Early Yield Prediction Using Image Analysis of Apple Fruit and Tree Canopy Features with Neural Networks
<p>Sample apple tree at different times; left picture (<b>a</b>) was acquired in the early period after the June drop (period 1), about 3 months before harvest, right picture (<b>b</b>) was acquired during the ripening period (period 2), about 15 days before harvest.</p> "> Figure 2
<p>Outline of the processing steps.</p> "> Figure 3
<p>Image of same tree at different times, (<b>a</b>) in July; (<b>b</b>) in the beginning of September.</p> "> Figure 4
<p>Proposed algorithm for leaf discrimination; an example of image processing.</p> "> Figure 5
<p>Example of an image of an apple tree with colour-coded mapping of colour differences between G (green) and B (blue) for each pixel, showing the leaves as bright colour dots and the background in deep blue.</p> "> Figure 6
<p>Yield prediction for 2011 based on (<b>a</b>) “Prediction Model 1” for young apple fruit in July and (<b>b</b>) “Prediction Model 2” for ripe apple fruit in September for the subsequent year (<span class="html-italic">n</span> = 30 trees).</p> "> Figure 7
<p>Yield prediction for 2013 based on the prediction “Pinova” Model for young apple fruit in July for the subsequent year (<span class="html-italic">n</span> = 34 trees).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description and Image Acquisition
2.2. Apple Fruit and Leaf Feature Description
2.3. Fruit Identification and Feature Extraction (Step 1)
2.4. Leaf Identification and Feature Extraction (Step 2)
2.5. Development of BPNN Yield Prediction Model (Step 3)
- -
- NI is the number of input neurons,
- -
- NO is the number of output neurons,
- -
- NH is the number of hidden neurons,
- -
- NA is the number of the neurons, which can be added in hidden neurons based on MSE.
2.6. The Measures for Model Evaluation
3. Results
3.1. Data Analysis
3.2. BPNN Model Structure and Validation
3.3. Yield Prediction for Subsequent Year
3.4. Yield Prediction for Other Apple Varieties
4. Discussion
5. Conclusions
6. Outlook
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
ANN | Artificial neural network |
BPNN | back propagation neural network |
References
- Wulfsohn, D.; Zamora, F.A.; Téllez, C.P.; Lagos, I.Z.; Marta, G.F. Multilevel systematic sampling to estimate total fruit number for yield forecasts. Precis. Agric. 2012, 13, 256–275. [Google Scholar] [CrossRef]
- Stajnko, D.; Rakun, J.; Blanke, M. Modelling apple fruit yield using image analysis for fruit colour, shape and texture. Europ. J. Hortic. Sci. 2009, 74, 260–267. [Google Scholar]
- Wachs, J.P.; Sturm, H.J.; Burks, F.; Akhanais, V. Low and high-level visual feature-based apple detection from multi-modal images. Precis. Agric. 2010, 11, 717–735. [Google Scholar] [CrossRef]
- Blanke, M.M. Prediction of apple yields in Europe—Present and new approaches in research. In Proceedings of the 106th Annual Meeting of the Washington State Horticultural Association (WSHA), Yakima, WA, USA, 8–10 December 2011; Smith, L., Ed.; WSHA Publishing: Yakima, WA, USA, 2011; pp. 68–75. [Google Scholar]
- Zhou, R.; Damerow, L.; Sun, Y.; Blanke, M. Using colour features of cv. ‘Gala’ apple fruits in an orchard in image processing to predict yield. Precis. Agric. 2012, 13, 568–580. [Google Scholar] [CrossRef]
- Rozman, C.; Cvelbar, U.; Tojnko, S.; Stajnko, D.; Karmen, P.; Pavlovie, M.; Vracko, M. Application of Neural Networks and Image Visualization for Early Predicted of Apple Yield. Erwerbs-Obstbau 2012, 54, 69–76. [Google Scholar]
- Stajnko, D.; Rozmana, Č.; Pavloviča, M.; Beber, M.; Zadravec, P. Modeling of ‘Gala’ apple fruits diameter for improving the accuracy of early yield prediction. Sci. Hortic. 2013, 160, 306–312. [Google Scholar] [CrossRef]
- Kelman, E.; Linker, R. Vision-based localisation of mature apples in trees images using convexity. Biosyst. Eng. 2014, 118, 174–185. [Google Scholar] [CrossRef]
- Ye, X.; Sakai, K.; Garciano, L.O.; Asada, S.I.; Sasao, A. Estimation of citrus yield from airborne hyperspectral images using a neural network model. Ecol. Model. 2006, 198, 426–432. [Google Scholar] [CrossRef]
- Linker, R.; Cohen, O.; Naor, A. Determination of the number of green apples in RGB images recorded in orchards. Comput. Electron. Agric. 2012, 81, 45–57. [Google Scholar] [CrossRef]
- O'Neal, M.R.; Engel, B.A.; Ess, D.R.; Frankenberger, J.R. Neural network prediction of maize yield using alternative data coding algorithms. Biosyst. Eng. 2002, 83, 31–45. [Google Scholar] [CrossRef]
- Sezgin, M.; Sankur, B. Survey over image thresholding techniques and quantitative performance evaluation. J. Electron. Imaging 2004, 13, 146–165. [Google Scholar]
- Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning Representations by Back-Propagating Errors. Nature 1986, 323, 533–536. [Google Scholar] [CrossRef]
- Esmaeili, A.; Tarazkar, M.H. Prediction of shrimp growth using an artificial neural network and regression models. Aquac. Int. 2010, 19, 705–713. [Google Scholar] [CrossRef]
- Greene, W.H. Econometric Analysis, 4th ed.; Prentice-Hall: Englewood Cliffs, NJ, USA, 2000; p. 1007. [Google Scholar]
- Annamalai, P.; Lee, W.S.; Burks, T. Color Vision Systems for Estimating Citrus Yield in Real-Time. In Proceedings of the ASAE/CSAE Annual International Meeting, Ottawa, ON, Canada, 1–4 August 2014.
