Monte Carlo Sensitivities Using the Absolute Measure-Valued Derivative Method
<p>On the left, there is the ratio <math display="inline"><semantics> <mrow> <mfenced separators="" open="" close="/"> <mi mathvariant="double-struck">V</mi> <mo>[</mo> <msubsup> <mo>Δ</mo> <msub> <mi>S</mi> <mn>0</mn> </msub> <mi>LR</mi> </msubsup> <mrow> <mo>(</mo> <mi>c</mi> <mo>)</mo> </mrow> <mo>]</mo> <mspace width="0.166667em"/> </mfenced> <mi mathvariant="double-struck">V</mi> <mrow> <mo>[</mo> <msubsup> <mo>Δ</mo> <msub> <mi>S</mi> <mn>0</mn> </msub> <mi>AMVD</mi> </msubsup> <mrow> <mo>(</mo> <mi>c</mi> <mo>)</mo> </mrow> <mo>]</mo> </mrow> </mrow> </semantics></math> and, on the right, there is the ratio <math display="inline"><semantics> <mrow> <mfenced separators="" open="" close="/"> <mi mathvariant="double-struck">V</mi> <mo>[</mo> <msubsup> <mo>Δ</mo> <msub> <mi>S</mi> <mn>0</mn> </msub> <mi>MVD</mi> </msubsup> <mrow> <mo>(</mo> <mi>c</mi> <mo>)</mo> </mrow> <mo>]</mo> <mspace width="0.166667em"/> </mfenced> <mi mathvariant="double-struck">V</mi> <mrow> <mo>[</mo> <msubsup> <mo>Δ</mo> <msub> <mi>S</mi> <mn>0</mn> </msub> <mi>AMVD</mi> </msubsup> <mrow> <mo>(</mo> <mi>c</mi> <mo>)</mo> </mrow> <mo>]</mo> </mrow> </mrow> </semantics></math>.</p> "> Figure 2
<p>On the left, there is the ratio <math display="inline"><semantics> <mrow> <mfenced separators="" open="" close="/"> <mi mathvariant="double-struck">V</mi> <mo>[</mo> <msubsup> <mo>Δ</mo> <msub> <mi>S</mi> <mn>0</mn> </msub> <mi>PW</mi> </msubsup> <mrow> <mo>(</mo> <mi>c</mi> <mo>)</mo> </mrow> <mo>]</mo> <mspace width="0.166667em"/> </mfenced> <mi mathvariant="double-struck">V</mi> <mrow> <mo>[</mo> <msubsup> <mo>Δ</mo> <msub> <mi>S</mi> <mn>0</mn> </msub> <mi>AMVD</mi> </msubsup> <mrow> <mo>(</mo> <mi>c</mi> <mo>)</mo> </mrow> <mo>]</mo> </mrow> </mrow> </semantics></math>. On the right, there are variance ratios at <math display="inline"><semantics> <mrow> <mi>T</mi> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math>. The solid curve is <math display="inline"><semantics> <mrow> <mfenced separators="" open="" close="/"> <mi mathvariant="double-struck">V</mi> <mo>[</mo> <msubsup> <mo>Δ</mo> <msub> <mi>S</mi> <mn>0</mn> </msub> <mi>LR</mi> </msubsup> <mrow> <mo>(</mo> <mi>c</mi> <mo>)</mo> </mrow> <mo>]</mo> <mspace width="0.166667em"/> </mfenced> <mi mathvariant="double-struck">V</mi> <mrow> <mo>[</mo> <msubsup> <mo>Δ</mo> <msub> <mi>S</mi> <mn>0</mn> </msub> <mi>AMVD</mi> </msubsup> <mrow> <mo>(</mo> <mi>c</mi> <mo>)</mo> </mrow> <mo>]</mo> </mrow> </mrow> </semantics></math>, the dashed curve is <math display="inline"><semantics> <mrow> <mfenced separators="" open="" close="/"> <mi mathvariant="double-struck">V</mi> <mo>[</mo> <msubsup> <mo>Δ</mo> <msub> <mi>S</mi> <mn>0</mn> </msub> <mi>MVD</mi> </msubsup> <mrow> <mo>(</mo> <mi>c</mi> <mo>)</mo> </mrow> <mo>]</mo> <mspace width="0.166667em"/> </mfenced> <mi mathvariant="double-struck">V</mi> <mrow> <mo>[</mo> <msubsup> <mo>Δ</mo> <msub> <mi>S</mi> <mn>0</mn> </msub> <mi>AMVD</mi> </msubsup> <mrow> <mo>(</mo> <mi>c</mi> <mo>)</mo> </mrow> <mo>]</mo> </mrow> </mrow> </semantics></math>, and