Advances in Skin Substitutes—Potential of Tissue Engineered Skin for Facilitating Anti-Fibrotic Healing
<p>Structure of human skin showing dermal heterogeneity. Epidermis, basement membrane (BM) superficial dermis, rete pappillare, deep dermis and rete cutaneum. SF: superficial fibroblasts, DF: deep fibroblasts, HF: hair follicle are indicated. Modified from [<a href="#B15-jfb-06-00547" class="html-bibr">15</a>].</p> "> Figure 2
<p>Dermal Fibroblast heterogeneity and their different roles in ECM remodelling. Superficial dermal fibroblasts negatively regulate fibrosis and have higher expression of anti-fibrotic genes, whereas deep dermal fibroblasts are promote fibrosis and have higher expression of pro-fibrotic genes.</p> ">
Abstract
:1. Introduction
2. Skin Injury from Burns
3. Skin Substitutes
4. Features of Skin Substitutes
5. Types of Skin Substitutes
6. Commercially Available Skin Substitutes
Skin Substitute | Composition | Comments |
---|---|---|
Biobrane™ | Outer epidermal analog—ultrathin silicone film; inner dermal analog—3D nylon filament with type I collagen peptides | Temporary wound dressing that is removed when wound is healed or when autograft skin is available |
TransCyte™ | Nylon mesh seeded with neonatal human foreskin fibroblasts that are destroyed before grafting | Temporary wound dressing upon which autografts are placed |
Integra™ | Dermal analog—bovine collagen and chondroitin-6-sulfate GAG; epidermal analog—silicone polymer | Silicone layer is removed upon vascularization of dermis, and replaced by a thin layer of autograft |
Alloderm™ | Human allograft skin that has been screened for transmissible pathogens, with all epidermal components and dermal cells removed | Grafted like dermal autograft and covered with a thin autograft |
Dermagraft™ | Bioabsorbable polygalactin mesh matrix seeded with human neonatal fibroblasts and cryopreserved | Matrix facilitates re-epithelialization by the patient’s own keratinocytes |
Apligraf™ | Bovine collagen gel seeded with neonatal foreskin fibroblasts and keratinocytes | Wound dressing with two different cell types |
OrCel™ | Type I collagen matrix seeded with neonatal foreskin fibroblasts and keratinocytes | Wound dressing with two different cell types |
Epicel™ | Sheets of autologous keratinocytes attached to petrolatum gauze support | Wound dressing with autologous cells |
StrataGraft™ | Full thickness skin substitute with dermal and fully differentiated epidermal layers | Made with naturally immortalized NIKS® keratinocyte cell line; contains two different cell types |
Tiscover™ (A-Skin) | Autologous full thickness cultured skin for healing of chronic, therapy resistant wounds | Contains two different cell types |
Permaderm™ | Autologous tissue engineered skin consisting of epidermal and dermal cells | Contains two different cell types |
denovoDerm™ | Autologous dermal substitute | To be used in combination with split-thickness skin grafts |
denovoSkin™ | Autologous full thickness substitute consisting of dermal and epidermal layers | Contains two different cell types |
7. Limitations of Commercially Available Skin Substitutes
8. Wound Healing and Fibrosis
9. Tissue Engineering of Skin
10. Tissue Engineered Skin
11. Advantages of Tissue Engineered Skin
12. Limitations of Tissue Engineered Skin
13. Tissue Engineered Skin—Potential for Promoting Anti-Fibrotic Healing
14. Conclusions
Conflicts of Interest
References
- Metcalfe, A.D.; Ferguson, M.W. Tissue engineering of replacement skin: The crossroads of biomaterials, wound healing, embryonic development, stem cells and regeneration. J. R. Soc. Interface 2007, 4, 413–437. [Google Scholar] [CrossRef] [PubMed]