- Lee, W.S.; Chinchuluun, R.; Ehsani, R. Citrus fruit identification using machine vision for a canopy shake and catch harvester. Acta Hortic. 2009, 824, 217–222. [Google Scholar]
- Zaman, Q.U.; Schumann, A.W.; Percival, D.C.; Gordon, R.J. Estimation of wild blueberry fruit yield using digital color photography. Trans. ASABE 2008, 51, 1539–1544. [Google Scholar] [CrossRef]
- Cheng, H.; Damerow, L.; Sun, Y.; Blanke, M.M. Detection of apple fruit in an orchard for early yield prediction as dependent on crop load. Acta Hortic. 2016, 1137, 59–66. [Google Scholar] [CrossRef]
- Aggelopoulou, A.D.; Bochtis, D.; Fountas, S.; Swain, K.C.; Gemtos, T.A.; Nanos, G.D. Yield prediction in apple orchards based on image processing. Precis. Agric. 2011, 12, 448–456. [Google Scholar] [CrossRef]
Season | Numbers of Trees | Number of Images (Period 1, Period 2) | Yield/Tree (mean ± SD) | Tree Fruit Load (%) High, Mod, Low |
---|---|---|---|---|
2009 | 60 | 60; 60 | 20.62 ± 4.90 | 20; 68; 12 |
2010 | 90 | 90; 90 | 16.68 ± 5.43 | 18; 63; 19 |
2009 & 2010 | 150 | 150; 150 | 18.26 ± 5.55 | 15; 67; 18 |
2011 | 30 | 30; 30 | 18.63 ± 4.17 | 10; 70; 20 |
Parameter | Description | Parameter | Description |
---|---|---|---|
IA | Sum of pixels of the whole images | YE | The estimated yield of apple tree |
FA | Sum of pixels belonging to apple fruits | F1 | FA/IA |
FN | Number of fruit | F2 | FN/200 |
FCA | Sum of pixels belonging to apple clusters | F3 | (FA– FCA)/IA |
LA | Sum of pixels belonging to foliage | F4 | LA/IA |
YA | The actual yield of apple tree | F5 | YA/50 |
MAPE | Mean Absolute Percentage Error | SD | Standard deviation of the error |
MFE | Mean Forecast Error | RMSE | Root Mean Square Error |
Sets | Set 1 | Set 2 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Tree | F1 | F2 | F3 | F4 | F5 | F1 | F2 | F3 | F4 | F5 | |
1 | 0.0159 | 0.3100 | 0.0159 | 0.5495 | 0.4571 | 0.0552 | 0.5100 | 0.0331 | 0.2278 | 0.4571 | |
2 | 0.0041 | 0.1800 | 0.0041 | 0.4265 | 0.3355 | 0.0279 | 0.3850 | 0.0242 | 0.2100 | 0.3355 | |
3 | 0.0103 | 0.3100 | 0.0103 | 0.4718 | 0.3808 | 0.0348 | 0.4900 | 0.0199 | 0.1900 | 0.3808 | |
4 | 0.0088 | 0.2550 | 0.0088 | 0.7245 | 0.3679 | 0.0347 | 0.6100 | 0.0199 | 0.2052 | 0.3679 | |
5 | 0.0214 | 0.5250 | 0.0193 | 0.7022 | 0.4423 | 0.0590 | 0.5500 | 0.0297 | 0.2066 | 0.4423 | |
6 | 0.0081 | 0.3850 | 0.0081 | 0.5714 | 0.4509 | 0.0318 | 0.5350 | 0.0251 | 0.2372 | 0.4509 | |
7 | 0.0108 | 0.4000 | 0.0060 | 0.5024 | 0.3611 | 0.0320 | 0.4700 | 0.0159 | 0.1893 | 0.3611 | |
8 | 0.0125 | 0.3750 | 0.0125 | 0.7344 | 0.3648 | 0.0440 | 0.5400 | 0.0329 | 0.2084 | 0.3648 | |
9 | 0.0060 | 0.3100 | 0.0060 | 0.4066 | 0.5106 | 0.0549 | 0.5000 | 0.0327 | 0.3360 | 0.5106 | |
10 | 0.0149 | 0.3900 | 0.0149 | 0.7559 | 0.3863 | 0.0537 | 0.5100 | 0.0329 | 0.2101 | 0.3863 | |
11 | 0.0191 | 0.4550 | 0.0170 | 0.7116 | 0.4431 | 0.0596 | 0.4350 | 0.0340 | 0.1902 | 0.4431 | |
