ullah, Z.; Chaichaowarat, R.; Wannasuphoprasit, W. Variable Damping Actuator Using an Electromagnetic Brake for Impedance Modulation in Physical Human–Robot Interaction. Robotics 2023, 12, 80. [Google Scholar] [CrossRef]
- Gupta, A.; Al-Anbuky, A.; McNair, P. Activity Classification Feasibility Using Wearables: Considerations for Hip Fracture. J. Sens. Actuator Netw. 2018, 7, 54. [Google Scholar] [CrossRef] [Green Version]
- Prabhakar, A.J.; Prabhu, S.; Agrawal, A.; Banerjee, S.; Joshua, A.M.; Kamat, Y.D.; Nath, G.; Sengupta, S. Use of Machine Learning for Early Detection of Knee Osteoarthritis and Quantifying Effectiveness of Treatment Using Force Platform. J. Sens. Actuator Netw. 2022, 11, 48. [Google Scholar] [CrossRef]
- Pornpipatsakul, K.; Ajavakom, N. Estimation of Knee Assistive Moment in a Gait Cycle Using Knee Angle and Knee Angular Velocity through Machine Learning and Artificial Stiffness Control Strategy (MLASCS). Robotics 2023, 12, 44. [Google Scholar] [CrossRef]
- Gonçalves, R.S.; Rodrigues, L.A.O.; Humbert, R.; Carbone, G. A User-Friendly Nonmotorized Device for Ankle Rehabilitation. Robotics 2023, 12, 32. [Google Scholar] [CrossRef]
- Cheng, C.-A.; Huang, T.-H.; Huang, H.-P. Bayesian human intention estimator for exoskeleton system. In Proceedings of the 2013 IEEE/ASME Inter-national Conference on Advanced Intelligent Mechatronics, Wollongong, NSW, Australia, 9–12 July 2013; pp. 465–470. [Google Scholar] [CrossRef]
- Ullauri, J.B.; Peternel, L.; Ugurlu, B.; Yamada, Y.; Morimoto, J. On the EMG-based torque estimation for humans coupled with a force-controlled elbow exoskeleton. In Proceedings of the 2015 International Conference on Advanced Robotics (ICAR), 2015 International Conference on Advanced Robotics (ICAR), Istanbul, Turkey, 27–31 July 2015; pp. 302–307. [Google Scholar] [CrossRef]
- Gui, K.; Liu, H.; Zhang, D. A Practical and Adaptive Method to Achieve EMG-Based Torque Estimation for a Robotic Exoskeleton. IEEE/ASME Trans. Mechatron. 2019, 24, 483–494. [Google Scholar] [CrossRef]
- Nsugbe, E.; Al-Timemy, A.H. Shoulder girdle recognition using electrophysiological and low frequency anatomical contraction signals for prosthesis control. CAAI Trans. Intell. Technol. 2021, 7, 81–94. [Google Scholar] [CrossRef]
- Gopura, R.A.; Kiguchi, R.C.; Lalitharatne, K.; Zhang, T.D. EMG/EEG Signals-based Control of Assistive and Rehabilitation Robots. Front. Res. Top. 2022, 14, 840321. [Google Scholar] [CrossRef]
- Ferreira, A.; Celeste, W.C.; Cheein, F.A.; Bastos-Filho, T.F.; Sarcinelli-Filho, M.; Carelli, R. Human-machine interfaces based on EMG and EEG applied to robotic systems. J. Neuroeng. Rehabil. 2008, 5, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Liu, S.; Chang, Y.; Li, S.; Fan, Y.; Yu, H. A Human Joint Torque Estimation Method for Elbow Exoskeleton Control. Int. J. Humanoid Robot. 2020, 17, 1950039. [Google Scholar] [CrossRef]
- Fattah, A.; Agrawal, S.K.; Catlin, G.; Hamnett, J. Design of a Passive Gravity-Balanced Assistive Device for Sit-to-Stand Tasks. J. Mech. Des. 2005, 128, 1122–1129. [Google Scholar] [CrossRef]
- Fang, Q.; Li, G.; Xu, T.; Zhao, J.; Cai, H.; Zhu, Y. A Simplified Inverse Dynamics Modelling Method for a Novel Rehabilitation Exoskeleton with Parallel Joints and Its Application to Trajectory Tracking. Math. Probl. Eng. 2019, 2019, 4602035. [Google Scholar] [CrossRef]
- Arijit, A.; Pratihar, D.K. Inverse dynamics learned gait planning of an exoskeleton to negotiate uneven terrains using neural networks. Int. J. Hybrid Intell. Syst. 2016, 13, 49–62. [Google Scholar] [CrossRef]
- Cao, H.; Yin, Y.; Du, D.; Lin, L.; Gu, W.; Yang, Z. Neural-Network Inverse Dynamic Online Learning Control on Physical Exoskeleton. In Neural Information Processing, Processings of the 13th International Conference, ICONIP 2006, Hong Kong, China, 3–6 October 2006; Springer: Berlin/Heidelberg, Germany; Volume 4234, pp. 702–710. [CrossRef]
