Methods for Assessment and Monitoring of Light Pollution around Ecologically Sensitive Sites
<p>Evolution of the upward radiance from nighttime operations at the Thompson Creek Mine in Custer County, Idaho, U.S., between 2013 and 2017. In each of the four panels, color-coded Visible Infrared Imaging Radiometer Day-Night Band (VIIRS-DNB) radiance data from the National Oceanic and Atmospheric Administration/NASA Suomi National Polar-orbiting Partnership satellite are overlaid on a grayscale Landsat 8 Operational Land Imager context image obtained on 24 July 2016. The colors used to map the VIIRS-DNB radiance data range from 0.25 (darkest blue) to 40 (red) in units of nW cm<math display="inline"><semantics> <msup> <mrow/> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </msup> </semantics></math> sr<math display="inline"><semantics> <msup> <mrow/> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </semantics></math>. The images are centered near 44<math display="inline"><semantics> <msup> <mrow/> <mo>∘</mo> </msup> </semantics></math>17′52.7″ N 114<math display="inline"><semantics> <msup> <mrow/> <mo>∘</mo> </msup> </semantics></math>31′21.7″ W and are oriented following the usual cartographic convention of north up, east right. A 5-km scale bar is shown in the lower left corner of each frame. The labels “A” and “B” in the upper-left panel indicate the open-pit molybdenum mine and its tailing pond, respectively.</p> "> Figure 2
<p>National Aeronautics and Space Administration photo ISS045-E-155026 of the city of Calgary, Canada, obtained by an astronaut aboard the International Space Station at 0707 UTC on 28 November 2015. The true-color image is oriented according to the usual cartographic convention with north up and east right, and a five-kilometer scale bar is provided in the lower right corner. The courses of major waterways, including the Bow River, are conspicuous as a series of sinuous silhouettes seen against the surrounding city lights. The image also shows two prominent protected areas within the city: Nose Hill Municipal Park (A) and Fish Creek Provincial Park (B).</p> "> Figure 3
<p>(<b>a</b>) An all-sky image of the night sky from Tumacácori National Historical Park in Arizona, U.S., obtained on the night of 5 February 2018. The view is centered on the zenith, and the cardinal points on the horizon are indicated in red letters. The image orientation follows the astronomical convention for all-sky imagery (north at top and east left). The color bar gives sky luminances in units of mcd m<math display="inline"><semantics> <msup> <mrow/> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </msup> </semantics></math>. Sources of natural and artificial light are labeled; anthropogenic sources and their radial distances from the site are listed. (<b>b</b>) VIIRS-DNB annual cloud-free composite upward radiance data (false colors) for southeast Arizona, U.S., in 2017 overlaid on a Google Map base. Radiances are given in units of nW cm<math display="inline"><semantics> <msup> <mrow/> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </msup> </semantics></math> sr<math display="inline"><semantics> <msup> <mrow/> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </semantics></math> according to the color key at the lower left, and a 50-kilometer scale bar is shown at the lower right. North is up, and east is right, according to the usual cartographic convention. The location of Tumacácori National Historical Park is indicated by the five-pointed star at the bottom-center. Other locations referenced in (a) are labeled. Background map copyright 2019 Google, INEGI, used with permission.</p> "> Figure 4
<p>An application of drone-based aerial imagery to the identification of artificial light sources on the ground. (<b>a</b>) A daytime satellite image of Bassegoda Park, a camping facility in Girona, Catalonia. Image copyright 2019 Google, INEGI, used with permission. (<b>b</b>) A color digital image of the site at night. The image was obtained by a drone flying at an altitude of approximately 100 m above the site. The locations of individual artificial light sources are identified by “pools” of light beneath each, indicating reflection from the ground. The scene is dominated by “warm,” low-pressure sodium lighting, except for two tube fluorescent luminaires near the park entrance station (white sources at right). North is up and east right in both images, and the 50-m scale bar in the lower right corner is common to both.</p> "> Figure 5
