Loitering Detection Using Spatial-Temporal Information for Intelligent Surveillance Systems on a Vision Sensor
<p>The proposed method flowchart.</p> "> Figure 2
<p>Algorithm for generating normal movements.</p> "> Figure 3
<p>Algorithm for generating abnormal movements.</p> "> Figure 4
<p>Movement simulation.</p> "> Figure 4 Cont.
<p>Movement simulation.</p> "> Figure 5
<p>Flowchart of the ViBe conservative update.</p> "> Figure 6
<p>Pixel classification using a circular area <math display="inline"><semantics> <mrow> <msub> <mi>S</mi> <mi>R</mi> </msub> <mrow> <mo>(</mo> <mi>v</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mrow> </semantics></math> in a two-dimensional Euclidean color space <math display="inline"><semantics> <mrow> <mo>(</mo> <msub> <mi>C</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>C</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> </semantics></math>.</p> "> Figure 7
<p>Example of moving object segmentation results with the ViBe conservative update.</p> "> Figure 8
<p>Tracking with particle filter.</p> "> Figure 9
<p>Example of normal and abnormal tracking.</p> "> Figure 9 Cont.
<p>Example of normal and abnormal tracking.</p> "> Figure 10
<p>Angular feature extraction visualization.</p> "> Figure 11
<p>Algorithm for calculating angle from two point.</p> "> Figure 12
<p>Algorithm for calculating angle from three point.</p> "> Figure 13
<p>Illustration of KNN method.</p> "> Figure 14
<p>Illustration of random forest method.</p> "> Figure 15
<p>Illustration of support vector machine.</p> "> Figure 16
<p>Experiment on data video using two and three points.</p> "> Figure 17
<p>Distance and angle measurement used in method [<a href="#B5-jsan-12-00009" class="html-bibr">5</a>].</p> ">
Abstract
:1. Introduction
- Proposing a novel feature extraction based on spatial and temporal information for loitering detection.
- Integrating the visual background extractor (ViBe) in human detection and tracking for better accuracy and processing time performance.
- Introducing the novel dataset containing comprehensive video for evaluating loitering detection.
2. The Proposed Framework
2.1. Data Acquisition
2.1.1. Augmented Data Acquisition for Training
2.1.2. Video Data Acquisition
2.2. Background Modeling
2.3. Human Detection and Tracking
2.4. Spatial-Temporal Feature Extraction
2.5. Decision of Loitering Event
2.5.1. K-Nearest Neighbor
2.5.2. Random Forest
2.5.3. Support Vector Machine
3. Results and Discussion
3.1. Experimental Setting and Evaluation Protocols
3.2. Optimal Model Selection
3.2.1. Optimal Model Selection of Support Vector Machine
3.2.2. Optimal Model Selection of K-Nearest Neighbor
3.2.3. Optimal Model Selection of Random Forest
3.3. Evaluation of Loitering Detection on Video Data
3.4. State of the Art Comparison
3.5. Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ibrahim, S.W. A comprehensive review on intelligent surveillance systems. Commun. Sci. Technol. 2016, 1, 7–14. [Google Scholar] [CrossRef] [Green Version]
- Wahyono; Filonenko, A.; Hariyono, J.; Jo, K.-H.; Shahbaz, A.; Kang, H.D. Integrating Multiple Tasks of Vision-based Surveillance System: Design and Implementation. In Proceedings of the 21st Korea-Japan Joint Workshop on Frontiers of Computer Vision (FCV-2016), Takayama Gifu, Japan, 17–19 February 2016; pp. 91–94. [Google Scholar]
- Kim, D.; Kim, H.; Mok, Y.; Paik, J. Real-time surveillance system for analyzing abnormal behavior of pedestrians. Appl. Sci. 2021, 11, 6153. [Google Scholar] [CrossRef]
