Association of a Common NOS1AP Variant with Attenuation of QTc Prolongation in Men with Heroin Dependence Undergoing Methadone Treatment †
<p><b>Effects of methadone maintenance treatment, methadone dose, and age on QTc intervals.</b> (<b>A</b>) In Cohort 1, the QTc intervals significantly prolonged compared to the baseline values after methadone treatment in total (427 ± 22.7 vs. 421 ± 23.2 ms, <span class="html-italic">p</span> = 0.005) and in male patients (426 ± 22.6 vs. 420 ± 22.3 ms, <span class="html-italic">p</span> = 0.003), but not in female patients (429 ± 23.7 vs. 428 ± 27.2 ms, <span class="html-italic">p</span> = 0.842). (<b>B</b>) A significant positive correlation between age and QTc interval was observed before the administration of methadone in Cohort 1 patients. (<b>C</b>) During maintenance methadone treatment, we found a significant positive correlation between methadone dose and the age-adjusted QTc interval was observed in total and in male patients, but a negative correlation in females.</p> "> Figure 2
<p>Association of <span class="html-italic">NOS1AP</span> rs164148 AA genotype with QTc intervals and analysis of <span class="html-italic">NOS1AP</span>-methadone interaction in men on methadone. (<b>A</b>) A cut-off adjusted QTc interval of ≤410 ms identified 100% of rs164148 AA carriers compared to none of the rs164148 GG carriers when receiving methadone at 30.6 ± 19.3 mg/day in male patients. (<b>B</b>) The PROC GLM model was used to explore the interaction between the rs164148 NOS1AP variant and methadone dose in relation to the adjusted QTc intervals during maintenance methadone treatment in male participants, the corresponding QTc interval from each genotype carriers taking a projected methadone dose of 40 mg/day, 60 mg/day, and 80 mg/day. There was no significant gene-drug interaction in contributing to the adjusted QTc intervals (P gene*methadone = 0.216) in carriers of the rs164148 AA genotype when compared to that observed for non-carriers.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Subjects
2.2. Measurement of QTc Interval by 12-Lead ECG
2.3. Genomic DNA Extraction, Genotyping, and Laboratory Tests
2.4. Statistical Analyses
3. Results
4. Discussion
4.1. Methadone-Associated QTc Prolongation and Sudden Cardiac Death
4.2. NOS1AP, a Genetic Modifier in Methadone-Associated QTc Prolongation
4.3. Clinical Implications
4.4. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Krantz, M.J.; Lewkowiez, L.; Hays, H.; Woodroffe, M.A.; Robertson, A.D.; Mehler, P.S. Torsade de pointes associated with very-high-dose methadone. Ann. Intern. Med. 2002, 137, 501–504. [Google Scholar] [CrossRef] [PubMed]