- Chen, W.-H.; Ballance, D.; Gawthrop, P.; O’Reilly, J. A nonlinear disturbance observer for robotic manipulators. IEEE Trans. Ind. Electron. 2000, 47, 932–938. [Google Scholar] [CrossRef] [Green Version]
- Chaichaowarat, R.; Nishimura, S.; Krebs, H.I. Macro-Mini Linear Actuator Using Electrorheological-Fluid Brake for Impedance Modulation in Physical Human–Robot Interaction. IEEE Robot. Autom. Lett. 2022, 7, 2945–2952. [Google Scholar] [CrossRef]
- Chaichaowarat, R.; Nishimura, S.; Krebs, H.I. Design and Modeling of a Variable-Stiffness Spring Mechanism for Impedance Modulation in Physical Human–Robot Interaction. Proc. IEEE Int. Conf. Robot. Autom. 2021, 2021, 7052–7057. [Google Scholar] [CrossRef]
- Chaichaowarat, R.; Nishimura, S.; Nozaki, T.; Krebs, H.I. Work in the Time of COVID-19: Actuators and Sensors for Rehabilitation Robotics. IEEJ J. Ind. Appl. 2022, 11, 256–265. [Google Scholar] [CrossRef]
- Nishimura, S.; Chaichaowarat, R.; Krebs, H.I. Human-Robot Interaction: Controller Design and Stability. In Proceedings of the 2020 8th IEEE RAS/EMBS International Conference for Biomedical Robotics and Biomechatronics (BioRob), New York, NY, USA, 29 November–1 December 2020. [Google Scholar] [CrossRef]
- Fang, B.; Zhou, Q.; Sun, F.; Shan, J.; Wang, M.; Xiang, C.; Zhang, Q. Gait Neural Network for Human-Exoskeleton Interaction. Front. Neurorobotics 2020, 14, 58. [Google Scholar] [CrossRef]
- Jung, J.-Y.; Heo, W.; Yang, H.; Park, H. A Neural Network-Based Gait Phase Classification Method Using Sensors Equipped on Lower Limb Exoskeleton Robots. Sensors 2015, 15, 27738–27759. [Google Scholar] [CrossRef] [PubMed]
- Fuentes-Alvarez, R.; Hernandez, J.H.; Matehuala-Moran, I.; Alfaro-Ponce, M.; Lopez-Gutierrez, R.; Salazar, S.; Lozano, R. Assistive robotic exoskeleton using recurrent neural networks for decision taking for the robust trajectory tracking. Expert Syst. Appl. 2022, 193, 116482. [Google Scholar] [CrossRef]
- Yu, J.; Zhang, S.; Wang, A.; Li, W.; Ma, Z.; Yue, X. Humanoid control of lower limb exoskeleton robot based on human gait data with sliding mode neural network. CAAI Trans. Intell. Technol. 2022, 7, 606–616. [Google Scholar] [CrossRef]
- Wang, J.; Liu, J.; Zhang, G.; Guo, S. Periodic event-triggered sliding mode control for lower limb exoskeleton based on human–robot cooperation. ISA Trans. 2021, 123, 87–97. [Google Scholar] [CrossRef]
- Kommuri, S.K.; Han, S.; Lee, S. External Torque Estimation Using Higher Order Sliding-Mode Observer for Robot Manipulators. IEEE/ASME Trans. Mechatron. 2021, 27, 513–523. [Google Scholar] [CrossRef]
- Javadi, A.; Chaichaowarat, R. Position and stiffness control of an antagonistic variable stiffness actuator with input delay using super-twisting sliding mode control. Nonlinear Dyn. 2022, 111, 5359–5381. [Google Scholar] [CrossRef]
- Han, S.; Wang, H.; Tian, Y. A linear discrete-time extended state observer-based intelligent PD controller for a 12 DOFs lower limb exoskeleton LLE-RePA. Mech. Syst. Signal Process. 2019, 138, 106547. [Google Scholar] [CrossRef]
- Zhao, J.; Yang, T.; Sun, X.; Dong, J.; Wang, Z.; Yang, C. Sliding mode control combined with extended state observer for an ankle exoskeleton driven by electrical motor. Mechatronics 2021, 76, 102554. [Google Scholar] [CrossRef]
- Long, Y.; Peng, Y. Extended State Observer-Based Nonlinear Terminal Sliding Mode Control with Feedforward Compensation for Lower Extremity Exoskeleton. IEEE Access 2022, 10, 8643–8652. [Google Scholar] [CrossRef]
- Han, Y.; Zhu, S.; Zhou, Y.; Gao, H. An admittance controller based on assistive torque estimation for a rehabilitation leg exoskeleton. Intell. Serv. Robot. 2019, 12, 381–391. [Google Scholar] [CrossRef]
- Liang, C.; Hsiao, T. Admittance Control of Powered Exoskeletons Based on Joint Torque Estimation. IEEE Access 2020, 8, 94404–94414. [Google Scholar] [CrossRef]