- Patel, A.S.; Vyas, R.; Vyas, O.P.; Ojha, M.; Tiwari, V. Motion-compensated online object tracking for activity detection and crowd behavior analysis. Vis. Comput. 2022, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.S.; Kim, M.G.; Pan, S.B. A study on implementation of real-time intelligent video surveillance system based on embedded module. Eurasip J. Image Video Process. 2021, 2021, 35. [Google Scholar] [CrossRef]
- Ganapathyraja, R.; Balamurugan, S.P. Suspicious Loitering detection using a contour-based Object Tracking and Image Moment for Intelligent Video Surveillance System. J. Algebr. Stat. 2022, 13, 1294–1303. [Google Scholar]
- Chen, H.; Bohush, R.; Kurnosov, I.; Ma, G. Detection of Appearance and Behavior Anomalies in Stationary Camera Videos Using Convolutional Neural Networks. Pattern Recognit. Image Anal. 2022, 32, 254–265. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, S.; Zhang, J.; Zhang, W. Video anomaly detection and localization using motion-field shape description and homogeneity testing. Pattern Recognit. 2020, 105, 107394. [Google Scholar] [CrossRef]
- Mehmood, A. Abnormal behavior detection in uncrowded videos with two-stream 3d convolutional neural networks. Appl. Sci. 2021, 11, 3523. [Google Scholar] [CrossRef]
- Asad, M.; Yang, J.; Tu, E.; Chen, L.; He, X. Anomaly3D: Video anomaly detection based on 3D-normality clusters. J. Vis. Commun. Image Represent. 2021, 75, 103047. [Google Scholar] [CrossRef]
- Barnich, O.; Van Droogenbroeck, M. ViBe: A universal background subtraction algorithm for video sequences. IEEE Trans. Image Process. 2011, 20, 1709–1724. [Google Scholar] [CrossRef] [Green Version]
- Deng, Y.; Luo, P.; Loy, C.C.; Tang, X. Pedestrian Attribute Recognition At Far Distance. In Proceedings of the 22nd ACM international conference on Multimedia (MM ’14), Orlando, FL, USA, 3–7 November 2014; Association for Computing Machinery: New York, NY, USA, 2014; pp. 789–792. [Google Scholar] [CrossRef]
- Cover, T.M.; Hart, P.E. Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 1967, 13, 21–27. [Google Scholar] [CrossRef] [Green Version]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Ho, T.K. Random Decision Forests. In Proceedings of the 3rd International Conference on Document Analysis and Recognition, Montreal, QC, Canada, 14–16 August 1995; pp. 278–282. [Google Scholar]
- Tamamadin, M.; Lee, C.; Kee, S.-H.; Yee, J.-J. Regional Typhoon Track Prediction Using Ensemble k-Nearest Neighbor Machine Learning in the GIS Environment. Remote Sens. 2022, 14, 5292. [Google Scholar] [CrossRef]
- Saini, I.; Singh, D.; Khosl, A. QRS detection using K-Nearest Neighbor algorithm (KNN) and evaluation on standard ECG databases. J. Adv. Res. 2013, 4, 331–344. [Google Scholar] [CrossRef] [Green Version]
- Bistroń, M.; Piotrowski, Z. Comparison of Machine Learning Algorithms Used for Skin Cancer Diagnosis. Appl. Sci. 2022, 12, 9960. [Google Scholar] [CrossRef]
- Pulli, K.; Baksheev, A.; Kornyakov, K.; Eruhimov, V. Real-Time Computer Vision with OpenCV. Commun. ACM 2012, 55, 61–69. [Google Scholar] [CrossRef]
- Panja, S.; Chatterjee, A.; Yasmin, G. Kernel Functions of SVM: A Comparison and Optimal Solution. In Advanced Informatics for Computing Research; Luhach, A., Singh, D., Hsiung, P.A., Hawari, K., Lingras, P., Singh, P., Eds.; ICAICR 2018; Communications in Computer and Information Science; Springer: Singapore, 2019; Volume 955. [Google Scholar] [CrossRef]
- Wahyono; Harjoko, A.; Dharmawan, A.; Adhinata, F.D.; Kosala, G.; Jo, K.-H. Real-Time Forest Fire Detection Framework Based on Artificial Intelligence Using Color Probability Model and Motion Feature Analysis. Fire 2022, 5, 23. [Google Scholar] [CrossRef]