- Kornick, C.A.; Kilborn, M.J.; Santiago-Palma, J.; Schulman, G.; Thaler, H.T.; Keefe, D.L.; Katchman, A.N.; Pezzullo, J.C.; Ebert, S.N.; Woosley, R.L.; et al. QTc interval prolongation associated with intravenous methadone. Pain 2003, 105, 499–506. [Google Scholar] [CrossRef]
- Pearson, E.C.; Woosley, R.L. QT prolongation and torsades de pointes among methadone users: Reports to the FDA spontaneous reporting system. Pharmacoepidemiol. Drug Saf. 2005, 14, 747–753. [Google Scholar] [CrossRef] [PubMed]
- Ehret, G.B.; Voide, C.; Gex-Fabry, M.; Chabert, J.; Shah, D.; Broers, B.; Piguet, V.; Musset, T.; Gaspoz, J.M.; Perrier, A.; et al. Drug-induced long QT syndrome in injection drug users receiving methadone: High frequency in hospitalized patients and risk factors. Arch. Intern. Med. 2006, 166, 1280–1287. [Google Scholar] [CrossRef]
- Fanoe, S.; Hvidt, C.; Ege, P.; Jensen, G.B. Syncope and QT prolongation among patients treated with methadone for heroin dependence in the city of Copenhagen. Heart 2007, 93, 1051–1055. [Google Scholar] [CrossRef] [Green Version]
- Peles, E.; Bodner, G.; Kreek, M.J.; Rados, V.; Adelson, M. Corrected-QT intervals as related to methadone dose and serum level in methadone maintenance treatment (MMT) patients: A cross-sectional study. Addiction 2007, 102, 289–300. [Google Scholar] [CrossRef]
- Mattick, R.P.; Kimber, J.; Breen, C.; Davoli, M. Buprenorphine maintenance versus placebo or methadone maintenance for opioid dependence. Cochrane Database Syst. Rev. 2008, CD002207. [Google Scholar] [CrossRef]
- Chugh, S.S.; Socoteanu, C.; Reinier, K.; Waltz, J.; Jui, J.; Gunson, K. A community-based evaluation of sudden death associated with therapeutic levels of methadone. Am. J. Med. 2008, 121, 66–71. [Google Scholar] [CrossRef] [Green Version]
- Anchersen, K.; Clausen, T.; Gossop, M.; Hansteen, V.; Waal, H. Prevalence and clinical relevance of corrected QT interval prolongation during methadone and buprenorphine treatment: A mortality assessment study. Addiction 2009, 104, 993–999. [Google Scholar] [CrossRef]
- Katchman, A.N.; McGroary, K.A.; Kilborn, M.J.; Kornick, C.A.; Manfredi, P.L.; Woosley, R.L.; Ebert, S.N. Influence of opioid agonists on cardiac human ether-a-go-go-related gene K(+) currents. J. Pharmacol. Exp. Ther. 2002, 303, 688–694. [Google Scholar] [CrossRef] [Green Version]
- Gerber, J.G.; Rhodes, R.J.; Gal, J. Stereoselective metabolism of methadone N-demethylation by cytochrome P4502B6 and 2C19. Chirality 2004, 16, 36–44. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.C.; Ho, I.K.; Tsou, H.H.; Tian, J.N.; Hsiao, C.F.; Chen, C.H.; Tan, H.K.; Lin, L.; Wu, C.S.; Su, L.W.; et al. CYP2B6 polymorphisms influence the plasma concentration and clearance of the methadone S-enantiomer. J. Clin. Psychopharmacol. 