MAC-ResNet: Knowledge Distillation Based Lightweight Multiscale-Attention-Crop-ResNet for Eyelid Tumors Detection and Classification
"> Figure 1
<p>General flow-chart: the data were augmented using random combinatorial data processing; we proposed Mac-ResNet and used knowledge distillation to streamline the network. In addition, three segmentation networks were trained to learn the knowledge of three diseases and input to the corresponding class of segmentation networks to achieve the diagnosis of diseases as well as fast localization of lesion regions.</p> "> Figure 2
<p>Details of BACM Model: This Network is referenced from the fine-grained classification model WSDAN and modified on its basis. The backbone network migrates the trained network parameters of the Imagenet dataset as the initial values of the network parameters.</p> "> Figure 3
<p>Details of Knowledge Distillation: MAC-ResNet is used as the teacher network to guide the training of student network ResNet, and the simplified network can also achieve better classification effects in the ZLet dataset.</p> "> Figure 4
<p>Details of Dataset: (<b>a</b>) denotes the class distribution and the number of images in the ZLet dataset, and (<b>b</b>) represents the data visualization of each type of eyelid tumor.</p> "> Figure 5
<p>Comparative experimental results of the loss function. Due to the imbalance in classes, focal loss outcompetes other losses during the training process.</p> "> Figure 6
<p>Visualization of results: The segmentation results can provide the doctor with aid in diagnosing what kind of tumor the pathology image contains and where the tumor is located.</p> ">
Abstract
:1. Introduction
- (1)
- Propose the network model called Multiscale-Attention-Crop-ResNet (MAC-ResNet). This network model can achieve 96.8%, 94.6%, and 90.8% accuracy in automatically classifying three ocular malignancies, respectively.
- (2)
- By training the student network ResNet with MAC-ResNet as the teacher network with the help of the knowledge distillation method, we made the smaller-scale network model to obtain better classification results on the eyelid tumor dataset, which called ZLet dataset.
- (3)
- We train three targeted segmentation networks for each of the three different malignant tumors, which enable us to segment the corresponding tumor locations well. With the help of the classification and segmentation networks, we diagnose the disease and the rapid localization of the lesion area.
2. Related Work
3. Methods
3.1. MAC-ResNet
3.2. Network Optimization Based on Knowledge Distillation
4. Experiment and Result
4.1. Data and Process
4.1.1. Data Gathering
4.1.2. Data Preprocessing
4.1.3. Data Augmentation
4.2. Ablation Study
4.3. Preformance
4.3.1. Network Training
4.3.2. Evaluation Metrics
4.3.3. Patch-Level Classification
4.3.4. WSI-Level Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Singh, A.D.; Seregard, S. Ocular Tumors; Karger Medical and Scientific Publishers: Basel, Switzerland, 2016. [Google Scholar]
- Shields, J.A.; Shields, C.L. Ocular Tumors of Childhood. Pediatr. Clin. N. Am. 1993, 40, 805–826. [Google Scholar] [CrossRef] [PubMed]
- Stannard, C.; Sauerwein, W.; Maree, G.; Lecuona, K. Radiotherapy for ocular tumours. Eye 2013, 27, 119–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cook, B.E.; Bartley, G.B. Treatment options and future prospects for the management of eyelid malignancies: An evidence-based update. Ophthalmology 2001, 108, 2088–2098. [Google Scholar] [CrossRef] [PubMed]
- Rubin, A.I.; Chen, E.H.; Ratner, D. Basal-cell carcinoma. N. Engl. J. Med. 2005, 353, 2262–2269. [Google Scholar] [CrossRef] [PubMed]
- Slutsky, J.B.; Jones, E.C. Periocular Cutaneous Malignancies: A Review of the Literature. Dermatol. Surg. 2012, 38, 552–569. [Google Scholar] [CrossRef]