<p>Two methods of estimating the spatial distribution of zenithal night sky brightness over South Downs National Park, England. (<b>a</b>) Interpolated map of over 20,000 individual Sky Quality Meter measurements obtained in 2014–2015 during the park’s bid for International Dark-Sky Association (IDA) International Dark Sky Reserve status. (<b>b</b>) Map of implied visual-band zenith luminance derived from remote sensing measurements of upward radiance described in [<a href="#B1-jimaging-05-00054" class="html-bibr">1</a>] during 2015. In both panels, the park boundary is indicated by the solid black line. The false colors in both maps indicate the sky luminance in units of magnitudes per square arcsecond; note that the colors in both maps correspond to different ranges of luminance. The 20-km scale bar at the lower right is common to both maps, and both are oriented according to the usual cartographic convention (north up, east right).</p> "> Figure 6
<p>Two views of the modeled anthropogenic component of night sky brightness as seen from Oxbow Overlook in Theodore Roosevelt National Park, U.S., on 1 October 2010 (top) and 9 May 2013 (bottom). These all-sky maps, centered on north (0<math display="inline"><semantics> <msup> <mrow/> <mo>∘</mo> </msup> </semantics></math> azimuth), are rendered in the Hammer–Aitoff projection with lines of constant altitude and azimuth shown. Calibrated night sky luminance data were obtained using the method described in [<a href="#B109-jimaging-05-00054" class="html-bibr">109</a>], and a model of the natural sources of light in the night sky according to [<a href="#B106-jimaging-05-00054" class="html-bibr">106</a>] was subtracted to yield the angular distribution of anthropogenic light. The false colors indicate luminance in units of visual magnitudes per square arcsecond, indicated by the color bar at the upper left. The data were obtained and calibrated by the U.S. National Park Service Natural Sounds and Night Skies Division.</p> ">
Abstract
:Simple Summary
Abstract
1. Introduction
2. Current Methods
2.1. Remote Sensing of Upward Radiance
2.2. Single-Channel Radiometry
2.3. Calibrated All-Sky Imagery
3. Recent Developments
3.1. Drone-Based Aerial Imaging
3.2. Interpolated Single-Channel Detector Maps
3.3. Temporal Monitoring
4. Future Prospects
Funding
Acknowledgments
Conflicts of Interest
References
- Falchi, F.; Cinzano, P.; Duriscoe, D.; Kyba, C.; Elvidge, C.; Baugh, K.; Portnov, B.; Rybnikova, N.; Furgoni, R. The new world atlas of artificial night sky brightness. Sci. Adv. 2016, 2. [Google Scholar] [CrossRef] [PubMed]
- Kyba, C.C.M.; Kuester, T.; Sánchez de Miguel, A.; Baugh, K.; Jechow, A.; Hölker, F.; Bennie, J.; Elvidge, C.D.; Gaston, K.J.; Guanter, L. Artificially lit surface of Earth at night increasing in radiance and extent. Sci. Adv. 2017, 3. [Google Scholar] [CrossRef]
- Boyce, P.R. The benefits of light at night. Build. Environ. 2019, 151, 356–367. [Google Scholar] [CrossRef]
- La Sorte, F.A.; Fink, D.; Buler, J.J.; Farnsworth, A.; Cabrera-Cruz, S.A. Seasonal associations with urban light pollution for nocturnally migrating bird populations. Glob. Chang. Biol. 2017, 23, 4609–4619. [Google Scholar] [CrossRef]
- Rodríguez, A.; Holmes, N.D.; Ryan, P.G.; Wilson, K.J.; Faulquier, L.; Murillo, Y.; Raine, A.F.; Penniman, J.F.; Neves, V.; Rodríguez, B.; et al. Seabird mortality induced by land-based artificial lights. Conserv. Biol. 2017, 31, 986–1001. [Google Scholar] [CrossRef] [PubMed]
- Van Doren, B.M.; Horton, K.G.; Dokter, A.M.; Klinck, H.; Elbin, S.B.; Farnsworth, A. High-intensity urban light installation dramatically alters nocturnal bird migration. Proc. Natl. Acad. Sci. USA 2017, 114, 11175–11180. [Google Scholar] [CrossRef] [PubMed]
- de Jong, M.; van den Eertwegh, L.; Beskers, R.E.; de Vries, P.P.; Spoelstra, K.; Visser, M.E. Timing of Avian Breeding in an Urbanised World. Ardea 2018, 106, 31–38. [Google Scholar] [CrossRef]
- Brüning, A.; Hölker, F.; Wolter, C. Artificial light at night: Implications for early life stages development in four temperate freshwater fish species. Aquat. Sci. 2011, 73, 143–152. [Google Scholar] [CrossRef]
- Becker, A.; Whitfield, A.K.; Cowley, P.D.; Järnegren, J.; Næsje, T.F. Potential effects of artificial light associated with anthropogenic infrastructure on the abundance and foraging behaviour of estuary-associated fishes. J. Appl. Ecol. 2013, 50, 43–50. [Google Scholar] [CrossRef]