12 | 0.0096 | 0.3350 | 0.0096 | 0.4149 | 0.3944 | 0.0445 | 0.5750 | 0.0269 | 0.1753 | 0.3944 | |
13 | 0.0144 | 0.4150 | 0.0144 | 0.7099 | 0.4131 | 0.0546 | 0.3900 | 0.0229 | 0.2593 | 0.4131 | |
14 | 0.0180 | 0.3150 | 0.0148 | 0.6459 | 0.3526 | 0.0585 | 0.3850 | 0.0173 | 0.1663 | 0.3526 | |
15 | 0.0041 | 0.1800 | 0.0041 | 0.4265 | 0.3355 | 0.0279 | 0.3850 | 0.0242 | 0.2100 | 0.3355 |
Parameter | Value | Parameter | Value |
---|---|---|---|
Input | F1, F2, F3, F4 | Hidden layer transfer function | Logarithmic sigmoid transfer function |
Target | F5 | Output layer transfer function | Linear transfer function |
Output | Forecast value | Learning function | Gradient descent learning function |
Performance function | MSE | Training function | Levenberg-Marquardt back-propagation |
Parameter | Structure | Samples (Trees) of 2009 and 2010 | RMSE in kg/Tree | MAPE (%) | MFE | R2 | |
---|---|---|---|---|---|---|---|
Model | |||||||
Model 1 | Train set | 4-12-1 | 135 | 2.34 | 10.67 | −0.05 | 0.81 |
Test set | 15 | 2.53 | 12.40 | 0.16 | 0.80 | ||
Model 2 | Train set | 4-11-1 | 135 | 2.27 | 8.9 | −0.03 | 0.83 |
Test set | 15 | 2.31 | 10.36 | −0.06 | 0.82 |
Model | Actual Yield (A) in kg per 150 Trees | Predicted Yield (P) in kg per 150 Trees | Difference (|A – P|) in kg | Mean Difference in kg per Tree |
---|---|---|---|---|
Model 1 | 2736 | 2744 | 8 | 0.05 |
Model 2 | 2736 | 2740 | 4 | 0.03 |
Parameter | Structure | Samples (Trees) of 2012 | RMSE in kg/Tree | MAPE (%) | MFE | R2 | |
---|---|---|---|---|---|---|---|
Model | |||||||
“Pinova” Model | Train set | 4-10-1 | 80 | 2.24 | 11.45 | −0.14 | 0.89 |
Test set | 10 | 2.53 | 14.19 | 0.06 | 0.88 |
Model | Actual Yield (A) in kg per 100 Trees | Predicted Yield (P) in kg per 100 Trees | Difference (|A–P|) in kg | Mean Difference in kg per Tree |
---|---|---|---|---|
“Pinova” Model | 1817 | 1822 | 5 | 0.06 |
© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, H.; Damerow, L.; Sun, Y.; Blanke, M. Early Yield Prediction Using Image Analysis of Apple Fruit and Tree Canopy Features with Neural Networks. J. Imaging 2017, 3, 6. https://doi.org/10.3390/jimaging3010006
Cheng H, Damerow L, Sun Y, Blanke M. Early Yield Prediction Using Image Analysis of Apple Fruit and Tree Canopy Features with Neural Networks. Journal of Imaging. 2017; 3(1):6. https://doi.org/10.3390/jimaging3010006
Chicago/Turabian StyleCheng, Hong, Lutz Damerow, Yurui Sun, and Michael Blanke. 2017. "Early Yield Prediction Using Image Analysis of Apple Fruit and Tree Canopy Features with Neural Networks" Journal of Imaging 3, no. 1: 6. https://doi.org/10.3390/jimaging3010006
APA StyleCheng, H., Damerow, L., Sun, Y., & Blanke, M. (2017). Early Yield Prediction Using Image Analysis of Apple Fruit and Tree Canopy Features with Neural Networks. Journal of Imaging, 3(1), 6. https://doi.org/10.3390/jimaging3010006