- Sorrell, J.M.; Baber, M.A.; Caplan, A.I. Human dermal fibroblast subpopulations; differential interactions with vascular endothelial cells in coculture: nonsoluble factors in the extracellular matrix influence interactions. Wound Repair Regen. 2008, 16, 300–309. [Google Scholar] [CrossRef] [PubMed]
- Badylak, S.F. The extracellular matrix as a scaffold for tissue reconstruction. Semin. Cell Dev. Biol. 2002, 13, 377–383. [Google Scholar] [CrossRef] [PubMed]
- Kalluri, R. Basement membranes: structure, assembly and role in tumour angiogenesis. Nat. Rev. Cancer 2003, 3, 422–433. [Google Scholar] [CrossRef] [PubMed]
- Ashkenas, J.; Muschler, J.; Bissell, M.J. The extracellular matrix in epithelial biology: Shared molecules and common themes in distant phyla. Dev Biol. 1996, 180, 433–444. [Google Scholar] [CrossRef] [PubMed]
- Hay, E.D. The mesenchymal cell, its role in the embryo, and the remarkable signaling mechanisms that create it. Dev Dyn. 2005, 233, 706–720. [Google Scholar] [CrossRef] [PubMed]
- Miner, J.H.; Yurchenco, P.D. Laminin functions in tissue morphogenesis. Annu. Rev. Cell Dev. Biol. 2004, 20, 255–284. [Google Scholar] [CrossRef] [PubMed]
- Pelouch, V.; Jirmar, R. Biochemical characteristics of cardiac collagen and its role in ventricular remodelling following infarction. Physiol. Res. 1993, 42, 283–292. [Google Scholar] [PubMed]
- Bonewald, L.F. Regulation and regulatory activities of transforming growth factor beta. Crit. Rev. Eukaryot Gene Expr. 1999, 9, 33–44. [Google Scholar] [PubMed]
- Aumailley, M.; Rousselle, P. Laminins of the dermoepidermal junction. Matrix Biol. 1999, 18, 19–28. [Google Scholar] [CrossRef]
- Timpl, R.; Brown, J.C. Supramolecular assembly of basement membranes. Bioessays 1996, 18, 123–132. [Google Scholar] [CrossRef] [PubMed]
- Fleischmajer, R.; Kuhn, K.; Sato, Y.; MacDonald, E.D.; Perlish, J.S.; Pan, T.C.; Chu, M.L.; Kishiro, Y.; Oohashi, T.; Bernier, S.M.; et al. There is temporal and spatial expression of alpha1 (IV), alpha2 (IV), alpha5 (IV), alpha6 (IV) collagen chains and beta1 integrins during the development of the basal lamina in an “in vitro” skin model. J. Invest. Dermatol. 1997, 109, 527–533. [Google Scholar] [CrossRef] [PubMed]
- Smola, H.; Stark, H.J.; Thiekotter, G.; Mirancea, N.; Krieg, T.; Fusenig, N.E. Dynamics of basement membrane formation by keratinocyte-fibroblast interactions in organotypic skin culture. Exp. Cell Res. 1998, 239, 399–410. [Google Scholar] [CrossRef] [PubMed]
- Yamane, Y.; Yaoita, H.; Couchman, J.R. Basement membrane proteoglycans are of epithelial origin in rodent skin. J. Invest. Dermatol. 1996, 106, 531–537. [Google Scholar] [CrossRef] [PubMed]
- Sorrell, J.M.; Caplan, A.I. Fibroblast heterogeneity: More than skin deep. J. Cell Sci. 2004, 117, 667–675. [Google Scholar] [CrossRef] [PubMed]
- National Burn Repository 2013. American Burn Association. Available online: http://www.ameriburn.org (accessed on 30 June 2015).
- Jones, I.; Currie, L.; Martin, R. A guide to biological skin substitutes. Br. J. Plast. Surg. 2002, 55, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Loss, M.; Wedler, V.; Kunzi, W.; Meuli-Simmen, C.; Meyer, V.E. Artificial skin, split-thickness autograft and cultured autologous keratinocytes combined to treat a severe burn injury of 93% of TBSA. Burns 2000, 26, 644–652. [Google Scholar] [CrossRef]
- Robson, M.C.; Barnett, R.A.; Leitch, I.O.; Hayward, P.G. Prevention and treatment of postburn scars and contracture. World J. Surg. 1992, 16, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Burd, A.; Chiu, T. Allogenic skin in the treatment of burns. Clin. Dermatol. 2005, 23, 376–387. [Google Scholar] [CrossRef] [PubMed]
- Schulz, J.T., 3rd; Tompkins, R.G.; Burke, J.F. Artificial skin. Annu. Rev. Med. 2000, 51, 231–244. [Google Scholar] [PubMed]