the dotted curve is <math display="inline"><semantics> <mrow> <mfenced separators="" open="" close="/"> <mi mathvariant="double-struck">V</mi> <mo>[</mo> <msubsup> <mo>Δ</mo> <msub> <mi>S</mi> <mn>0</mn> </msub> <mi>PW</mi> </msubsup> <mrow> <mo>(</mo> <mi>c</mi> <mo>)</mo> </mrow> <mo>]</mo> <mspace width="0.166667em"/> </mfenced> <mi mathvariant="double-struck">V</mi> <mrow> <mo>[</mo> <msubsup> <mo>Δ</mo> <msub> <mi>S</mi> <mn>0</mn> </msub> <mi>AMVD</mi> </msubsup> <mrow> <mo>(</mo> <mi>c</mi> <mo>)</mo> </mrow> <mo>]</mo> </mrow> </mrow> </semantics></math>.</p> "> Figure 3
<p>On the left, there is the ratio <math display="inline"><semantics> <mrow> <mfenced separators="" open="" close="/"> <mi mathvariant="double-struck">V</mi> <mo>[</mo> <msubsup> <mo>Δ</mo> <mi>σ</mi> <mi>LR</mi> </msubsup> <mrow> <mo>(</mo> <mi>c</mi> <mo>)</mo> </mrow> <mo>]</mo> <mspace width="0.166667em"/> </mfenced> <mi mathvariant="double-struck">V</mi> <mrow> <mo>[</mo> <msubsup> <mo>Δ</mo> <mi>σ</mi> <mi>AMVD</mi> </msubsup> <mrow> <mo>(</mo> <mi>c</mi> <mo>)</mo> </mrow> <mo>]</mo> </mrow> </mrow> </semantics></math> and, on the right, there is the ratio <math display="inline"><semantics> <mrow> <mfenced separators="" open="" close="/"> <mi mathvariant="double-struck">V</mi> <mo>[</mo> <msubsup> <mo>Δ</mo> <mi>σ</mi> <mi>PW</mi> </msubsup> <mrow> <mo>(</mo> <mi>c</mi> <mo>)</mo> </mrow> <mo>]</mo> <mspace width="0.166667em"/> </mfenced> <mi mathvariant="double-struck">V</mi> <mrow> <mo>[</mo> <msubsup> <mo>Δ</mo> <mi>σ</mi> <mi>AMVD</mi> </msubsup> <mrow> <mo>(</mo> <mi>c</mi> <mo>)</mo> </mrow> <mo>]</mo> </mrow> </mrow> </semantics></math>.</p> "> Figure 4
<p>On the left, there is the ratio <math display="inline"><semantics> <mrow> <mfenced separators="" open="" close="/"> <mi mathvariant="double-struck">V</mi> <mo>[</mo> <msubsup> <mo>Δ</mo> <mi>σ</mi> <mi>PW</mi> </msubsup> <mrow> <mo>(</mo> <mi>c</mi> <mo>)</mo> </mrow> <mo>]</mo> <mspace width="0.166667em"/> </mfenced> <mi mathvariant="double-struck">V</mi> <mrow> <mo>[</mo> <msubsup> <mo>Δ</mo> <mi>σ</mi> <mi>AMVD</mi> </msubsup> <mrow> <mo>(</mo> <mi>c</mi> <mo>)</mo> </mrow> <mo>]</mo> </mrow> </mrow> </semantics></math>. On the right, there are variance ratios at <math display="inline"><semantics> <mrow> <mi>T</mi> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math>. The solid curve is <math display="inline"><semantics> <mrow> <mfenced separators="" open="" close="/"> <mi mathvariant="double-struck">V</mi> <mo>[</mo> <msubsup> <mo>Δ</mo> <mi>σ</mi> <mi>LR</mi> </msubsup> <mrow> <mo>(</mo> <mi>c</mi> <mo>)</mo> </mrow> <mo>]</mo> <mspace width="0.166667em"/> </mfenced> <mi mathvariant="double-struck">V</mi> <mrow> <mo>[</mo> <msubsup> <mo>Δ</mo> <mi>σ</mi> <mi>AMVD</mi> </msubsup> <mrow> <mo>(</mo> <mi>c</mi> <mo>)</mo> </mrow> <mo>]</mo> </mrow> </mrow> </semantics></math>, the dashed curve is <math display="inline"><semantics> <mrow> <mfenced separators="" open="" close="/"> <mi