- Wahyono; Jo, K.-H. Cumulative Dual Foreground Differences For Illegally Parked Vehicles Detection. IEEE Ind. Inform. 2017, 13, 2464–2473. [Google Scholar] [CrossRef]
- Patrikar, D.R.; Parate, M.R. Anomaly detection using edge computing in video surveillance system: Review. Int. J. Multimed. Inf. Retr. 2022, 11, 85–110. [Google Scholar] [CrossRef]
- Xu, Y.; Dong, J.; Zhang, B.; Xu, D. Background modeling methods in video analysis: A review and comparative evaluation. CAAI Trans. Intell. Technol. 2016, 1, 43–60. [Google Scholar] [CrossRef] [Green Version]
- Kim, W.; Jung, C. Illumination-Invariant Background Subtraction: Comparative Review, Models, and Prospects. IEEE Access 2017, 5, 8369–8384. [Google Scholar] [CrossRef]
- Yu, T.; Jin, H.; Tan, W.-T.; Nahrstedt, K. SKEPRID: Pose and Illumination Change-Resistant Skeleton-Based Person Re-Identification. ACM Trans. Multimed. Comput. Commun. Appl. 2018, 14, 1–24. [Google Scholar] [CrossRef]
- Shuai, X.; Shen, Y.; Tang, Y.; Shi, S.; Ji, L.; Xing, G. milliEye: A Lightweight mmWave Radar and Camera Fusion System for Robust Object Detection. In Proceedings of the International Conference on Internet-of-Things Design and Implementation, Charlottesvle, VA, USA, 18–21 May 2021; pp. 145–157. [Google Scholar] [CrossRef]
- Mrabti, W.; Baibai, K.; Bellach, B.; Thami, R.; Tairi, H. Human motion tracking: A comparative study. Procedia Comput. Sci. 2019, 148, 145–153. [Google Scholar] [CrossRef]
- Sun, J.; Fang, H.-S.; Zhu, X.; Li, J.; Lu, W. Correlation Field for Boosting 3D Object Detection in Structured Scenes. Proc. AAAI Conf. Artif. Intell. 2022, 36, 2298–2306. [Google Scholar] [CrossRef]
Video | Label | Duration (min) | Description |
---|---|---|---|
1 | Abnormal | 00:28 | Indoor, narrow room, close object, horizontal zigzag walking object |
2 | Abnormal | 00:34 | Indoor, narrow room, close object, vertical zigzag walking object |
3 | Abnormal | 00:20 | Indoor, spacious room, distant object, zigzag walking object with minimal displacement |
4 | Abnormal | 00:29 | Indoor, large room, distant object, zigzag walking object with minimal displacement |
5 | Abnormal | 00:38 | Indoor, large room, close object, vertical zigzag walking object |
6 | Abnormal | 01:03 | Outdoor, zigzag moving object when close to camera |
7 | Abnormal | 01:17 | Outdoor, objects move zigzag when close to the camera, objects move other objects |
8 | Abnormal | 01:03 | Outdoor, diagonal zigzag moving object |
9 | Abnormal | 01:07 | Outdoor, objects move zigzag vertically horizontally and diagonally |
10 | Abnormal | 01:07 | Outdoor, horizontal vertical zigzag moving object, object crossing obstacle |
11 | Abnormal | 01:06 | Outdoor, horizontal vertical zigzag moving object, object crossing obstacle |
12 | Abnormal | 01:02 | Outdoor, object moving zigzag horizontally and vertically, object close to camera |
13 | Abnormal | 01:05 | Outdoor, object moving zigzag horizontally and vertically, object close to camera |
14 | Normal | 00:13 | Indoor, spacious room, distant object |
15 | Normal | 00:21 | Indoor, spacious room, close object, object exit towards the stairs |
16 | Normal | 00:19 | Indoor, spacious room, close object, object entering through stairs |
17 | Normal | 01:02 | Outdoor, horizontal moving object |
18 | Normal | 01:07 | Outdoor, moving object combination of horizontal and vertical, object approaching the camera |
19 | Normal | 01:02 | Outdoor, the object moves horizontally and vertically, the object moves away from the camera |