- Ohara, M.; Sotozono, C.; Tsuchihashi, Y.; Kinoshita, S. Ki-67 labeling index as a marker of malignancy in ocular surface neoplasms. Jpn. J. Ophthalmol. 2004, 48, 524–529. [Google Scholar] [CrossRef]
- Araújo, T.; Aresta, G.; Castro, E.; Rouco, J.; Aguiar, P.; Eloy, C.; Polónia, A.; Campilho, A. Classification of breast cancer histology images using Convolutional Neural Networks. PLoS ONE 2017, 12, e0177544. [Google Scholar] [CrossRef]
- Bardou, D.; Zhang, K.; Ahmad, S.M. Classification of Breast Cancer Based on Histology Images Using Convolutional Neural Networks. IEEE Access 2018, 6, 24680–24693. [Google Scholar] [CrossRef]
- Hu, H.; Qiao, S.; Hao, Y.; Bai, Y.; Cheng, R.; Zhang, W.; Zhang, G. Breast cancer histopathological images recognition based on two-stage nuclei segmentation strategy. PLoS ONE 2022, 17, e0266973. [Google Scholar] [CrossRef]
- Hinton, G.; Geoffrey, V.; Jeff, D. Distilling the knowledge in a neural network. arXiv 2015, arXiv:1503.02531. [Google Scholar]
- Fujisawa, Y.; Inoue, S.; Nakamura, Y. The Possibility of Deep Learning-Based, Computer-Aided Skin Tumor Classifiers. Front. Med. 2019, 6, 191. [Google Scholar] [CrossRef]
- De, A.; Sarda, A.; Gupta, S.; Das, S. Use of artificial intelligence in dermatology. Indian J. Dermatol. 2020, 65, 352. [Google Scholar] [CrossRef]
- Chen, S.B.; Novoa, R.A. Artificial intelligence for dermatopathology: Current trends and the road ahead. Semin. Diagn. Pathol. 2022, 39, 298–304. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Hekler, A.; Utikal, J.S.; Enk, A.H.; Berking, C.; Klode, J.; Schadendorf, D.; Jansen, P.; Franklin, C.; Holland-Letz, T.; Krahl, D.; et al. Pathologist-level classification of histopathological melanoma images with deep neural networks. Eur. J. Cancer 2019, 115, 79–83. [Google Scholar] [CrossRef] [Green Version]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2015, arXiv:1409.1556. [Google Scholar]
- Xie, P.; Zuo, K.; Zhang, Y.; Li, F.; Yin, M.; Lu, K. Interpretable classification from skin cancer histology slides using deep learning: A retrospective multicenter study. arXiv 2019, arXiv:1904.06156. [Google Scholar]
- Hsu, W.W.; Guo, J.M.; Pei, L.; Chiang, L.A.; Li, Y.F.; Hsiao, J.C.; Colen, R.; Liu, P. A weakly supervised deep learning-based method for glioma subtype classification using WSI and mpMRIs. Sci. Rep. 2022, 12, 6111. [Google Scholar] [CrossRef]
- Girdhar, N.; Sinha, A.; Gupta, S. DenseNet-II: An improved deep convolutional neural network for melanoma cancer detection. Soft Comput. 2022, 1–20. [Google Scholar] [CrossRef]
- Chan, L.; Hosseini, M.S.; Rowsell, C.; Plataniotis, K.N.; Damaskinos, S. HistoSegNet: Semantic Segmentation of Histological Tissue Type in Whole Slide Images. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019; pp. 10661–10670. [Google Scholar]
- Wang, X.; Fang, Y.; Yang, S.; Zhu, D.; Wang, M.; Zhang, J.; Tong, K.y.; Han, X. A hybrid network for automatic hepatocellular carcinoma segmentation in H&E-stained whole slide images. Med Image Anal. 2021, 68, 101914. [Google Scholar]
- Ding, L.; Wang, L.; Huang, X.; Wang, Y.; Ye, J.; Sun, L. Deep learning-based accurate diagnosis of eyelid malignant melanoma from gigapixel pathologic slides. In Proceedings of the Tenth International Conference on Graphics and Image Processing (ICGIP 2018), Chengdu, China, 12–14 December 2018; Volume 11069, pp. 441–452. [Google Scholar]
- Wang, L.; Ding, L.; Liu, Z.; Sun, L.; Chen, L.; Jia, R.; Dai, X.; Cao, J.; Ye, J. Automated identification of malignancy in whole-slide pathological images: Identification of eyelid malignant melanoma in gigapixel pathological slides using deep learning. Br. J. Ophthalmol. 2020, 104, 318–323. [Google Scholar] [CrossRef]