- Brüning, A.; Kloas, W.; Preuer, T.; Hölker, F. Influence of artificially induced light pollution on the hormone system of two common fish species, perch and roach, in a rural habitat. Conserv. Physiol. 2018, 6, coy016. [Google Scholar] [CrossRef]
- Bengsen, A.J.; Leung, L.K.P.; Lapidge, S.J.; Gordon, I.J. Artificial illumination reduces bait-take by small rainforest mammals. Appl. Anim. Behav. Sci. 2010, 127, 66–72. [Google Scholar] [CrossRef]
- Robert, K.A.; Lesku, J.A.; Partecke, J.; Chambers, B. Artificial light at night desynchronizes strictly seasonal reproduction in a wild mammal. Proc. R. Soc. B Biol. Sci. 2015, 282. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, J.; Palme, R.; Eccard, J.A. Long-term dim light during nighttime changes activity patterns and space use in experimental small mammal populations. Environ. Pollut. 2018, 238, 844–851. [Google Scholar] [CrossRef]
- Lorne, J.K.; Salmon, M. Effects of exposure to artificial lighting on orientation of hatchling sea turtles on the beach and in the ocean. Endanger. Species Res. 2007, 3, 23–30. [Google Scholar] [CrossRef]
- Kamrowski, R.; Limpus, C.; Moloney, J.; Hamann, M. Coastal light pollution and marine turtles: Assessing the magnitude of the problem. Endanger. Species Res. 2012, 19, 85–98. [Google Scholar] [CrossRef]
- Zheleva, M. The dark side of light. Light pollution kills leatherback turtle hatchlings. BioDiscovery 2012, 3, e8930. [Google Scholar] [CrossRef]
- Shimoda, M.; Honda, K.I. Insect reactions to light and its applications to pest management. Appl. Entomol. Zool. 2013, 48, 413–421. [Google Scholar] [CrossRef]
- Macgregor, C.J.; Evans, D.M.; Fox, R.; Pocock, M.J.O. The dark side of street lighting: Impacts on moths and evidence for the disruption of nocturnal pollen transport. Glob. Chang. Biol. 2017, 23, 697–707. [Google Scholar] [CrossRef]
- Davies, T.W.; Bennie, J.; Cruse, D.; Blumgart, D.; Inger, R.; Gaston, K.J. Multiple night-time light-emitting diode lighting strategies impact grassland invertebrate assemblages. Glob. Chang. Biol. 2017, 23, 2641–2648. [Google Scholar] [CrossRef]
- Underwood, C.N.; Davies, T.W.; Queirós, A.M. Artificial light at night alters trophic interactions of intertidal invertebrates. J. Anim. Ecol. 2017, 86, 781–789. [Google Scholar] [CrossRef]
- Bennie, J.; Davies, T.W.; Cruse, D.; Inger, R.; Gaston, K.J. Artificial light at night causes top-down and bottom-up trophic effects on invertebrate populations. J. Appl. Ecol. 2018, 55, 2698–2706. [Google Scholar] [CrossRef]
- Bennie, J.; Davies, T.W.; Cruse, D.; Gaston, K.J. Ecological effects of artificial light at night on wild plants. J. Ecol. 2016, 104, 611–620. [Google Scholar] [CrossRef]
- Brelsford, C.C.; Robson, T.M. Blue light advances bud burst in branches of three temperate deciduous tree species under short-day conditions. Trees 2018, 32, 1157–1164. [Google Scholar] [CrossRef]
- Polak, T.; Korine, C.; Yair, S.; Holderied, M.W. Differential effects of artificial lighting on flight and foraging behaviour of two sympatric bat species in a desert. J. Zool. 2011, 285, 21–27. [Google Scholar] [CrossRef]
- Rubolini, D.; Maggini, I.; Ambrosini, R.; Imperio, S.; Paiva, V.H.; Gaibani, G.; Saino, N.; Cecere, J.G. The Effect of Moonlight on Scopoli’s Shearwater Calonectris diomedea Colony Attendance Patterns and Nocturnal Foraging: A Test of the Foraging Efficiency Hypothesis. Ethology 2015, 121, 284–299. [Google Scholar] [CrossRef]
- Farnworth, B.; Innes, J.; Waas, J.R. Converting Predation Cues into Conservation Tools: The Effect of Light on Mouse Foraging Behaviour. PLoS ONE 2016, 11, 1–17. [Google Scholar] [CrossRef]
- Silva, A.D.; Diez-Méndez, D.; Kempenaers, B. Effects of experimental night lighting on the daily timing of winter foraging in common European songbirds. J. Avian Biol. 2017, 48, 862–871. [Google Scholar] [CrossRef]
- Downs, N.; Beaton, V.; Guest, J.; Polanski, J.; Robinson, S.; Racey, P. The effects of illuminating the roost entrance on the emergence behaviour of Pipistrellus pygmaeus. Biol. Conserv. 2003, 111, 247–252. [Google Scholar] [CrossRef]
- Petrželková, K.J.; Downs, N.C.; Zukal, J.; Racey, P.A. A comparison between emergence and return activity in pipistrelle bats Pipistrellus pipistrellus and P. pygmaeus. Acta Chiropterologica 2006, 8, 381–390. [Google Scholar] [CrossRef]
- Stone, E.S.; Jones, G.; Harris, S. Street Lighting Disturbs Commuting Bats. Curr. Biol. 2009, 19, 1123–1127. [Google Scholar] [CrossRef]
- Kurvers, R.H.J.M.; Drägestein, J.; Hölker, F.; Jechow, A.; Krause, J.; Bierbach, D. Artificial Light at Night Affects Emergence from a Refuge and Space Use in Guppies. Sci. Rep. 2018, 8, 14131. [Google Scholar] [CrossRef]