mathvariant="double-struck">V</mi> <mo>[</mo> <msubsup> <mo>Δ</mo> <mi>σ</mi> <mi>MVD</mi> </msubsup> <mrow> <mo>(</mo> <mi>c</mi> <mo>)</mo> </mrow> <mo>]</mo> <mspace width="0.166667em"/> </mfenced> <mi mathvariant="double-struck">V</mi> <mrow> <mo>[</mo> <msubsup> <mo>Δ</mo> <mi>σ</mi> <mi>AMVD</mi> </msubsup> <mrow> <mo>(</mo> <mi>c</mi> <mo>)</mo> </mrow> <mo>]</mo> </mrow> </mrow> </semantics></math>, and the dotted curve is <math display="inline"><semantics> <mrow> <mfenced separators="" open="" close="/"> <mi mathvariant="double-struck">V</mi> <mo>[</mo> <msubsup> <mo>Δ</mo> <mi>σ</mi> <mi>PW</mi> </msubsup> <mrow> <mo>(</mo> <mi>c</mi> <mo>)</mo> </mrow> <mo>]</mo> <mspace width="0.166667em"/> </mfenced> <mi mathvariant="double-struck">V</mi> <mrow> <mo>[</mo> <msubsup> <mo>Δ</mo> <mi>σ</mi> <mi>AMVD</mi> </msubsup> <mrow> <mo>(</mo> <mi>c</mi> <mo>)</mo> </mrow> <mo>]</mo> </mrow> </mrow> </semantics></math>.</p> "> Figure 5
<p>On the left, there is the ratio <math display="inline"><semantics> <mrow> <mfenced separators="" open="" close="/"> <mi mathvariant="double-struck">V</mi> <mo>[</mo> <msubsup> <mo>Δ</mo> <msub> <mi>S</mi> <mn>0</mn> </msub> <mi>LR</mi> </msubsup> <mrow> <mo>(</mo> <mi>d</mi> <mo>)</mo> </mrow> <mo>]</mo> <mspace width="0.166667em"/> </mfenced> <mi mathvariant="double-struck">V</mi> <mrow> <mo>[</mo> <msubsup> <mo>Δ</mo> <msub> <mi>S</mi> <mn>0</mn> </msub> <mi>AMVD</mi> </msubsup> <mrow> <mo>(</mo> <mi>d</mi> <mo>)</mo> </mrow> <mo>]</mo> </mrow> </mrow> </semantics></math> and, on the right, there is the ratio <math display="inline"><semantics> <mrow> <mfenced separators="" open="" close="/"> <mi mathvariant="double-struck">V</mi> <mo>[</mo> <msubsup> <mo>Δ</mo> <msub> <mi>S</mi> <mn>0</mn> </msub> <mi>MVD</mi> </msubsup> <mrow> <mo>(</mo> <mi>d</mi> <mo>)</mo> </mrow> <mo>]</mo> <mspace width="0.166667em"/> </mfenced> <mi mathvariant="double-struck">V</mi> <mrow> <mo>[</mo> <msubsup> <mo>Δ</mo> <msub> <mi>S</mi> <mn>0</mn> </msub> <mi>AMVD</mi> </msubsup> <mrow> <mo>(</mo> <mi>d</mi> <mo>)</mo> </mrow> <mo>]</mo> </mrow> </mrow> </semantics></math>.</p> "> Figure 6
<p>On the left, there is the ratio <math display="inline"><semantics> <mrow> <mfenced separators="" open="" close="/"> <mi mathvariant="double-struck">V</mi> <mo>[</mo> <msubsup> <mo>Δ</mo> <mi>σ</mi> <mi>LR</mi> </msubsup> <mrow> <mo>(</mo> <mi>d</mi> <mo>)</mo> </mrow> <mo>]</mo> <mspace width="0.166667em"/> </mfenced> <mi mathvariant="double-struck">V</mi> <mrow> <mo>[</mo> <msubsup> <mo>Δ</mo> <mi>σ</mi> <mi>AMVD</mi> </msubsup> <mrow> <mo>(</mo> <mi>d</mi> <mo>)</mo> </mrow> <mo>]</mo> </mrow> </mrow> </semantics></math> and, on the right, there is the ratio <math display="inline"><semantics> <mrow> <mfenced separators="" open="" close="/"> <mi mathvariant="double-struck">V</mi> <mo>[</mo> <msubsup> <mo>Δ</mo> <mi>σ</mi> <mi>MVD</mi> </msubsup> <mrow> <mo>(</mo> <mi>d</mi> <mo>)</mo> </mrow> <mo>]</mo> <mspace width="0.166667em"/> </mfenced> <mi mathvariant="double-struck">V</mi> <mrow> <mo>[</mo> <msubsup> <mo>Δ</mo> <mi>σ</mi> <mi>AMVD</mi> </msubsup> <mrow> <mo>(</mo> <mi>d</mi> <mo>)</mo> </mrow> <mo>]</mo> </mrow> </mrow> </semantics></math>.</p> "> Figure 7