- Boyce, S.T.; Warden, G.D. Principles and practices for treatment of cutaneous wounds with cultured skin substitutes. Am. J. Surg. 2002, 183, 445–456. [Google Scholar] [CrossRef]
- Supp, D.M.; Boyce, S.T. Engineered skin substitutes: practices and potentials. Clin. Dermatol. 2005, 23, 403–412. [Google Scholar] [CrossRef] [PubMed]
- MacNeil, S. Progress and opportunities for tissue-engineered skin. Nature 2007, 445, 874–880. [Google Scholar] [CrossRef] [PubMed]
- Heimbach, D.M.; Warden, G.D.; Luterman, A.; Jordan, M.H.; Ozobia, N.; Ryan, C.M.; Voigt, D.W.; Hickerson, W.L.; Saffle, J.R.; De Clement, F.A. Multicenter postapproval clinical trial of Integra dermal regeneration template for burn treatment. J. Burn Care Rehabil. 2003, 24, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Sheridan, R.; Choucair, R.; Donelan, M.; Lydon, M.; Petras, L.; Tompkins, R. Acellular allodermis in burns surgery: 1-year results of a pilot trial. J. Burn Care Rehabil. 1998, 19, 528–530. [Google Scholar] [CrossRef] [PubMed]
- Menon, N.G.; Rodriguez, E.D.; Byrnes, C.K.; Girotto, J.A.; Goldberg, N.H.; Silverman, R.P. Revascularization of human acellular dermis in full-thickness abdominal wall reconstruction in the rabbit model. Ann. Plast. Surg. 2003, 50, 523–527. [Google Scholar] [CrossRef] [PubMed]
- Noordenbos, J.; Dore, C.; Hansbrough, J.F. Safety and efficacy of TransCyte for the treatment of partial-thickness burns. J. Burn Care Rehabil. 1999, 20, 275–281. [Google Scholar] [CrossRef] [PubMed]
- Curran, M.P.; Plosker, G.L. Bilayered bioengineered skin substitute (Apligraf): A review of its use in the treatment of venous leg ulcers and diabetic foot ulcers. BioDrugs 2002, 16, 439–455. [Google Scholar] [CrossRef] [PubMed]
- Falabella, A.F.; Valencia, I.C.; Eaglstein, W.H.; Schachner, L.A. Tissue-engineered skin (Apligraf) in the healing of patients with epidermolysis bullosa wounds. Arch Dermatol. 2000, 136, 1225–1230. [Google Scholar] [CrossRef] [PubMed]
- Fivenson, D.P.; Scherschun, L.; Cohen, L.V. Apligraf in the treatment of severe mitten deformity associated with recessive dystrophic epidermolysis bullosa. Plast Reconstr. Surg. 2003, 112, 584–588. [Google Scholar] [CrossRef] [PubMed]
- Still, J.; Glat, P.; Silverstein, P.; Griswold, J.; Mozingo, D. The use of a collagen sponge/living cell composite material to treat donor sites in burn patients. Burns 2003, 29, 837–841. [Google Scholar] [CrossRef]
- Green, H.; Kehinde, O.; Thomas, J. Growth of cultured human epidermal cells into multiple epithelia suitable for grafting. Proc. Natl. Acad. Sci. USA 1979, 76, 5665–5668. [Google Scholar] [CrossRef] [PubMed]
- Carsin, H.; Ainaud, P.; Le Bever, H.; Rives, J.; Lakhel, A.; Stephanazzi, J.; Lambert, F.; Perrot, J. Cultured epithelial autografts in extensive burn coverage of severely traumatized patients: A five year single-center experience with 30 patients. Burns 2000, 26, 379–387. [Google Scholar] [CrossRef]
- Williamson, J.S.; Snelling, C.F.; Clugston, P.; Macdonald, I.B.; Germann, E. Cultured epithelial autograft: five years of clinical experience with twenty-eight patients. J. Trauma. 1995, 39, 309–319. [Google Scholar] [CrossRef] [PubMed]
- Centanni, J.M.; Straseski, J.A.; Wicks, A.; Hank, J.A.; Rasmussen, C.A.; Lokuta, M.A.; Schurr, M.J.; Foster, K.N.; Faucher, L.D.; Caruso, D.M.; et al. StrataGraft skin substitute is well-tolerated and is not acutely immunogenic in patients with traumatic wounds: results from a prospective, randomized, controlled dose escalation trial. Ann Surg. 2011, 253, 672–683. [Google Scholar] [CrossRef] [PubMed]
- Hankin, C.S.; Knispel, J.; Lopes, M.; Bronstone, A.; Maus, E. Clinical and cost efficacy of advanced wound care matrices for venous ulcers. J. Manag. Care Pharm. 2012, 18, 375–384. [Google Scholar] [PubMed]