- Vignoli, L.; Luiselli, L. Better in the dark: Two Mediterranean amphibians synchronize reproduction with moonlit nights. Web Ecol. 2013, 13, 1–11. [Google Scholar] [CrossRef]
- Agarwal, N.; Srivastava, S.; Malik, S.; Rani, S.; Kumar, V. Altered light conditions during spring: Effects on timing of migration and reproduction in migratory redheaded bunting (Emberiza bruniceps). Biol. Rhythm Res. 2015, 46, 647–657. [Google Scholar] [CrossRef]
- Le Tallec, T.; Théry, M.; Perret, M. Melatonin concentrations and timing of seasonal reproduction in male mouse lemurs (Microcebus murinus) exposed to light pollution. J. Mammal. 2016, 97, 753–760. [Google Scholar] [CrossRef]
- Miller, M.W. Apparent Effects of Light Pollution on Singing Behavior of American Robins. Condor 2006, 108, 130–139. [Google Scholar] [CrossRef]
- Van Geffen, K.; Groot, A.; Van Grunsven, R.; Donners, M.; Berendse, F.; Veenendaal, E. Artificial night lighting disrupts sex pheromone in a noctuid moth. Ecol. Entomol. 2015, 40, 401–408. [Google Scholar] [CrossRef]
- Delhey, K.; Peters, A. Conservation implications of anthropogenic impacts on visual communication and camouflage. Conserv. Biol. 2016, 31, 30–39. [Google Scholar] [CrossRef]
- Davies, T.W.; Bennie, J.; Inger, R.; de Ibarra, N.H.; Gaston, K.J. Artificial light pollution: Are shifting spectral signatures changing the balance of species interactions? Glob. Chang. Biol. 2013, 19, 1417–1423. [Google Scholar] [CrossRef]
- Minnaar, C.; Boyles, J.G.; Minnaar, I.A.; Sole, C.L.; McKechnie, A.E. Stacking the odds: Light pollution may shift the balance in an ancient predator–prey arms race. J. Appl. Ecol. 2015, 52, 522–531. [Google Scholar] [CrossRef]
- Mammola, S.; Isaia, M.; Demonte, D.; Triolo, P.; Nervo, M. Artificial lighting triggers the presence of urban spiders and their webs on historical buildings. Landsc. Urban Plan. 2018, 180, 187–194. [Google Scholar] [CrossRef]
- Lyytimäki, J. Nature’s nocturnal services: Light pollution as a non-recognised challenge for ecosystem services research and management. Ecosyst. Serv. 2013, 3, e44–e48. [Google Scholar] [CrossRef]
- Knop, E.; Zoller, L.; Ryser, R.; Gerpe, C.; Hörler, M.; Fontaine, C. Artificial light at night as a new threat to pollination. Nature 2017, 548, 206–209. [Google Scholar] [CrossRef]
- Grubisic, M.; van Grunsven, R.; Kyba, C.; Manfrin, A.; Hölker, F. Insect declines and agroecosystems: Does light pollution matter? Ann. Appl. Biol. 2018, 173, 180–189. [Google Scholar] [CrossRef]
- Guetté, A.; Godet, L.; Juigner, M.; Robin, M. Worldwide increase in Artificial Light At Night around protected areas and within biodiversity hotspots. Biol. Conserv. 2018, 223, 97–103. [Google Scholar] [CrossRef]
- Koen, E.L.; Minnaar, C.; Roever, C.L.; Boyles, J.G. Emerging threat of the 21st century lightscape to global biodiversity. Glob. Chang. Biol. 2018, 24, 2315–2324. [Google Scholar] [CrossRef] [PubMed]
- Labuda, M.; Koch, R.; Nagyová, A. “Dark Sky Parks” as measure to support nature tourism in large protection areas—Case study in the Nature Park “Nossentiner/Schwinzer Heide”. Naturschutz Und Landschaftsplanung 2015, 47, 380–388. [Google Scholar]
- Labuda, M.; Pavlickova, K.; Števová, J. Dark Sky Parks—New impulse for nature tourism development in protected areas (National Park Muranska Planina, Slovakia). E-Rev. Tour. Res. 2016, 13, 536–549. [Google Scholar]
- Collison, F.M.; Poe, K. “Astronomical Tourism”: The Astronomy and Dark Sky Program at Bryce Canyon National Park. Tour. Manag. Perspect. 2013, 7, 1–15. [Google Scholar] [CrossRef]
- Rodríguez, A.; Holmberg, R.; Dann, P.; Chiaradia, A. Penguin colony attendance under artificial lights for ecotourism. J. Exp. Zool. Part A Ecol. Integr. Physiol. 2018, 329, 457–464. [Google Scholar] [CrossRef]
- Wolf, I.D.; Croft, D.B. Observation techniques that minimize impacts on wildlife and maximize visitor satisfaction in night-time tours. Tour. Manag. Perspect. 2012, 4, 164–175. [Google Scholar] [CrossRef]
- International Dark-Sky Association International Dark Sky Places Program. Available online: https://www.darksky.org/our-work/conservation/idsp/ (accessed on 3 April 2019).
- Royal Astronomical Society of Canada Dark Sky Site Designations. Available online: https://www.rasc.ca/dark-sky-site-designations (accessed on 3 April 2019).
- Starlight Foundation Certification Program. Available online: https://fundacionstarlight.org/en/section/what-are-they/284.html (accessed on 3 April 2019).