<p>Comparison of double-barrier option vega standard deviations for the LR, MVD, and AMVD methods.</p> ">
Abstract
:1. Introduction
2. Brief Review of Measure-Valued Differentiation
3. Absolute Measure-Valued Differentiation
4. Notation, Model, and Useful Identities
4.1. Black–Scholes Delta and Vega
4.2. Notation and Identities
5. Vanilla Calls
5.1. Vanilla Call Delta
5.2. Vanilla Call Vega
6. Digital Calls
6.1. Digital Call Delta
6.2. Digital Call Vega
7. Double-Barrier Option
7.1. Generation of Non-Normal Random Variates
7.1.1. Rayleigh Random Variate
- R1.
- Generate a uniform variate .
- R2.
- Set , which is then a Rayleigh random variate.
7.1.2. Double-Sided Maxwell–Boltzmann Random Variate
- MB1.
- Generate independent uniform variates [. Set .
- MB2.
- If , then go back to step MB1.3
- MB3.
- Generate a uniform variate , independent of and .
- MB4.
- If , set , and set otherwise. Then, x is a double-sided Maxwell–Boltzmann random variate.
7.1.3. Absolute Rayleigh Distribution
- AR1.
- Generate a uniform variate .
- AR2.
- Then, an absolute Rayleigh random variate, x, is given by
7.1.4. Absolute Quadratic Normal (AQN) Distribution
7.2. Double-Barrier Vega
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Initial Values for Newton’s Method
Appendix B. Vanilla Call Variances
Appendix B.1. Likelihood Ratio Call Delta Variance
Appendix B.2. MVD Call Delta Variance
Appendix B.3. AMVD Call Delta Variance
Appendix B.4. Likelihood Ratio Call Vega Variance
Appendix B.5. MVD Call Vega Variance
Appendix B.6. AMVD Call Vega Variance
Appendix C. Digital Call Variances
Appendix C.1. Likelihood Ratio Digital Call Delta Variance
Appendix C.2. MVD Digital Call Delta Variance
Appendix C.3. AMVD Digital Call Delta Variance
Appendix C.4. Likelihood Ratio Digital Call Vega Variance
Appendix C.5. MVD Digital Call Vega Variance
Appendix C.6. AMVD Digital Call Vega Variance
1 | This is also the case for the MVD method. |
2 | It should be noted, however, that this higher computational burden is partially offset by the MVD sensitivity estimates having lower variance. |
3 | We note that the inequality involving in Heidergott et al. (2008) is in the opposite direction, which is most likely a typographical error. |
4 | Refer to www.boost.org. Accessed 3 June 2022. |
References
- Black, Fischer, and Myron Scholes. 1973. The pricing of options and corporate liabilities. Journal of Political Economy 81: 637–54. [Google Scholar] [CrossRef]
- Brace, Alan. 2007. Engineering BGM. Sydney: Chapman and Hall. [Google Scholar]
- Capriotti, Luca, and Mike Giles. 2018. Fast Correlation Greeks by Adjoint Algorithmic Differentiation. arXiv arXiv:1004.1855v1. [Google Scholar] [CrossRef]
- Chan, Jiun Hong, and Mark Joshi. 2015. Optimal limit methods for computing sensitivities of discontinuous integrals including triggerable derivative securities. IIE Transactions 47: 978–97. [Google Scholar] [CrossRef]