20 | Normal | 01:04 | Outdoor, horizontal and vertical moving objects, objects close to the camera |
Kernel | Three Points | Two Points | ||||||
---|---|---|---|---|---|---|---|---|
Recall | Precision | F1 Score | Accuracy | Recall | Precision | F1 Score | Accuracy | |
Linear | 0.58 | 0.60 | 0.57 | 0.59 | 0.83 | 0.83 | 0.83 | 0.82 |
RBF | 1.00 | 1.00 | 1.00 | 1.00 | 0.82 | 0.84 | 0.82 | 0.82 |
Polynomial | 0.93 | 0.94 | 0.94 | 0.93 | 0.81 | 0.82 | 0.80 | 0.80 |
K Value | Three Points | Two Points | ||||||
---|---|---|---|---|---|---|---|---|
Recall | Precision | F1 Score | Accuracy | Recall | Precision | F1 Score | Accuracy | |
1 | 0.82 | 0.88 | 0.82 | 0.82 | 0.74 | 0.75 | 0.75 | 0.74 |
3 | 0.78 | 0.86 | 0.78 | 0.79 | 0.76 | 0.76 | 0.76 | 0.76 |
5 | 0.65 | 0.81 | 0.61 | 0.67 | 0.79 | 0.79 | 0.79 | 0.79 |
7 | 0.63 | 0.80 | 0.59 | 0.65 | 0.77 | 0.77 | 0.77 | 0.77 |
Number of Trees | Three Points | Two Points | ||||||
---|---|---|---|---|---|---|---|---|
Recall | Precision | F1 Score | Accuracy | Recall | Precision | F1 Score | Accuracy | |
20 | 0.98 | 0.98 | 0.98 | 0.97 | 0.89 | 0.89 | 0.89 | 0.88 |
40 | 0.98 | 0.98 | 0.98 | 0.98 | 0.91 | 0.91 | 0.91 | 0.91 |
60 | 0.99 | 0.99 | 0.99 | 0.99 | 0.92 | 0.92 | 0.92 | 0.92 |
80 | 0.98 | 0.98 | 0.98 | 0.98 | 0.93 | 0.93 | 0.93 | 0.93 |
Video | Actual | Prediction | |
---|---|---|---|
SVM | Random Forest | ||
1 | Abnormal | Abnormal | Abnormal |
2 | Abnormal | Abnormal | Abnormal |
3 | Abnormal | Abnormal | Abnormal |
4 | Abnormal | Normal | Abnormal |
5 | Abnormal | Abnormal | Abnormal |
6 | Abnormal | Normal | Abnormal |
7 | Abnormal | Abnormal | Abnormal |
8 | Abnormal | Normal | Normal |
9 | Abnormal | Normal | Normal |
10 | Abnormal | Abnormal | Abnormal |
11 | Abnormal | Normal | Normal |
12 | Abnormal | Abnormal | Abnormal |
13 | Abnormal | Abnormal | Abnormal |
14 | Normal | Normal | Normal |
15 | Normal | Normal | Normal |
16 | Normal | Normal | Normal |
17 | Normal | Normal | Normal |
18 | Normal | Normal | Normal |
19 | Normal | Normal | Normal |
20 | Normal | Normal | Normal |
Method | Parameter |
---|---|
SVM | RBF kernel |
KNN | Value of K = 1 |
Random forest | Number of trees = 80 |
Method | Accuracy in Each Classifer (%) | Average | ||
---|---|---|---|---|
SVM | KNN | Random Forest | ||
Distance and angle [5] | 65 | 70 | 60 | 65 |
Proposed method | 75 | 79 | 85 | 79.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wahyono; Harjoko, A.; Dharmawan, A.; Adhinata, F.D.; Kosala, G.; Jo, K.-H. Loitering Detection Using Spatial-Temporal Information for Intelligent Surveillance Systems on a Vision Sensor. J. Sens. Actuator Netw. 2023, 12, 9. https://doi.org/10.3390/jsan12010009
Wahyono, Harjoko A, Dharmawan A, Adhinata FD, Kosala G, Jo K-H. Loitering Detection Using Spatial-Temporal Information for Intelligent Surveillance Systems on a Vision Sensor. Journal of Sensor and Actuator Networks. 2023; 12(1):9. https://doi.org/10.3390/jsan12010009
Chicago/Turabian StyleWahyono, Agus Harjoko, Andi Dharmawan, Faisal Dharma Adhinata, Gamma Kosala, and Kang-Hyun Jo. 2023. "Loitering Detection Using Spatial-Temporal Information for Intelligent Surveillance Systems on a Vision Sensor" Journal of Sensor and Actuator Networks 12, no. 1: 9. https://doi.org/10.3390/jsan12010009
APA StyleWahyono, Harjoko, A., Dharmawan, A., Adhinata, F. D., Kosala, G., & Jo, K. -H. (2023). Loitering Detection Using Spatial-Temporal Information for Intelligent Surveillance Systems on a Vision Sensor. Journal of Sensor and Actuator Networks, 12(1), 9. https://doi.org/10.3390/jsan12010009