Mapping Quantitative Observer Metamerism of Displays
<p>Spectral power distributions of the RGB primaries of a laser (solid lines) and a xenon-arc (dashed lines) DLP cinema projector, normalized to the peak of their most powerful primary.</p> "> Figure 2
<p>Stiles and Burch (1955) 2-deg individual color-matching functions for red, green and blue primaries.</p> "> Figure 3
<p>The two 10-deg datasets of cone fundamentals used in the calculations (black lines): AS10-LMSset constituted of 151 individuals (<b>left</b>) and SB10-LMSset (<b>right</b>) constituted of 51 individuals. In both plots, the Stockman and Sharpe (2000) 10-deg cone fundamentals are reported (red lines). All the functions in the two plots are normalized to the same area.</p> "> Figure 4
<p>(<b>Left</b>): A set of observer metamers produced with a xenon-arc DLP projector for the 10-LMS2000 standard observer (solid magenta line) and the 51 individual observers of SB10-LMSset (black dashed lines). (<b>Right</b>): Corresponding chromaticity values in the CIE 1976 UCS plot, constituting an OM-cloud (standard observer in magenta and individual observers in black).</p> "> Figure 5
<p>OM-clouds for xenon-arc (<b>left</b>) and laser (<b>right</b>) DLP projectors, whose primaries are reported in <a href="#jimaging-09-00227-f001" class="html-fig">Figure 1</a>. The white circles in the center of the clouds correspond to 10-LMS2000 and have the same positions in the two plots. The surrounding black circles correspond to the individual observers. The convex hull is marked in white for all clouds. The values are computed using AS10-LMSset (<b>top</b>) and SB10-LMSset (<b>bottom</b>).</p> "> Figure 6
<p>OM-index displayed as heatmaps for the whole gamut of the analyzed displays considering the two different datasets. Xenon-arc on the left and laser on the right, AS10-LMSset at the top and SB10-LMSset at the bottom.</p> "> Figure 7
<p>The four ‘OM-ColorCheckers’ visualizing the color differences between the observer metamers as Adobe RGB color renderings and as <math display="inline"><semantics> <mi mathvariant="normal">Δ</mi> </semantics></math>E2000 heatmaps, considering the two displays and the two LMS datasets. Xenon-arc on the left and laser on the right, AS10-LMSset at the top and SB10-LMSset at the bottom.</p> ">
Abstract
:1. Introduction
2. Related Work
3. Materials and Methods
3.1. The LMS Approach
3.2. Measurement of Displays’ Primaries
3.3. Datasets of Individual Cone Fundamentals
3.3.1. Calculated Cone Fundamentals from Inferred CMFs—AS10-LMSset
3.3.2. Estimated Cone Fundamentals from Measured CMFs—SB10-LMSset
3.4. Observer Metamers
3.5. Observer Metamerism Index
4. Results
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CMF | Color-Matching Functions (one set of three functions) |
LMS | Cone Fundamentals (Long, Medium and Short) |
OM | Observer Metamerism |
SPD | Spectral Power Distribution |
References
- Vos, J.J.; Walraven, P.L. On the derivation of the foveal receptor primaries. Vis. Res. 1971, 11, 799–818. [Google Scholar] [CrossRef]
- Nayatani, Y.; Hashimoto, K.; Takahama, K.; Sobagaki, H. Comparison of methods for assessing observer metamerism. Color Res. Appl. 1985, 10, 147–155. [Google Scholar] [CrossRef]
- Metamerism and Color Inconstancy. In Billmeyer and Saltzman’s Principles of Color Technology; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2019; Chapter 8; pp. 157–168. [CrossRef]