- Barentine, J. Going for the Gold: Quantifying and Ranking Visual Night Sky Quality in International Dark Sky Places. Int. J. Sustain. Light. 2016, 18, 9–15. [Google Scholar] [CrossRef]
- Jechow, A.; Kyba, C.; Hölker, F. Beyond All-Sky: Assessing Ecological Light Pollution Using Multi-Spectral Full-Sphere Fisheye Lens Imaging. J. Imaging 2019, 5, 46. [Google Scholar] [CrossRef]
- Hänel, A.; Posch, T.; Ribas, S.J.; Aubé, M.; Duriscoe, D.; Jechow, A.; Kollath, Z.; Lolkema, D.E.; Moore, C.; Schmidt, N.; et al. Measuring night sky brightness: Methods and challenges. J. Quant. Spectrosc. Radiat. Transf. 2018, 205, 278–290. [Google Scholar] [CrossRef]
- Sinnott, R.W. How can I find my naked-eye magnitude limit? Sky Telesc. 2004, 108, 130. [Google Scholar]
- Bortle, J.E. Introducing the Bortle Dark-Sky Scale. Sky Telesc. 2001, 101, 126. [Google Scholar]
- Kyba, C.C.M.; Wagner, J.M.; Kuechly, H.U.; Walker, C.E.; Elvidge, C.D.; Falchi, F.; Ruhtz, T.; Fischer, J.; Hölker, F. Citizen Science Provides Valuable Data for Monitoring Global Night Sky Luminance. Sci. Rep. 2013, 3, 1835. [Google Scholar] [CrossRef]
- Garstang, R.H. Model for Artificial Night-Sky Illumination. Publ. Astron. Soc. Pac. 1986, 98, 364. [Google Scholar] [CrossRef]
- Garstang, R.H. Night-sky brightness at observatories and sites. Publ. Astron. Soc. Pac. 1989, 101, 306–329. [Google Scholar] [CrossRef]
- Aubé, M.; Franchomme-Fosse, L.; Robert-Staehler, P.; Houle, V. Light pollution modelling and detection in a heterogeneous environment: Toward a night-time aerosol optical depth retreival method. Proc. SPIE 2005, 5890, 248–256. [Google Scholar] [CrossRef]
- Kerola, D.X. Modelling artificial night-sky brightness with a polarized multiple scattering radiative transfer computer code. Mon. Not. R. Astron. Soc. 2006, 365, 1295–1299. [Google Scholar] [CrossRef]
- Kocifaj, M. Light-pollution model for cloudy and cloudless night skies with ground-based light sources. Appl. Opt. 2007, 46, 3013–3022. [Google Scholar] [CrossRef]
- Cinzano, P.; Falchi, F. The propagation of light pollution in the atmosphere. Mon. Not. R. Astron. Soc. 2012, 427, 3337–3357. [Google Scholar] [CrossRef]
- Aubé, M. Physical behaviour of anthropogenic light propagation into the nocturnal environment. Philos. Trans. R. Soc. B Biol. Sci. 2015, 370, 20140117. [Google Scholar] [CrossRef]
- Kocifaj, M. Multiple scattering contribution to the diffuse light of a night sky: A model which embraces all orders of scattering. J. Quant. Spectrosc. Radiat. Transf. 2018, 206, 260–272. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Baugh, K.; Kihn, E.A.; Kroehl, H.W.; Davis, E.R. Mapping City Lights With Nighttime Data from the DMSP Operational Linescan System. Photogramm. Eng. Remote Sens. 1997, 63, 727–734. [Google Scholar]
- Elvidge, C.D.; Baugh, K.E.; Dietz, J.B.; Bland, T.; Sutton, P.C.; Kroehl, H.W. Radiance Calibration of DMSP-OLS Low-Light Imaging Data of Human Settlements. Remote Sens. Environ. 1999, 68, 77–88. [Google Scholar] [CrossRef]
- Letu, H.; Hara, M.; Tana, G.; Nishio, F. A Saturated Light Correction Method for DMSP/OLS Nighttime Satellite Imagery. IEEE Trans. Geosci. Remote Sens. 2012, 50, 389–396. [Google Scholar] [CrossRef]
- Cao, X.; Hu, Y.; Zhu, X.; Shi, F.; Zhuo, L.; Chen, J. A simple self-adjusting model for correcting the blooming effects in DMSP-OLS nighttime light images. Remote Sens. Environ. 2019, 224, 401–411. [Google Scholar] [CrossRef]
- Cinzano, P.; Falchi, F.; Elvidge, C. The first World Atlas of the artificial night sky brightness. Mon. Not. R. Astron. Soc. 2001, 328, 689–707. [Google Scholar] [CrossRef]
- Falchi, F.; Cinzano, P.; Elvidge, C.D.; Baugh, K.E. The artificial night sky brightness mapped from DMSP satellite Operational Linescan System measurements. Mon. Not. R. Astron. Soc. 2000, 318, 641–657. [Google Scholar] [CrossRef]