- Rue, L.W., 3rd; Cioffi, W.G.; McManus, W.F.; Pruitt, B.A., Jr. Wound closure and outcome in extensively burned patients treated with cultured autologous keratinocytes. J. Trauma 1993, 34, 662–667. [Google Scholar] [CrossRef] [PubMed]
- Gurtner, G.C.; Werner, S.; Barrandon, Y.; Longaker, M.T. Wound repair and regeneration. Nature 2008, 453, 314–321. [Google Scholar] [CrossRef] [PubMed]
- Wynn, T.A. Cellular and molecular mechanisms of fibrosis. J. Pathol. 2008, 214, 199–210. [Google Scholar] [CrossRef] [PubMed]
- Bock, O.; Schmid-Ott, G.; Malewski, P.; Mrowietz, U. Quality of life of patients with keloid and hypertrophic scarring. Arch Dermatol Res. 2006, 297, 433–438. [Google Scholar] [CrossRef] [PubMed]
- Hold, G.L.; Untiveros, P.; Saunders, K.A.; El-Omar, E.M. Role of host genetics in fibrosis. Fibrogenesis Tissue Repair 2009, 2. [Google Scholar] [CrossRef] [PubMed]
- Langer, R.; Vacanti, J.P. Tissue engineering. Science 1993, 260, 920–926. [Google Scholar] [CrossRef] [PubMed]
- MacArthur, B.D.; Oreffo, R.O. Bridging the gap. Nature 2005, 433, 19. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.W.; Sun, J.S.; Wu, H.C.; Tsuang, Y.H.; Wang, W.H.; Lin, F.H. The effect of gelatin-chondroitin sulfate-hyaluronic acid skin substitute on wound healing in SCID mice. Biomaterials 2006, 27, 5689–5697. [Google Scholar] [CrossRef] [PubMed]
- Boyce, S.T. Skin substitutes from cultured cells and collagen-GAG polymers. Med. Biol. Eng. Comput. 1998, 36, 791–800. [Google Scholar] [CrossRef] [PubMed]
- Boyce, S.T.; Goretsky, M.J.; Greenhalgh, D.G.; Kagan, R.J.; Rieman, M.T.; Warden, G.D. Comparative assessment of cultured skin substitutes and native skin autograft for treatment of full-thickness burns. Ann Surg. 1995, 222, 743–752. [Google Scholar] [CrossRef] [PubMed]
- Boyce, S.T.; Glatter, R.; Kitzmiller, W.J. Case studies: Treatment of chronic wounds with cultured skin substitutes. Ostomy Wound Manage. 1995, 41, 26–28, 30, 32. [Google Scholar] [PubMed]
- Boyce, S.T.; Kagan, R.J.; Meyer, N.A.; Yakuboff, K.P.; Warden, G.D. The 1999 clinical research award. Cultured skin substitutes combined with Integra Artificial Skin to replace native skin autograft and allograft for the closure of excised full-thickness burns. J. Burn Care Rehabil. 1999, 20, 453–461. [Google Scholar] [CrossRef] [PubMed]
- Passaretti, D.; Billmire, D.; Kagan, R.; Corcoran, J.; Boyce, S. Autologous cultured skin substitutes conserve donor autograft in elective treatment of congenital giant melanocytic nevus. Plast Reconstr Surg. 2004, 114, 1523–1528. [Google Scholar] [CrossRef] [PubMed]
- Boyce, S.T.; Kagan, R.J.; Yakuboff, K.P.; Meyer, N.A.; Rieman, M.T.; Greenhalgh, D.G.; Warden, G.D. Cultured skin substitutes reduce donor skin harvesting for closure of excised, full-thickness burns. Ann Surg. 2002, 235, 269–279. [Google Scholar] [CrossRef] [PubMed]
- Supp, D.M.; Wilson-Landy, K.; Boyce, S.T. Human dermal microvascular endothelial cells form vascular analogs in cultured skin substitutes after grafting to athymic mice. Faseb J. 2002, 16, 797–804. [Google Scholar] [CrossRef] [PubMed]
- Sahota, P.S.; Burn, J.L.; Heaton, M.; Freedlander, E.; Suvarna, S.K.; Brown, N.J.; Mac Neil, S. Development of a reconstructed human skin model for angiogenesis. Wound Repair Regen. 2003, 11, 275–284. [Google Scholar] [CrossRef] [PubMed]
- Swope, V.B.; Supp, A.P.; Cornelius, J.R.; Babcock, G.F.; Boyce, S.T. Regulation of pigmentation in cultured skin substitutes by cytometric sorting of melanocytes and keratinocytes. J. Invest Dermatol. 1997, 109, 289–295. [Google Scholar] [CrossRef] [PubMed]
- Hachiya, A.; Sriwiriyanont, P.; Kaiho, E.; Kitahara, T.; Takema, Y.; Tsuboi, R. An in vivo mouse model of human skin substitute containing spontaneously sorted melanocytes demonstrates physiological changes after UVB irradiation. J. Invest Dermatol. 2005, 125, 364–372. [Google Scholar] [PubMed]