- Porras, D.C.; Jacobs, J.V.; Inzelberg, R.; Bahat, Y.; Zeilig, G.; Plotnik, M. Patterns of whole-body muscle activations following vertical perturbations during standing and walking. J. Neuroeng. Rehabil. 2021, 18, 75. [Google Scholar] [CrossRef]
- Akbas, T.; Kim, K.; Doyle, K.; Manella, K.; Lee, R.; Spicer, P.; Knikou, M.; Sulzer, J. Rectus femoris hyperreflexia contributes to Stiff-Knee gait after stroke. J. Neuroeng. Rehabil. 2020, 17, 117. [Google Scholar] [CrossRef]
- Labruyère, R. Robot-assisted gait training: More randomized controlled trials are needed! Or maybe not? J. Neuroeng. Rehabil. 2022, 19, 58. [Google Scholar] [CrossRef]
- Castanos, F.; Fridman, L. Analysis and design of integral sliding manifolds for systems with unmatched perturbations. IEEE Trans. Autom. Control 2006, 51, 853–858. [Google Scholar] [CrossRef] [Green Version]
- Feng, C.C. Integral Sliding-Based Robust Control, Recent Advances in Robust Control: Novel Approaches and Design Methods; Muller, A., Ed.; Intechopen: London, UK, 2011. [Google Scholar]
- Changcheng, C.; Li, Y.-R.; Chen, C.-T. Assistive Mobility Control of a Robotic Hip-Knee Exoskeleton for Gait Training. Sensors 2022, 22, 5045. [Google Scholar] [CrossRef]
- Abdullahi, A.; Mohamed, Z.; Selamat, H.; Pota, H.; Abidin, M.Z.; Fasih, S. Efficient control of a 3D overhead crane with simultaneous payload hoisting and wind disturbance: Design, simulation and experiment. Mech. Syst. Signal Process. 2020, 145, 106893. [Google Scholar] [CrossRef]
- Tanyildizi, A.K.; Yakut, O.; Tasar, B. Mathematical modeling and control of lower extremity exoskeleton. Biomed. Res. 2018, 29, 1947–1952. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Wang, J.; Li, W.; Wang, J.; Yang, P. A model-free control method for estimating the joint angles of the knee exoskeleton. Adv. Mech. Eng. 2018, 10, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Chaichaowarat, R.; Prakthong, S.; Thitipankul, S. Transformable Wheelchair–Exoskeleton Hybrid Robot for Assisting Human Locomotion. Robotics 2023, 12, 16. [Google Scholar] [CrossRef]
Parameter | Symbol | Magnitude | Units |
---|---|---|---|
Human Thigh length | l1 | 0.45 | m |
Human Shank length | l2 | 0.43 | m |
Exo-Thigh length | l3 | 0.45 | m |
Exo-Shank length | l4 | 0.43 | m |
Human Thigh Mass | m1 | 8 | kg |
Human Shank mass | m2 | 4 | kg |
Exo-Thigh mass | m3 | 1 | kg |
Exo-Shank mass | m4 | 1 | kg |
Gravitational acceleration | g | 9.81 | m/s2 |
Frequency | f | 0.16 | Hz |
Scaling Factor for Hip | 80 | none | |
Scaling Factor for Knee | 18 | none |
Parameters | Hip Reference | Knee Reference |
---|---|---|
9.092 | 9.092 | |
−20.86 | −3.99 | |
6.744 | −7.14 | |
5.021 | 8.030 | |
2.101 | 4.110 | |
−0.1416 | −4.141 | |
1.197 | 0.200 | |
−0.1299 | 0.013 | |
−0.2158 | 0.220 | |
0.06314 | 0.06314 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdullahi, A.M.; Chaichaowarat, R. Sensorless Estimation of Human Joint Torque for Robust Tracking Control of Lower-Limb Exoskeleton Assistive Gait Rehabilitation. J. Sens. Actuator Netw. 2023, 12, 53. https://doi.org/10.3390/jsan12040053
Abdullahi AM, Chaichaowarat R. Sensorless Estimation of Human Joint Torque for Robust Tracking Control of Lower-Limb Exoskeleton Assistive Gait Rehabilitation. Journal of Sensor and Actuator Networks. 2023; 12(4):53. https://doi.org/10.3390/jsan12040053
Chicago/Turabian StyleAbdullahi, Auwalu Muhammad, and Ronnapee Chaichaowarat. 2023. "Sensorless Estimation of Human Joint Torque for Robust Tracking Control of Lower-Limb Exoskeleton Assistive Gait Rehabilitation" Journal of Sensor and Actuator Networks 12, no. 4: 53. https://doi.org/10.3390/jsan12040053
APA StyleAbdullahi, A. M., & Chaichaowarat, R. (2023). Sensorless Estimation of Human Joint Torque for Robust Tracking Control of Lower-Limb Exoskeleton Assistive Gait Rehabilitation. Journal of Sensor and Actuator Networks, 12(4), 53. https://doi.org/10.3390/jsan12040053