- Cinzano, P.; Falchi, F.; Elvidge, C.D. Naked-eye star visibility and limiting magnitude mapped from DMSP-OLS satellite data. Mon. Not. R. Astron. Soc. 2001, 323, 34–46. [Google Scholar] [CrossRef]
- Cinzano, P.; Elvidge, C.D. Night sky brightness at sites from DMSP-OLS satellite measurements. Mon. Not. R. Astron. Soc. 2004, 353, 1107–1116. [Google Scholar] [CrossRef]
- Cao, C.; Xiong, J.; Blonski, S.; Liu, Q.; Uprety, S.; Shao, X.; Bai, Y.; Weng, F. Suomi NPP VIIRS sensor data record verification, validation, and long-term performance monitoring. J. Geophys. Res. Atmos. 2013, 118, 11664–11678. [Google Scholar] [CrossRef]
- Cao, C.; Luccia, F.J.D.; Xiong, X.; Wolfe, R.; Weng, F. Early On-Orbit Performance of the Visible Infrared Imaging Radiometer Suite Onboard the Suomi National Polar-Orbiting Partnership (S-NPP) Satellite. IEEE Trans. Geosci. Remote Sens. 2014, 52, 1142–1156. [Google Scholar] [CrossRef]
- Cao, C.; Bai, Y. Quantitative Analysis of VIIRS DNB Nightlight Point Source for Light Power Estimation and Stability Monitoring. Remote Sens. 2014, 6, 11915–11935. [Google Scholar] [CrossRef]
- Duriscoe, D.M.; Anderson, S.J.; Luginbuhl, C.B.; Baugh, K.E. A simplified model of all-sky artificial sky glow derived from VIIRS Day/Night band data. J. Quant. Spectrosc. Radiat. Transf. 2018, 214, 133–145. [Google Scholar] [CrossRef]
- Kyba, C.C.M.; Garz, S.; Kuechly, H.; De Miguel, A.S.; Zamorano, J.; Fischer, J.; Hölker, F. High-Resolution Imagery of Earth at Night: New Sources, Opportunities and Challenges. Remote Sens. 2015, 7, 1–23. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Cinzano, P.; Pettit, D.R.; Arvesen, J.; Sutton, P.; Small, C.; Nemani, R.; Longcore, T.; Rich, C.; Safran, J.; et al. The Nightsat mission concept. Int. J. Remote Sens. 2007, 28, 2645–2670. [Google Scholar] [CrossRef]
- Walczak, K.; Gyuk, G.; Kruger, A.; Byers, E.; Huerta, S. NITESat: A High Resolution, Full-Color, Light Pollution Imaging Satellite Mission. Int. J. Sustain. Light. 2017, 19, 48–55. [Google Scholar] [CrossRef]
- Zheng, Q.; Weng, Q.; Huang, L.; Wang, K.; Deng, J.; Jiang, R.; Ye, Z.; Gan, M. A new source of multi-spectral high spatial resolution night-time light imagery—JL1-3B. Remote Sens. Environ. 2018, 215, 300–312. [Google Scholar] [CrossRef]
- Sánchez de Miguel, A.; Kyba, C.C.; Aubé, M.; Zamorano, J.; Cardiel, N.; Tapia, C.; Bennie, J.; Gaston, K.J. Colour remote sensing of the impact of artificial light at night (I): The potential of the International Space Station and other DSLR-based platforms. Remote Sens. Environ. 2019, 224, 92–103. [Google Scholar] [CrossRef]
- Roach, F.E.; Gordon, J.L. The light of the night sky. Geophys. Astrophys. Monogr. 1973, 4, 125. [Google Scholar]
- Leinert, C.; Vaisanen, P.; Mattila, K.; Lehtinen, K. Measurements of sky brightness at the Calar Alto Observatory. Astron. Astrophys. Suppl. 1995, 112, 99. [Google Scholar]
- Leinert, C.; Bowyer, S.; Haikala, L.K.; Hanner, M.S.; Hauser, M.G.; Levasseur-Regourd, A.-C.; Mann, I.; Mattila, K.; Reach, W.T.; Schlosser, W.; et al. The 1997 reference of diffuse night sky brightness *. Astron. Astrophys. Suppl. Ser. 1998, 127, 1–99. [Google Scholar] [CrossRef]
- Patat, F. UBVRI night sky brightness during sunspot maximum at ESO-Paranal. Astron. Astrophys. 2003, 400, 1183–1198. [Google Scholar] [CrossRef]
- Duffield, W.G. The luminosity of the night sky observed with a Rayleigh photometer at the Commonwealth Solar Observatory during the years 1926 and 1927. Mem. Mt. Stromlo Obs. 1928, 1, 1–29. [Google Scholar]
- Pike, R.; Berry, R. A Bright Future for the Night Sky. Sky Telesc. 1978, 55, 126–129. [Google Scholar]
- Upgren, A.R. Night Sky Brightness from Visual Observations II. A Visual Photometer. J. Am. Assoc. Var. Star Obs. (JAAVSO) 1991, 20, 244–247. [Google Scholar]
- Bessell, M.S. UBVRI passbands. Publ. Astron. Soc. Pac. 1990, 102, 1181–1199. [Google Scholar] [CrossRef]
- Cinzano, P. Night Sky Photometry with Sky Quality Meter; Technical Report 9; Istituto di scienza e tecnologia dell’inquinamento luminoso: Thiene, Italy, 2007. [Google Scholar]