2011, 31, 463–469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eap, C.B.; Crettol, S.; Rougier, J.S.; Schlapfer, J.; Sintra Grilo, L.; Deglon, J.J.; Besson, J.; Croquette-Krokar, M.; Carrupt, P.A.; Abriel, H. Stereoselective block of hERG channel by (S)-methadone and QT interval prolongation in CYP2B6 slow metabolizers. Clin. Pharmacol. Ther. 2007, 81, 719–728. [Google Scholar] [CrossRef]
- Ansermot, N.; Albayrak, O.; Schlapfer, J.; Crettol, S.; Croquette-Krokar, M.; Bourquin, M.; Deglon, J.J.; Faouzi, M.; Scherbaum, N.; Eap, C.B. Substitution of (R,S)-methadone by (R)-methadone: Impact on QTc interval. Arch. Intern. Med. 2010, 170, 529–536. [Google Scholar] [CrossRef] [Green Version]
- Arking, D.E.; Pfeufer, A.; Post, W.; Kao, W.H.; Newton-Cheh, C.; Ikeda, M.; West, K.; Kashuk, C.; Akyol, M.; Perz, S.; et al. A common genetic variant in the NOS1 regulator NOS1AP modulates cardiac repolarization. Nat. Genet. 2006, 38, 644–651. [Google Scholar] [CrossRef] [PubMed]
- Kao, W.H.; Arking, D.E.; Post, W.; Rea, T.D.; Sotoodehnia, N.; Prineas, R.J.; Bishe, B.; Doan, B.Q.; Boerwinkle, E.; Psaty, B.M.; et al. Genetic variations in nitric oxide synthase 1 adaptor protein are associated with sudden cardiac death in US white community-based populations. Circulation 2009, 119, 940–951. [Google Scholar] [CrossRef] [Green Version]
- Lehtinen, A.B.; Newton-Cheh, C.; Ziegler, J.T.; Langefeld, C.D.; Freedman, B.I.; Daniel, K.R.; Herrington, D.M.; Bowden, D.W. Association of NOS1AP genetic variants with QT interval duration in families from the Diabetes Heart Study. Diabetes 2008, 57, 1108–1114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, J.; Hu, C.; Hu, W.; Zhang, R.; Wang, C.; Qin, W.; Yu, W.; Xiang, K.; International Type 2 Diabetes 1q Consortium; Jia, W. A common variant of NOS1AP is associated with QT interval duration in a Chinese population with Type 2 diabetes. Diabet Med. 2010, 27, 1074–1079. [Google Scholar] [CrossRef] [Green Version]
- Jamshidi, Y.; Nolte, I.M.; Dalageorgou, C.; Zheng, D.; Johnson, T.; Bastiaenen, R.; Ruddy, S.; Talbott, D.; Norris, K.J.; Snieder, H.; et al. Common variation in the NOS1AP gene is associated with drug-induced QT prolongation and ventricular arrhythmia. J. Am. Coll. Cardiol. 2012, 60, 841–850. [Google Scholar] [CrossRef] [Green Version]
- Van Noord, C.; Aarnoudse, A.J.; Eijgelsheim, M.; Sturkenboom, M.C.; Straus, S.M.; Hofman, A.; Kors, J.A.; Newton-Cheh, C.; Witteman, J.C.; Stricker, B.H. Calcium channel blockers, NOS1AP, and heart-rate-corrected QT prolongation. Pharm. Genom. 2009, 19, 260–266. [Google Scholar] [CrossRef]