- Glasserman, Paul. 2004. Monte Carlo Methods in Financial Engineering. New York: Springer. [Google Scholar]
- Heidergott, Bernd, Felisa J. Váquez-Abad, and Warren Volk-Makarewicz. 2008. Sensitivity esitmation for Gaussian systems. European Journal of Operational Research 187: 193–207. [Google Scholar] [CrossRef]
- Joshi, Mark S., and Dherminder Kainth. 2004. Rapid and accurate development of prices and Greeks for n-th to default credit swaps in the Li model. Quantitative Finance 4: 266–75. [Google Scholar] [CrossRef]
- Liu, Guangwu, and L. Jeff Hong. 2011. Kernel estimation of the greeks for options with discontinuous payoffs. Operations Research 59: 96–108. [Google Scholar] [CrossRef]
- Lyuu, Yuh-Dauh, and Huei-Wen Teng. 2011. Unbiased and efficient Greeks of financial options. Finance and Stochastics 15: 141–81. [Google Scholar] [CrossRef]
- Pflug, Georg Ch, and Philipp Thoma. 2016. Efficient calculation of the Greeks for exponentional Lévy processes: An application of measure valued differentiation. Quantitative Finance 16: 247–57. [Google Scholar] [CrossRef]
- Rott, Marius G., and Christian P. Fries. 2005. Fast and Robust Monte Carlo Cdo Sensitivities and Their Efficient Object Oriented Implementation. SSRN, May 31. [Google Scholar]
- Xiang, Jiangming, and Xiaoqun Wang. 2022. Quasi-Monte Carlo simulation for American option sensitivities. Journal of Computational and Applied Mathematics 413: 114268. [Google Scholar] [CrossRef]
u | ||
---|---|---|
] | ||
Mean | Standard Deviation | ||||||
---|---|---|---|---|---|---|---|
LR | MVD | AMVD | LR | MVD | AMVD | ||
75 | 105 | −169.34 | −167.52 | −168.29 | 15.68 | 7.69 | 11.17 |
75 | 115 | −173.85 | −172.96 | −171.81 | 19.51 | 6.43 | 13.65 |
75 | 125 | −60.85 | −60.17 | −60.39 | 20.08 | 3.25 | 15.7 |
85 | 105 | −292.55 | −291.65 | −292.08 | 12.04 | 8.6 | 10.75 |
85 | 115 | −305.83 | −306.81 | −307.69 | 19.13 | 8.05 | 14.14 |
85 | 125 | −193.72 | −195.74 | −195.11 | 21.13 | 6.26 | 13.96 |
95 | 105 | −146.66 | −147.24 | −146.53 | 5.67 | 7.77 | 5.92 |
95 | 115 | −316.54 | −317.12 | −318.45 | 13.47 | 10.15 | 10.38 |
95 | 125 | −220.83 | −219.58 | −218.19 | 14.36 | 7.8 | 10.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Joshi, M.; Kwon, O.K.; Satchell, S. Monte Carlo Sensitivities Using the Absolute Measure-Valued Derivative Method. J. Risk Financial Manag. 2023, 16, 509. https://doi.org/10.3390/jrfm16120509
Joshi M, Kwon OK, Satchell S. Monte Carlo Sensitivities Using the Absolute Measure-Valued Derivative Method. Journal of Risk and Financial Management. 2023; 16(12):509. https://doi.org/10.3390/jrfm16120509
Chicago/Turabian StyleJoshi, Mark, Oh Kang Kwon, and Stephen Satchell. 2023. "Monte Carlo Sensitivities Using the Absolute Measure-Valued Derivative Method" Journal of Risk and Financial Management 16, no. 12: 509. https://doi.org/10.3390/jrfm16120509
APA StyleJoshi, M., Kwon, O. K., & Satchell, S. (2023). Monte Carlo Sensitivities Using the Absolute Measure-Valued Derivative Method. Journal of Risk and Financial Management, 16(12), 509. https://doi.org/10.3390/jrfm16120509