- Cinzano, P. Report on Sky Quality Meter, version L; Technical Report; Istituto di scienza e tecnologia dell’inquinamento luminoso: Thiene, Italy, 2007. [Google Scholar]
- Schnitt, S.; Ruhtz, T.; Fischer, J.; Hölker, F.; Kyba, C.C. Temperature Stability of the Sky Quality Meter. Sensors 2013, 13, 12166–12174. [Google Scholar] [CrossRef]
- Den Outer, P.; Lolkema, D.; Haaima, M.; Van der Hoff, R.; Spoelstra, H.; Schmidt, W. Stability of the Nine Sky Quality Meters in the Dutch Night Sky Brightness Monitoring Network. Sensors 2015, 15, 9466–9480. [Google Scholar] [CrossRef] [PubMed]
- Den Outer, P.; Lolkema, D.; Haaima, M.; Hoff, R.V.D.; Spoelstra, H.; Schmidt, W. Intercomparisons of Nine Sky Brightness Detectors. Sensors 2011, 11, 9603–9612. [Google Scholar] [CrossRef] [PubMed]
- Pun, C.S.J.; So, C.W. Night-sky brightness monitoring in Hong Kong. Environ. Monit. Assess. 2012, 184, 2537–2557. [Google Scholar] [CrossRef] [PubMed]
- Pun, C.S.J.; So, C.W.; Leung, W.Y.; Wong, C.F. Contributions of artificial lighting sources on light pollution in Hong Kong measured through a night sky brightness monitoring network. J. Quant. Spectrosc. Radiat. Transf. 2014, 139, 90–108. [Google Scholar] [CrossRef]
- Bará, S. Anthropogenic disruption of the night sky darkness in urban and rural areas. R. Soc. Open Sci. 2016, 3, 160541. [Google Scholar] [CrossRef]
- Posch, T.; Binder, F.; Puschnig, J. Systematic measurements of the night sky brightness at 26 locations in Eastern Austria. J. Quant. Spectrosc. Radiat. Transf. 2018, 211, 144–165. [Google Scholar] [CrossRef]
- Zamorano Calvo, J.; Sánchez de Miguel, A.; Nievas Rosillo, M.; Tapia Ayuga, C. NixNox Procedure to Build Night Sky Brightness Maps from SQM Photometers Observations; ePrints Complutense 26982; Universidad Complutense de Madrid: Madrid, Spain, 2014. [Google Scholar]
- Sánchez de Miguel, A.; Aubé, M.; Zamorano, J.; Kocifaj, M.; Roby, J.; Tapia, C. Sky Quality Meter measurements in a colour-changing world. Mon. Not. R. Astron. Soc. 2017, 467, 2966–2979. [Google Scholar] [CrossRef]
- Rosa Infantes, D. The Road Runner System. IV International Symposium for Dark Sky Parks. 2011. Available online: http://darkskyparks.splet.arnes.si/files/2011/09/RoadRunner.pdf (accessed on 3 April 2019).
- Duriscoe, D.M. Photometric indicators of visual night sky quality derived from all-sky brightness maps. J. Quant. Spectrosc. Radiat. Transf. 2016, 181, 33–45. [Google Scholar] [CrossRef]
- Duriscoe, D.M. Measuring Anthropogenic Sky Glow Using a Natural Sky Brightness Model. Publ. Astron. Soc. Pac. 2013, 125, 1370–1382. [Google Scholar] [CrossRef]
- Cinzano, P.; Falchi, F. A portable wide-field instrument for mapping night sky brightness automatically. Mem. Della Soc. Astron. Ital. 2003, 74, 458. [Google Scholar]
- Cinzano, P. A portable spectrophotometer for light pollution measurements. Mem. Della Soc. Astron. Ital. Suppl. 2004, 5, 395. [Google Scholar]
- Duriscoe, D.M.; Luginbuhl, C.B.; Moore, C.A. Measuring Night-Sky Brightness with a Wide-Field CCD Camera. Publ. Astron. Soc. Pac. 2007, 119, 192–213. [Google Scholar] [CrossRef]
- Aceituno, J.; Sánchez, S.F.; Aceituno, F.J.; Galadí-Enríquez, D.; Negro, J.J.; Soriguer, R.C.; Gomez, G.S. An All-Sky Transmission Monitor: ASTMON. Publ. Astron. Soc. Pac. 2011, 123, 1076–1086. [Google Scholar] [CrossRef]
- Kolláth, Z. Measuring and modelling light pollution at the Zselic Starry Sky Park. J. Phys. Conf. Ser. 2010, 218, 012001. [Google Scholar] [CrossRef]
- Jechow, A.; Hölker, F.; Kyba, C.C.M. Using all-sky differential photometry to investigate how nocturnal clouds darken the night sky in rural areas. Sci. Rep. 2019, 9, 1391. [Google Scholar] [CrossRef]
- Jechow, A.; Ribas, S.J.; Domingo, R.C.; Hölker, F.; Kolláth, Z.; Kyba, C.C. Tracking the dynamics of skyglow with differential photometry using a digital camera with fisheye lens. J. Quant. Spectrosc. Radiat. Transf. 2018, 209, 212–223. [Google Scholar] [CrossRef]