- Westaway, S.K.; Reinier, K.; Huertas-Vazquez, A.; Evanado, A.; Teodorescu, C.; Navarro, J.; Sinner, M.F.; Gunson, K.; Jui, J.; Spooner, P.; et al. Common variants in CASQ2, GPD1L, and NOS1AP are significantly associated with risk of sudden death in patients with coronary artery disease. Circ. Cardiovasc. Genet. 2011, 4, 397–402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, K.C.; Barth, A.S.; Sasano, T.; Kizana, E.; Kashiwakura, Y.; Zhang, Y.; Foster, D.B.; Marban, E. CAPON modulates cardiac repolarization via neuronal nitric oxide synthase signaling in the heart. Proc. Natl. Acad. Sci. USA 2008, 105, 4477–4482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rautaharju, P.M.; Kooperberg, C.; Larson, J.C.; LaCroix, A. Electrocardiographic predictors of incident congestive heart failure and all-cause mortality in postmenopausal women: The Women’s Health Initiative. Circulation 2006, 113, 481–489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, J.F.; Wu, T.C.; Chen, C.H.; Ni, Y.H.; Chen, H.L.; Hsu, H.Y.; Chang, M.H. Serum levels of interleukin-10 and interleukin-12 predict early, spontaneous hepatitis B virus e antigen seroconversion. Gastroenterology 2010, 138, 165–172.e3. [Google Scholar] [CrossRef]
- Eijgelsheim, M.; Aarnoudse, A.L.; Rivadeneira, F.; Kors, J.A.; Witteman, J.C.; Hofman, A.; van Duijn, C.M.; Uitterlinden, A.G.; Stricker, B.H. Identification of a common variant at the NOS1AP locus strongly associated to QT-interval duration. Hum. Mol. Genet. 2009, 18, 347–357. [Google Scholar] [CrossRef] [Green Version]
- Bennett, H.; Waser, N.; Johnston, K.; Kao, J.H.; Lim, Y.S.; Duan, Z.P.; Lee, Y.J.; Wei, L.; Chen, C.J.; Sievert, W.; et al. A review of the burden of hepatitis C virus infection in China, Japan, South Korea and Taiwan. Hepatol. Int 2015, 9, 378–390. [Google Scholar] [CrossRef]
- Chang, K.C.; Huang, C.L.; Liang, H.Y.; Chang, S.S.; Wang, Y.C.; Liang, W.M.; Lane, H.Y.; Chen, C.H.; Stephen Huang, S.K. Gender-specific differences in susceptibility to low-dose methadone-associated QTc prolongation in patients with heroin dependence. J. Cardiovasc. Electrophysiol. 2012, 23, 527–533. [Google Scholar] [CrossRef]
- Cruciani, R.A.; Sekine, R.; Homel, P.; Lussier, D.; Yap, Y.; Suzuki, Y.; Schweitzer, P.; Yancovitz, S.R.; Lapin, J.A.; Shaiova, L.; et al. Measurement of QTc in patients receiving chronic methadone therapy. J. Pain Symptom Manag. 2005, 29, 385–391. [Google Scholar] [CrossRef]
- Bednar, M.M.; Harrigan, E.P.; Ruskin, J.N. Torsades de pointes associated with nonantiarrhythmic drugs and observations on gender and QTc. Am. J. Cardiol. 2002, 89, 1316–1319. [Google Scholar] [CrossRef]
- Roden, D.M. Clinical practice. Long-QT syndrome. N. Engl. J. Med. 2008, 358, 169–176. [Google Scholar] [CrossRef]