- Nimeroff, I.; Rosenblatt, J.R.; Dannemiller, M.C. Variability of Spectral Tristimulus Values. J. Res. Natl. Bur. Stand. Sect. Phys. Chem. 1961, 65A, 475–483. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Hanselaer, P.; Smet, K.A.G. Impact of Color-Matching Primaries on Observer Matching: Part I—Accuracy. LEUKOS 2022, 18, 104–126. [Google Scholar] [CrossRef]
- CIE. CIE 1931 Colour-Matching Functions, 2 Degree Observer; Technical Report; International Commission on Illumination: Vienna, Austria, 2019. [Google Scholar] [CrossRef]
- Alfvin, R.L.; Fairchild, M.D. Observer variability in metameric color matches using color reproduction media. Color Res. Appl. 1997, 22, 174–188. [Google Scholar] [CrossRef]
- Lipton, L. The Cinema in Flux; Springer: New York, NY, USA, 2021. [Google Scholar]
- Ramanath, R. Minimizing observer metamerism in display systems. Color Res. Appl. 2009, 34, 391–398. [Google Scholar] [CrossRef]
- Asano, Y.; Fairchild, M.D.; Blondé, L.; Morvan, P. Observer Variability in Color Image Matching on a LCD monitor and a Laser Projector. In Proceedings of the 22nd Color and Imaging Conference 2014, Boston, MA, USA, 3–7 November 2014. [Google Scholar]
- Hu, Y.; Wei, M.; Luo, M.R. Observer metamerism to display white point using different primary sets. Opt. Express 2020, 28, 20305–20323. [Google Scholar] [CrossRef] [PubMed]
- Long, D.L.; Fairchild, M.D. Observer metamerism models and multiprimary display systems. SMPTE Motion Imaging J. 2016, 125, 18–29. [Google Scholar] [CrossRef]
- Bodner, B.; Robinson, N.; Atkins, R.; Daly, S. 78-1: Correcting Metameric Failure of Wide Color Gamut Displays. SID Symp. Dig. Tech. Pap. 2018, 49, 1040–1043. [Google Scholar] [CrossRef]
- Bai, C.Y.H.; Ou, L.C. Observer variability study and method to implement observer categories for novel light source projection system. Color Res. Appl. 2021, 46, 1019–1033. [Google Scholar] [CrossRef]
- Ko, M.; Kwak, Y.; Seo, G.; Kim, J.; Moon, Y. Reducing the CIE colorimetric matching failure on wide color gamut displays. Opt. Express 2023, 31, 5670–5686. [Google Scholar] [CrossRef] [PubMed]
- Special Metamerism Index: Change in Observer; Technical Report 80; CIE Central Bureau: Vienna, Austria, 1989.
- Sarkar, A. CIE Special Metamerism Index: Change in Observer. In Encyclopedia of Color Science and Technology; Luo, R., Ed.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 1–9. [Google Scholar] [CrossRef]
- Fairchild, M.D.; Heckaman, R.L. Metameric Observers: A Monte Carlo Approach. In Proceedings of the 21st Color and Imaging Conference 2013, Albuquerque, NM, USA, 4–8 November 2013. [Google Scholar]
- Asano, Y. Individual Colorimetric Observers for Personalized Color Imaging. Ph.D. Thesis, Rochester Institute of Technology, Rochester, NY, USA, 2015. [Google Scholar]
- Long, D.L.; Fairchild, M.D. Modeling Observer Variability and Metamerism Failure in Electronic Color Displays. J. Imaging Sci. Technol. 2014, 58, 030402-1–030402-20. [Google Scholar] [CrossRef]
- Xie, H.; Farnand, S.P.; Murdoch, M.J. Observer metamerism in commercial displays. J. Opt. Soc. Am. A 2020, 37, A61–A69. [Google Scholar] [CrossRef] [PubMed]
- Le Moan, S.; Tanksale, T.M.; Byshko, R.; Urban, P. An observer-metamerism sensitivity index for electronic displays. J. Soc. Inf. Disp. 2017, 25, 554–560. [Google Scholar] [CrossRef]
- FOGRA. Softproof & Lighting—Colour Matching Functions. 2021. Available online: https://fogra.org/en/downloads/work-tools/softproof-lighting (accessed on 31 August 2023).