- Luo, Y.; Zhang, J.; Yang, Y.; Rao, Y.; Chen, X.; Shi, T.; Xu, S.; Jia, R.; Gao, X. Deep learning-based fully automated differential diagnosis of eyelid basal cell and sebaceous carcinoma using whole slide images. Quant. Imaging Med. Surg. 2022, 12, 4166–4175. [Google Scholar] [CrossRef] [PubMed]
- Parajuli, M.; Shaban, M.; Phung, T.L. Automated differentiation of skin melanocytes from keratinocytes in high-resolution histopathology images using a weakly-supervised deep-learning framework. Int. J. Imaging Syst. Technol. 2022. [Google Scholar] [CrossRef]
- Ye, J.; Wang, L.; Lv, D.; Wang, Y.; Chen, L.; Huang, Y.; Huang, F.; Ashraf, D.A.; Kersten, R.; Shao, A.; et al. A Deep Learning Approach with Cascade-Network Design for Eyelid Tumors Diagnosis Based on Gigapixel Histopathology Images. Res. Sq. 2022. [Google Scholar] [CrossRef]
- Wang, X.; Fu, T.; Liao, S.; Wang, S.; Lei, Z.; Mei, T. Exclusivity-Consistency Regularized Knowledge Distillation for Face Recognition. In Proceedings of the Computer Vision—ECCV 2020; Vedaldi, A., Bischof, H., Brox, T., Frahm, J.M., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 325–342. [Google Scholar]
- Hou, Y.; Ma, Z.; Liu, C.; Hui, T.W.; Loy, C.C. Inter-Region Affinity Distillation for Road Marking Segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020. [Google Scholar]
- Chen, Y.C.; Gan, Z.; Cheng, Y.; Liu, J.; Liu, J. Distilling Knowledge Learned in BERT for Text Generation. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Online, 6–8 July 2020; pp. 7893–7905. [Google Scholar] [CrossRef]
- Yang, Z.; Shou, L.; Gong, M.; Lin, W.; Jiang, D. Model Compression with Two-Stage Multi-Teacher Knowledge Distillation for Web Question Answering System. In Proceedings of the 13th International Conference on Web Search and Data Mining, Houston, TX, USA, 3–7 February 2020; Association for Computing Machinery: New York, NY, USA, 2020; pp. 690–698. [Google Scholar] [CrossRef] [Green Version]
- Shen, P.; Lu, X.; Li, S.; Kawai, H. Knowledge Distillation-Based Representation Learning for Short-Utterance Spoken Language Identification. IEEE/ACM Trans. Audio, Speech, Lang. Process. 2020, 28, 2674–2683. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, Y.; Xu, H.; Qin, Z.; Zha, H. Adversarial Distillation for Efficient Recommendation with External Knowledge. ACM Trans. Inf. Syst. 2018, 37. [Google Scholar] [CrossRef]
- Qin, D.; Bu, J.J.; Liu, Z.; Shen, X.; Zhou, S.; Gu, J.J.; Wang, Z.H.; Wu, L.; Dai, H.F. Efficient Medical Image Segmentation Based on Knowledge Distillation. IEEE Trans. Med Imaging 2021, 40, 3820–3831. [Google Scholar] [CrossRef]
- Ho, T.K.K.; Gwak, J. Utilizing Knowledge Distillation in Deep Learning for Classification of Chest X-Ray Abnormalities. IEEE Access 2020, 8, 160749–160761. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional Networks for Biomedical Image Segmentation; Springer: Cham, Switzerland, 2015; pp. 234–241. [Google Scholar]
- Hu, T.; Qi, H.; Huang, Q.; Lu, Y. See better before looking closer: Weakly supervised data augmentation network for fine-grained visual classification. arXiv 2019, arXiv:1901.09891. [Google Scholar]
- Mnih, V.; Heess, N.; Graves, A.; Kavukcuoglu, K. Recurrent Models of Visual Attention. Adv. Neural Inf. Process. Syst. 2014, 27, 2204–2212. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37, 1904–1916. [Google Scholar] [CrossRef] [Green Version]
- Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal Loss for Dense Object Detection. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 318–327. [Google Scholar] [CrossRef] [Green Version]
- Loshchilov, I.; Hutter, F. SGDR: Stochastic Gradient Descent with Warm Restarts. arXiv 2017, arXiv:1608.03983. [Google Scholar]
- Gou, J.; Yu, B.; Maybank, S.J.; Tao, D. Knowledge distillation: A survey. Int. J. Comput. Vis. 2021, 129, 1789–1819. [Google Scholar] [CrossRef]