- Krantz, M.J.; Kutinsky, I.B.; Robertson, A.D.; Mehler, P.S. Dose-related effects of methadone on QT prolongation in a series of patients with torsade de pointes. Pharmacotherapy 2003, 23, 802–805. [Google Scholar] [CrossRef] [PubMed]
- Arking, D.E.; Khera, A.; Xing, C.; Kao, W.H.; Post, W.; Boerwinkle, E.; Chakravarti, A. Multiple independent genetic factors at NOS1AP modulate the QT interval in a multi-ethnic population. PLoS ONE 2009, 4, e4333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Avery, C.L.; Sethupathy, P.; Buyske, S.; He, Q.; Lin, D.Y.; Arking, D.E.; Carty, C.L.; Duggan, D.; Fesinmeyer, M.D.; Hindorff, L.A.; et al. Fine-mapping and initial characterization of QT interval loci in African Americans. PLoS Genet. 2012, 8, e1002870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, J.G.; Avery, C.L.; Evans, D.S.; Nalls, M.A.; Meng, Y.A.; Smith, E.N.; Palmer, C.; Tanaka, T.; Mehra, R.; Butler, A.M.; et al. Impact of ancestry and common genetic variants on QT interval in African Americans. Circ. Cardiovasc. Genet. 2012, 5, 647–655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aouizerat, B.E.; Vittinghoff, E.; Musone, S.L.; Pawlikowska, L.; Kwok, P.Y.; Olgin, J.E.; Tseng, Z.H. GWAS for discovery and replication of genetic loci associated with sudden cardiac arrest in patients with coronary artery disease. BMC Cardiovasc. Disord. 2011, 11, 29. [Google Scholar] [CrossRef] [Green Version]
- Tomas, M.; Napolitano, C.; De Giuli, L.; Bloise, R.; Subirana, I.; Malovini, A.; Bellazzi, R.; Arking, D.E.; Marban, E.; Chakravarti, A.; et al. Polymorphisms in the NOS1AP gene modulate QT interval duration and risk of arrhythmias in the long QT syndrome. J. Am. Coll. Cardiol. 2010, 55, 2745–2752. [Google Scholar] [CrossRef] [Green Version]
- Shah, S.A.; Herrington, D.M.; Howard, T.D.; Divers, J.; Arnett, D.K.; Burke, G.L.; Kao, W.H.; Guo, X.; Siscovick, D.S.; Chakravarti, A.; et al. Associations between NOS1AP single nucleotide polymorphisms (SNPs) and QT interval duration in four racial/ethnic groups in the Multi-Ethnic Study of Atherosclerosis (MESA). Ann. Noninvasive Electrocardiol. 2013, 18, 29–40. [Google Scholar] [CrossRef]
- Tobin, M.D.; Kahonen, M.; Braund, P.; Nieminen, T.; Hajat, C.; Tomaszewski, M.; Viik, J.; Lehtinen, R.; Ng, G.A.; Macfarlane, P.W.; et al. Gender and effects of a common genetic variant in the NOS1 regulator NOS1AP on cardiac repolarization in 3761 individuals from two independent populations. Int. J. Epidemiol. 2008, 37, 1132–1141. [Google Scholar] [CrossRef] [Green Version]
- Post, W.; Shen, H.; Damcott, C.; Arking, D.E.; Kao, W.H.; Sack, P.A.; Ryan, K.A.; Chakravarti, A.; Mitchell, B.D.; Shuldiner, A.R. Associations between genetic variants in the NOS1AP (CAPON) gene and cardiac repolarization in the old order Amish. Hum. Hered. 2007, 64, 214–219. [Google Scholar] [CrossRef] [Green Version]