- Stiles, W.; Burch, J. NPL Colour-matching Investigation: Final Report (1958). Opt. Acta Int. J. Opt. 1959, 6, 1–26. [Google Scholar] [CrossRef]
- Trezona, P.W. Individual observer data for the 1955 Stiles-Burch 2 degrees pilot investigation. J. Opt. Soc. Am. Opt. Image Sci. 1987, 4, 769–782. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.; Murdoch, M. Effect of Color Gamut and Luminance on Observer Metamerism in HDR Displays; Rochester Institute of Technology: Rochester, NY, USA, 2020. [Google Scholar] [CrossRef]
- Kennel, G. Reference Projector and Environment. In Color and Mastering for Digital Cinema; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Asano, Y. Observer Function Database-Asano (2015). 2019. Available online: https://doi.org/10.5281/zenodo.3252742 (accessed on 31 August 2023).
- Color and Vision Research Labs. Stiles & Burch Individual 10-deg Colour Matching Data. 2021. Available online: http://www.cvrl.org/ (accessed on 31 August 2023).
- Andersen, C.F.; Finlayson, G.D.; Connah, D. Estimating individual cone fundamentals from their color-matching functions. JOSA A 2016, 33, 1579–1588. [Google Scholar] [CrossRef] [PubMed]
- Stockman, A.; Rider, A.T. Formulae for generating standard and individual human cone spectral sensitivities. Color Res. Appl. 2023, 48, 818–840. [Google Scholar] [CrossRef]
- Finlayson, G.; Zhu, Y.; Gong, H. Using a simple colour pre-filter to make cameras more colorimetric. In Proceedings of the 26th Color and Imaging Conference 2018, Vancouver, BC, Canada, 12–16 November 2018. [Google Scholar]
- Andersen, C.F.; Farup, I.; Finlayson, G.D. Aligning Individual Colour-Matching Functions by a Colour Filter. manuscript in preparation.
- Stockman, A.; Sharpe, L.T. The spectral sensitivities of the middle- and long-wavelength-sensitive cones derived from measurements in observers of known genotype. Vis. Res. 2000, 40, 1711–1737. [Google Scholar] [CrossRef] [PubMed]
- ISO/CIE 11664-5:2016; Colorimetry—Part 5: CIE 1976 L*u*v* Colour Space and u’, v’ Uniform Chromaticity Scale Diagram. International Commission on Illumination (CIE): Geneva, Switzerland, 2016.
- McCamy, C.S.; Marcus, H.; Davidson, J.G. A color-rendition chart. J. Appl. Photogr. Eng. 1976, 2, 95–99. [Google Scholar]
- ISO 12640-4:2011; Graphic Technology—Prepress Digital Data Exchange—Part 4: Wide Gamut Display-Referred Standard Colour Image Data [Adobe RGB (1998)/SCID]. ISO: Geneva, Switzerland, 2011.
- CIE 142:2001; Improvement to Industrial Colour-Difference Evaluation. International Commission on Illumination (CIE): Geneva, Switzerland, 2001.
OM-Index | Xenon-Arc | Laser | ||
---|---|---|---|---|
avg | max | avg | max | |
AS10-LMSset | 1.46 | 3.83 | 1.94 | 3.38 |
SB10-LMSset | 0.86 | 2.87 | 1.31 | 2.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trumpy, G.; Andersen, C.F.; Farup, I.; Elezabi, O. Mapping Quantitative Observer Metamerism of Displays. J. Imaging 2023, 9, 227. https://doi.org/10.3390/jimaging9100227
Trumpy G, Andersen CF, Farup I, Elezabi O. Mapping Quantitative Observer Metamerism of Displays. Journal of Imaging. 2023; 9(10):227. https://doi.org/10.3390/jimaging9100227
Chicago/Turabian StyleTrumpy, Giorgio, Casper Find Andersen, Ivar Farup, and Omar Elezabi. 2023. "Mapping Quantitative Observer Metamerism of Displays" Journal of Imaging 9, no. 10: 227. https://doi.org/10.3390/jimaging9100227
APA StyleTrumpy, G., Andersen, C. F., Farup, I., & Elezabi, O. (2023). Mapping Quantitative Observer Metamerism of Displays. Journal of Imaging, 9(10), 227. https://doi.org/10.3390/jimaging9100227