- Zheng, Y.; Du, X.; Wang, W.; Boucher, M.; Parimoo, S.; Stenn, K. Organogenesis from dissociated cells: generation of mature cycling hair follicles from skin-derived cells. J. Invest Dermatol. 2005, 124, 867–876. [Google Scholar] [CrossRef] [PubMed]
- Böttcher-Haberzeth, S.; Klar, A.S.; Biedermann, T.; Schiestl, C.; Meuli-Simmen, C.; Reichmann, E.; Meuli, M. “Trooping the color”: Restoring the original donor skin color by addition of melanocytes to bioengineered skin analogs. Pediatr. Surg. Int. 2013, 29, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Marino, D.; Luginbühl, J.; Scola, S.; Meuli, M.; Reichmann, E. Bioengineering dermo-epidermal skin grafts with blood and lymphatic capillaries. Sci. Transl. Med. 2014, 6. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Dodd, C.; Shankowsky, H.A.; Scott, P.G.; Tredget, E.E. Deep dermal fibroblasts contribute to hypertrophic scarring. Lab Invest. 2008, 88, 1278–1290. [Google Scholar] [CrossRef] [PubMed]
- Varkey, M.; Ding, J.; Tredget, E.E. Differential collagen-glycosaminoglycan matrix remodeling by superficial and deep dermal fibroblasts: Potential therapeutic targets for hypertrophic scar. Biomaterials 2011, 32, 7581–7591. [Google Scholar] [CrossRef] [PubMed]
- Monstrey, S.; Hoeksema, H.; Verbelen, J.; Pirayesh, A.; Blondeel, P. Assessment of burn depth and burn wound healing potential. Burns 2008, 34, 761–769. [Google Scholar] [CrossRef] [PubMed]
- Cubison, T.C.; Pape, S.A.; Parkhouse, N. Evidence for the link between healing time and the development of hypertrophic scars (HTS) in paediatric burns due to scald injury. Burns 2006, 32, 992–999. [Google Scholar] [CrossRef] [PubMed]
- Varkey, M.; Ding, J.; Tredget, E. Superficial dermal fibroblasts enhance basement membrane and epidermal barrier formation in tissue engineered skin: Implications for treatment of skin basement membrane disorders. Tissue Eng Part A 2014, 20, 540–552. [Google Scholar] [CrossRef] [PubMed]
- Varkey, M.; Ding, J.; Tredget, E. Fibrotic remodeling of tissue-engineered skin with deep dermal fibroblasts is reduced by keratinocytes. Tissue Eng Part A 2014, 20, 716–727. [Google Scholar] [CrossRef] [PubMed]
- Honardoust, D.; Varkey, M.; Marcoux, Y.; Shankowsky, H.A.; Tredget, E.E. Reduced decorin, fibromodulin, and transforming growth factor-β3 in deep dermis leads to hypertrophic scarring. J Burn Care Res. 2012, 33, 218–227. [Google Scholar] [CrossRef] [PubMed]
- Rinkevich, Y.; Walmsley, G.G.; Hu, M.S.; Maan, Z.N.; Newman, A.M.; Drukker, M.; Januszyk, M.; Krampitz, G.W.; Gurtner, G.C.; Lorenz, H.P.; et al. Skin fibrosis. Identification and isolation of a dermal lineage with intrinsic fibrogenic potential. Science 2015, 348. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Varkey, M.; Ding, J.; Tredget, E.E. Advances in Skin Substitutes—Potential of Tissue Engineered Skin for Facilitating Anti-Fibrotic Healing. J. Funct. Biomater. 2015, 6, 547-563. https://doi.org/10.3390/jfb6030547
Varkey M, Ding J, Tredget EE. Advances in Skin Substitutes—Potential of Tissue Engineered Skin for Facilitating Anti-Fibrotic Healing. Journal of Functional Biomaterials. 2015; 6(3):547-563. https://doi.org/10.3390/jfb6030547
Chicago/Turabian StyleVarkey, Mathew, Jie Ding, and Edward E. Tredget. 2015. "Advances in Skin Substitutes—Potential of Tissue Engineered Skin for Facilitating Anti-Fibrotic Healing" Journal of Functional Biomaterials 6, no. 3: 547-563. https://doi.org/10.3390/jfb6030547
APA StyleVarkey, M., Ding, J., & Tredget, E. E. (2015). Advances in Skin Substitutes—Potential of Tissue Engineered Skin for Facilitating Anti-Fibrotic Healing. Journal of Functional Biomaterials, 6(3), 547-563. https://doi.org/10.3390/jfb6030547