- Aarnoudse, A.J.; Newton-Cheh, C.; de Bakker, P.I.; Straus, S.M.; Kors, J.A.; Hofman, A.; Uitterlinden, A.G.; Witteman, J.C.; Stricker, B.H. Common NOS1AP variants are associated with a prolonged QTc interval in the Rotterdam Study. Circulation 2007, 116, 10–16. [Google Scholar] [CrossRef] [Green Version]
Variables | Cohort 1 (n = 122) | Cohort 2 (n = 319) | Total (n = 441) | p-Value |
---|---|---|---|---|
Age (years) | 37.65 ± 8.05 | 36.9 ± 7.86 | 37.1 ± 7.91 | 0.373 |
Sex | ||||
Male | 103 (84.43%) | 262 (82.13%) | 365 (82.77%) | 0.568 |
Female | 19 (15.57%) | 57 (17.87%) | 76 (17.23%) | |
Methadone dose (mg/day) | 42.54 ± 22.17 | 26.08 ± 15.84 | 30.64 ± 19.26 | <0.001 |
QTc (ms) | 426.85 ± 22.73 | 422.7 ± 22.2 | 423.85 ± 22.4 | 0.082 |
QT (ms) | 380.42 ± 52.2 | 377.18 ± 28.03 | 378.08 ± 36.32 | 0.517 |
HR (beats/min) | 75.14 ± 13.31 | 76.98 ± 13.1 | 76.48 ± 13.17 | 0.192 |
BUN (mg/dL) | 11 (8–13) | 10 (8–13) | 10 (8–13) | 0.206 |
Creatinine (mg/dL) | 0.85 (0.74–0.95) | 0.83 (0.73–0.93) | 0.83 (0.73–0.93) | 0.204 |
Sodium (meq/L) | 138 (136–140) | 138 (136–140) | 138 (136–140) | 0.545 |
Potassium (meq/L) | 3.6 (3.4–4.2) | 3.8 (3.5–4.1) | 3.8 (3.5–4.1) | 0.185 |
Calcium (mg/dL) | 8.7 (8.5–9) | 8.95 (8.6–9.15) | 8.8 (8.6–9.1) | 0.311 |
ALT (U/L) | 30 (24–40) | 31 (24–48) | 31 (24–44) | 0.637 |
AST (U/L) | 33 (24–55) | 34 (22–59) | 33.5 (23–57) | 0.596 |
γGT (U/L) | 22 (16–36) | 27 (17–47) | 25 (17–44) | 0.042 |
ALT (range, 5–40 U/L) | ||||
Normal | 89 (77.39%) | 208 (67.97%) | 297 (70.55%) | 0.059 |
Abnormal | 26 (22.61%) | 98 (32.03%) | 124 (29.45%) | |
AST (range, 5–34 U/L) | ||||
Normal | 62 (53.91%) | 156 (50.81%) | 218 (51.66%) | 0.571 |
Abnormal | 53 (46.09%) | 151 (49.19%) | 204 (48.34%) | |
γGT (range, 8–50 IU/L) | ||||
Normal | 93 (82.3%) | 236 (78.41%) | 329 (79.47%) | 0.382 |
Abnormal | 20 (17.7%) | 65 (21.59%) | 85 (20.53%) | |
HBs Ag | ||||
No | 92 (80.7%) | 254 (86.69%) | 346 (85.01%) | 0.129 |
Yes | 22 (19.3%) | 39 (13.31%) | 61 (14.99%) | |
HCV Ab | ||||
No | 22 (19.3%) | 56 (19.11%) | 78 (19.16%) | 0.966 |
Yes | 92 (80.7%) | 237 (80.89%) | 329 (80.84%) | |
Urine amphetamine test (>500 ng/mL) | ||||
Negative | 88 (76.52%) | 233 (75.16%) | 321 (75.53%) | 0.772 |
Positive | 27 (23.48%) | 77 (24.84%) | 104 (24.47%) | |
Self-reported cocaine use | ||||
No | 120 (100%) | 318 (100%) | 438 (100%) | 1.000 |
Yes | 0 (0%) | 0(0%) | 0 (0%) | |
Self-reported MDMA use | ||||
No | 120 (100%) | 318 (100%) | 438 (100%) | 1.000 |
Yes | 0 (0%) | 0(0%) | 0 (0%) | |
Self-reported ketamine use | ||||
No | 120 (100%) | 318 (100%) | 438 (100%) | 1.000 |
Yes | 0 (0%) | 0 (0%) | 0 (0%) | |