- Jechow, A. Observing the Impact of WWF Earth Hour on Urban Light Pollution: A Case Study in Berlin 2018 Using Differential Photometry. Sustainability 2019, 11, 750. [Google Scholar] [CrossRef]
- Jechow, A.; Hölker, F.; Kolláth, Z.; Gessner, M.O.; Kyba, C.C. Evaluating the summer night sky brightness at a research field site on Lake Stechlin in northeastern Germany. J. Quant. Spectrosc. Radiat. Transf. 2016, 181, 24–32. [Google Scholar] [CrossRef]
- Jechow, A.; Kolláth, Z.; Lerner, A.; Hänel, A.; Shashar, N.; Hölker, F.; Kyba, C.C. Measuring Light Pollution with Fisheye Lens Imagery from A Moving Boat—A Proof of Concept. Int. J. Sustain. Light. 2017, 19, 15–25. [Google Scholar] [CrossRef]
- Crumey, A. Human contrast threshold and astronomical visibility. Mon. Not. R. Astron. Soc. 2014, 442, 2600–2619. [Google Scholar] [CrossRef]
- Biggs, J.D.; Fouché, T.; Bilki, F.; Zadnik, M.G. Measuring and mapping the night sky brightness of Perth, Western Australia. Mon. Not. R. Astron. Soc. 2012, 421, 1450–1464. [Google Scholar] [CrossRef]
- Bará, S. Characterizing the zenithal night sky brightness in large territories: How many samples per square kilometre are needed? Mon. Not. R. Astron. Soc. 2017, 473, 4164–4173. [Google Scholar] [CrossRef]
- Dobler, G.; Ghandehari, M.; Koonin, S.; Sharma, M. A Hyperspectral Survey of New York City Lighting Technology. Sensors 2016, 16, 2047. [Google Scholar] [CrossRef]
- Alamús, R.; Bará, S.; Corbera, J.; Escofet, J.; Palà, V.; Pipia, L.; Tardà, A. Ground-based hyperspectral analysis of the urban nightscape. ISPRS J. Photogramm. Remote Sens. 2017, 124, 16–26. [Google Scholar] [CrossRef]
- Bouroussis, C.A.; Topalis, F.V. The effect of the spectral response of measurement instruments in the assessment of night sky brightness. J. Quant. Spectrosc. Radiat. Transf. 2018, 216, 56–69. [Google Scholar] [CrossRef]
- van Grunsven, R.H.A.; Donners, M.; Boekee, K.; Tichelaar, I.; van Geffen, K.G.; Groenendijk, D.; Berendse, F.; Veenendaal, E.M. Spectral composition of light sources and insect phototaxis, with an evaluation of existing spectral response models. J. Insect Conserv. 2014, 18, 225–231. [Google Scholar] [CrossRef]
- Mège, P.; Ödeen, A.; Théry, M.; Picard, D.; Secondi, J. Partial Opsin Sequences Suggest UV-Sensitive Vision is Widespread in Caudata. Evol. Biol. 2015, 43, 109–118. [Google Scholar] [CrossRef]
- Mohar, A. Sky Quality Camera as a Quick and Reliable Tool for Light Pollution Monitoring. In Proceedings of the International Conference on Light Pollution Theory, Modelling and Measurements, Jouvance, QC, Canada, 26–28 May 2015; p. 47. Available online: https://w1.cegepsherbrooke.qc.ca/~aubema/LPTMM/uploads/Site/Abstract-booklet-lptmm-2015.pdf (accessed on 3 April 2019).
- Kolláth, Z.; Dömény, A. Night sky quality monitoring in existing and planned dark sky parks by digital cameras. Int. J. Sustain. Light. 2017, 19, 61–68. [Google Scholar] [CrossRef]
- Pascual, S.; Nievas, M.; Zamorano, J.; Contreras, J.L. PyASB, All Sky Brightness Pipeline. In Proceedings of the Astronomical Data Analysis Software and Systems XXV, Sydney, Australia, 25–29 October 2015; Astronomical Society of the Pacific: San Francisco, CA, USA, 2017; Volume 512, pp. 407–410. [Google Scholar]
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barentine, J.C. Methods for Assessment and Monitoring of Light Pollution around Ecologically Sensitive Sites. J. Imaging 2019, 5, 54. https://doi.org/10.3390/jimaging5050054
Barentine JC. Methods for Assessment and Monitoring of Light Pollution around Ecologically Sensitive Sites. Journal of Imaging. 2019; 5(5):54. https://doi.org/10.3390/jimaging5050054
Chicago/Turabian StyleBarentine, John C. 2019. "Methods for Assessment and Monitoring of Light Pollution around Ecologically Sensitive Sites" Journal of Imaging 5, no. 5: 54. https://doi.org/10.3390/jimaging5050054