- Bridle, J. Training Stochastic Model Recognition Algorithms as Networks can Lead to Maximum Mutual Information Estimation of Parameters. In Advances in Neural Information Processing Systems; Touretzky, D., Ed.; Morgan-Kaufmann: Burlington, MA, USA, 1989; Volume 2. [Google Scholar]
- Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for computer vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2818–2826. [Google Scholar]
DARes-Block Usage Location | ACC | Spec | Recall | 0-ACC | 1-ACC | 2-ACC | 3-ACC |
---|---|---|---|---|---|---|---|
layer2 | 0.8020 | 0.8244 | 0.7630 | 0.8672 | 0.7082 | 0.7306 | 0.8807 |
layer3 | 0.8110 | 0.8207 | 0.7800 | 0.8774 | 0.7150 | 0.7370 | 0.8954 |
layer4 | 0.8172 | 0.8369 | 0.7714 | 0.8858 | 0.7271 | 0.7493 | 0.8860 |
layer2 + layer3 | 0.8065 | 0.8243 | 0.7697 | 0.8695 | 0.7231 | 0.7462 | 0.8876 |
layer2 + layer4 | 0.8307 | 0.847 | 0.8030 | 0.8873 | 0.7456 | 0.7785 | 0.8930 |
layer3 + layer4 | 0.8261 | 0.8260 | 0.7963 | 0.8689 | 0.7590 | 0.78 | 0.8965 |
layer2 + layer3 + layer4 | 0.8187 | 0.8207 | 0.7815 | 0.8595 | 0.7476 | 0.7764 | 0.8911 |
Whether to Modify the Input | ACC | Spec | Recall | 0-ACC | 1-ACC | 2-ACC | 3-ACC |
---|---|---|---|---|---|---|---|
NO | 0.8307 | 0.8470 | 0.8030 | 0.8873 | 0.7456 | 0.7785 | 0.8930 |
YES | 0.8321 | 0.8739 | 0.8140 | 0.8901 | 0.7489 | 0.7857 | 0.9035 |
ACC | Spec | Recall | 0-ACC | 1-ACC | 2-ACC | 3-ACC | |
---|---|---|---|---|---|---|---|
Without SPP-block | 0.8321 | 0.8739 | 0.8140 | 0.8901 | 0.7489 | 0.7857 | 0.9035 |
With SPP-block | 0.8389 | 0.8792 | 0.8260 | 0.9135 | 0.7407 | 0.7914 | 0.9100 |
Loss Function | ACC | Spec | Recall | 0-ACC | 1-ACC | 2-ACC | 3-ACC |
---|---|---|---|---|---|---|---|
Cross Entropy | 0.8646 | 0.8768 | 0.8522 | 0.9209 | 0.7858 | 0.8260 | 0.9257 |
Labelsmoothing | 0.8704 | 0.8752 | 0.8803 | 0.9200 | 0.7892 | 0.8370 | 0.9354 |
Focal loss | 0.8857 | 0.8835 | 0.8704 | 0.8945 | 0.8620 | 0.8710 | 0.9153 |
Loss | lr | ACC | Spec | Recall | 0-ACC | 1-ACC | 2-ACC | 3-ACC |
---|---|---|---|---|---|---|---|---|
CE | 0.0001 | 0.8646 | 0.8768 | 0.8522 | 0.9209 | 0.7858 | 0.8260 | 0.9257 |
Focal loss | 0.0001 | 0.8857 | 0.8835 | 0.8704 | 0.8945 | 0.8620 | 0.8710 | 0.9153 |
CE | CosineAnnealingLR | 0.8805 | 0.8876 | 0.8692 | 0.9310 | 0.8176 | 0.8547 | 0.9187 |
Focal loss | CosineAnnealingLR | 0.9023 | 0.8992 | 0.9015 | 0.9162 | 0.8820 | 0.8937 | 0.9175 |
Eyelid Tumor | Sensitivity | Specificity | Accuracy |
---|---|---|---|
BCC | 0.8046 | 0.9862 | 0.9688 |
MGC | 0.7688 | 0.9589 | 0.9467 |
CM | 0.8889 | 0.9113 | 0.9089 |
Eyelid Tumor | IOU | Dice |
---|---|---|
BCC | 0.7277 | 0.8349 |
MGC | 0.6806 | 0.8050 |
CM | 0.7329 | 0.8307 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, X.; Yao, C.; Xu, F.; Chen, L.; Wang, H.; Chen, X.; Ye, J.; Wang, Y. MAC-ResNet: Knowledge Distillation Based Lightweight Multiscale-Attention-Crop-ResNet for Eyelid Tumors Detection and Classification. J. Pers. Med. 2023, 13, 89. https://doi.org/10.3390/jpm13010089
Huang X, Yao C, Xu F, Chen L, Wang H, Chen X, Ye J, Wang Y. MAC-ResNet: Knowledge Distillation Based Lightweight Multiscale-Attention-Crop-ResNet for Eyelid Tumors Detection and Classification. Journal of Personalized Medicine. 2023; 13(1):89. https://doi.org/10.3390/jpm13010089
Chicago/Turabian StyleHuang, Xingru, Chunlei Yao, Feng Xu, Lingxiao Chen, Huaqiong Wang, Xiaodiao Chen, Juan Ye, and Yaqi Wang. 2023. "MAC-ResNet: Knowledge Distillation Based Lightweight Multiscale-Attention-Crop-ResNet for Eyelid Tumors Detection and Classification" Journal of Personalized Medicine 13, no. 1: 89. https://doi.org/10.3390/jpm13010089
APA StyleHuang, X., Yao, C., Xu, F., Chen, L., Wang, H., Chen, X., Ye, J., & Wang, Y. (2023). MAC-ResNet: Knowledge Distillation Based Lightweight Multiscale-Attention-Crop-ResNet for Eyelid Tumors Detection and Classification. Journal of Personalized Medicine, 13(1), 89. https://doi.org/10.3390/jpm13010089