Taking concomitant medications | ||||
Estazolam | 1 (0.82%) | 2 (0.63%) | 3 (0.68%) | |
Flunitrazepam | 17 (13.92%) | 29 (9.12%) | 46 (10.43%) | |
Flunitrazepam/Estazolam | 0 (0%) | 1 (0.31%) | 1 (0.23%) | |
Flunitrazepam/Lorazepam | 0 (0%) | 1 (0.31%) | 1 (0.23%) | |
Flunitrazepam/Zolpidem | 1 (0.82%) | 0 (0%) | 1 (0.23%) | |
Tramadol | 0 (0%) | 2 (0.63%) | 2 (0.45%) | |
Zolpidem | 0 (0%) | 1 (0.31%) | 1 (0.23%) | |
Clonazepam | 1 (0.82%) | 0 (0%) | 1 (0.23%) | |
Drugs with known TdP risk a | 0 (0%) | 0 (0%) | 0 (0%) | 1.000 |
Drugs with possible TdP risk a | 0 (0%) | 2 (0.63%) | 2 (0.45%) | |
Drugs with conditional TdP risk a | 0 (0%) | 0 (0%) | 0 (0%) | 1.000 |
Frequency_n (%) | HW_p Value | Adjusted QTc (ms) | p-Value | |
---|---|---|---|---|
rs1415257 | ||||
GG | 204 (46.7%) | 0.663 | 425.5 ± 1.6 | Ref |
GA | 192 (43.9%) | 422.9 ± 1.6 | 0.247 | |
AA | 41 (9.4%) | 419.5 ± 3.5 | 0.114 | |
rs10494366 | ||||
GG | 205 (46.7%) | 1 | 425.3 ± 1.5 | Ref |
GT | 190 (43.3%) | 422.9 ± 1.6 | 0.279 | |
TT | 44 (10%) | 420.1 ± 3.3 | 0.158 | |
rs1572495 | ||||
CC | 290 (67%) | 0.655 | 423.9 ± 1.3 | Ref |
CT | 127 (29.3%) | 423.9 ± 2 | 0.991 | |
TT | 16 (3.7%) | 421 ± 5.6 | 0.623 | |
rs945713 | ||||
CC | 246 (57.1%) | 0.338 | 423.8 ± 1.4 | Ref |
CT | 164 (38.1%) | 423.6 ± 1.7 | 0.949 | |
TT | 21 (4.9%) | 427.3 ± 4.9 | 0.491 | |
rs1415263 | ||||
TT | 134 (30.9%) | 424.3 ± 1.9 | Ref | |
TC | 215 (49.7%) | 0.888 | 424.4 ± 1.5 | 0.948 |
CC | 84 (19.4%) | 420.9 ± 2.4 | 0.270 | |
rs6683968 | ||||
TT | 133 (30.6%) | 424.8 ± 1.9 | Ref | |
TG | 219 (50.3%) | 0.671 | 424.6 ± 1.5 | 0.938 |
GG | 83 (19.1%) | 420.3 ± 2.4 | 0.158 | |
rs2661818 | ||||
GG | 291 (66%) | 424.2 ± 1.5 | Ref | |
GC | 129 (29.3%) | 0.177 | 423.5 ± 1.9 | 0.771 |
CC | 21 (4.8%) | 419.7 ± 2.4 | 0.371 | |
rs3751284 | ||||
AA | 133 (30.6%) | 422 ± 2.3 | Ref | |
AG | 219 (50.3%) | 0.264 | 424.5 ± 1.6 | 0.367 |
GG | 83 (19.1%) | 424.4 ± 1.9 | 0.414 | |
rs1963645 | ||||
TT | 288 (65.9%) | 423.6 ± 1.3 | Ref | |
TC | 138 (31.6%) | 0.244 | 425.7 ± 1.9 | 0.351 |
CC | 11 (2.5%) | 411 ± 6.7 | 0.065 | |
rs1964052 | ||||
CC | 317 (72.2%) | 423.8 ± 1.2 | Ref | |
CT | 112 (25.5%) | 1 | 424.4 ± 2.1 | 0.792 |
TT | 10 (2.3%) | 414 ± 7 | 0.171 | |
rs164146 | ||||
GG | 312 (71.4%) | 423.8 ± 1.3 | ||
GC | 113 (25.9%) | 0.647 | 425.2 ± 2.1 | 0.543 |
CC | 12 (2.7%) | 412.1 ± 6.4 | 0.076 | |
rs164147 | ||||
CC | 315 (72.2%) | 423.8 ± 1.2 | Ref | |
CA | 111 (25.5%) | 1 | 425 ± 2.1 | 0.623 |
AA | 10 (2.3%) | 415.7 ± 7 | 0.257 | |
rs164148 | ||||
GG | 316 (71.7%) | 423.8 ± 1.2 | Ref | |
GA | 114 (25.9%) | 0.842 | 425.5 ± 2.1 | 0.494 |
AA | 11 (2.5%) | 408.2 ± 6.7 | 0.022 | |
rs1876986 | ||||
AA | 111 (25.5%) | 425.2 ± 2.1 | Ref | |
AG | 231 (53.1%) | 0.182 | 424.2 ± 1.5 | 0.704 |
GG | 93 (21.4%) | 421.2 ± 2.3 | 0.201 | |
rs164149 | ||||
AA | 195 (44.6%) | 424.8 ± 1.6 | Ref | |
AG | 203 (46.5%) | 0.176 | 423.7 ± 1.5 | 0.608 |
GG | 39 (8.9%) | 421 ± 3.5 | 0.326 | |
rs737641 | ||||
CC | 92 (21.1%) | 421.8 ± 2.3 | Ref | |
CT | 234 (53.7%) | 0.116 | 424.2 ± 1.5 | 0.383 |
TT | 110 (25.2%) | 425.1 ± 2.1 | 0.290 | |
rs164151 | ||||
TT | 310 (71.8%) | 423.5 ± 1.3 | Ref | |
TC | 111 (25.7%) | 0.777 | 425.4 ± 2.1 | 0.449 |
CC | 11 (2.5%) | 412.2 ± 6.7 | 0.096 |
SNP | Genotype | Frequency_n (%) | Univariate Analysis | Multivariate Analysis | ||
---|---|---|---|---|---|---|
rs164148 | Mean ± SE | p Value | Mean ± SE | p-Value | ||
Total (N = 441) | GG | 316 (71.7%) | 423.8 ± 1.3 | 423.8 ± 1.2 | ||
GA | 114 (25.9%) | 425.5 ± 2.1 | 0.492 | 425.5 ± 2.1 | 0.494 | |
AA | 11 (2.5%) | 406.8 ± 6.7 | 0.013 | 408.2 ± 6.7 | 0.022 | |
Male (n = 365) | GG | 262 (71.8%) | 423 ± 1.4 | 423 ± 1.4 | ||
GA | 93 (25.5%) | 425 ± 2.3 | 0.457 | 424.8 ± 2.3 | 0.491 | |
AA | 10 (2.7%) | 404.1 ± 7 | 0.009 | 405.9 ± 6.9 | 0.016 | |
Female (n = 76) | GG | 54 (71.1%) | 427.9 ± 3 | 427.9 ± 3 | ||
GA | 21 (27.6%) | 427.8 ± 4.8 | 0.984 | 428.1 ± 4.9 | 0.967 | |
AA | 1 (1.3%) | 434 ± 22.2 | 0.787 | 431.1 ± 23.5 | 0.891 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, K.-C.; Chen, K.-W.; Huang, C.-L.; Liao, W.-L.; Wu, M.-Y.; Lin, Y.-K.; Shiao, Y.-T.; Chung, W.-H.; Lin, Y.-N.; Lane, H.-Y. Association of a Common NOS1AP Variant with Attenuation of QTc Prolongation in Men with Heroin Dependence Undergoing Methadone Treatment. J. Pers. Med. 2022, 12, 835. https://doi.org/10.3390/jpm12050835
Chang K-C, Chen K-W, Huang C-L, Liao W-L, Wu M-Y, Lin Y-K, Shiao Y-T, Chung W-H, Lin Y-N, Lane H-Y. Association of a Common NOS1AP Variant with Attenuation of QTc Prolongation in Men with Heroin Dependence Undergoing Methadone Treatment. Journal of Personalized Medicine. 2022; 12(5):835. https://doi.org/10.3390/jpm12050835
Chicago/Turabian StyleChang, Kuan-Cheng, Ke-Wei Chen, Chieh-Liang Huang, Wen-Ling Liao, Mei-Yao Wu, Yu-Kai Lin, Yi-Tzone Shiao, Wei-Hsin Chung, Yen-Nien Lin, and Hsien-Yuan Lane. 2022. "Association of a Common NOS1AP Variant with Attenuation of QTc Prolongation in Men with Heroin Dependence Undergoing Methadone Treatment" Journal of Personalized Medicine 12, no. 5: 835. https://doi.org/10.3390/jpm12050835
APA StyleChang, K.-C., Chen, K.-W., Huang, C.-L., Liao, W.-L., Wu, M.-Y., Lin, Y.-K., Shiao, Y.-T., Chung, W.-H., Lin, Y.-N., & Lane, H.-Y. (2022). Association of a Common NOS1AP Variant with Attenuation of QTc Prolongation in Men with Heroin Dependence Undergoing Methadone Treatment. Journal of Personalized Medicine, 12(5), 835. https://doi.org/10.3390/jpm12050835