Influence of Synthesis Conditions on the Structure, Composition, and Electromagnetic Properties of FeCoSm/C Nanocomposites
<p>(<b>a</b>) Change in the mass of precursors of the FeCoSm/C nanocomposite during IR heat treatment, (<b>b</b>) temperature dependences of the derivative of the degree of transformation for precursors relative to PAN.</p> "> Figure 2
<p>Diffractogram of the FeCoSm/C nanocomposite synthesized at T = 300 °C.</p> "> Figure 3
<p>Diffractograms of FeCoSm/C nanocomposites synthesized in the temperature range from 600 to 800 °C (the ratio of Fe:Co:Sm metals is indicated in parentheses). *—The positions of the reflexes of the oxide phase.</p> "> Figure 4
<p>Enlarged areas of diffractograms of FeCoSm/C nanocomposites synthesized in the temperature range from 600 to 800 °C, containing phase composition analysis: peak of the plane (110) of the FeCo phase (<b>a</b>); the area of angles where the reflexes of the oxide phases and carbon are visible (<b>b</b>).</p> "> Figure 5
<p>Dependence of the average size of the BCC of metal nanoparticles, based on the FeCo or Co lattice (300 °C), on the synthesis temperature.</p> "> Figure 6
<p>Diffractograms of FeCoSm/C nanocomposites synthesized in the temperature range from 600 to 800 °C; enlarged diffractogram area with phase composition analysis.</p> "> Figure 7
<p>(<b>a</b>) Diffractograms of two compositions of FeCoSm/C nanocomposites: 50:40:10 and 30:30:40; (<b>b</b>) angle range 2θ from 65° to 75° diffractograms of FeCoSm/C nanocomposites with metal ratio FeCoSm = 30:30:40.</p> "> Figure 8
<p>Raman spectra of PPAN and FeCoSm/C samples synthesized at 700 °C.</p> "> Figure 9
<p>Raman spectra of FeCoSm/C nanocomposites synthesized at various temperatures (for comparison, the spectra of PPAN and FeCo/C nanocomposite are given).</p> "> Figure 10
<p>Deconvolution of Raman spectra of nanocomposites at various temperatures: (<b>a</b>) FeCoSm/C at 600 °C; (<b>b</b>) FeCoSm/C at 700 °C; (<b>c</b>) FeCoSm/C at 800 °C; (<b>d</b>) Fe:Co:Sm = 40:40:20 at 700 °C; (<b>e</b>) PPAN at 700 °C; (<b>f</b>) FeCo/C at 700 °C. Fe and PAN obtained at various temperatures. Deconvolution of Raman spectra of nanocomposites and PPANS obtained at different temperatures.</p> "> Figure 11
<p>Frequency dependences on the ratio of metals in the precursor of the (<b>a</b>) complex dielectric, (<b>b</b>) magnetic, (<b>c</b>) permeability and tangent of dielectric, (<b>d</b>) magnetic losses.</p> "> Figure 12
<p>Optimization of the thickness of the absorber layer (<b>a</b>); frequency dependences of the reflection coefficient of nanocomposites (Tsint. = 700 °C) with a different ratio of metals in the precursor Fe:Co:Sm: 40:40:20 (<b>b</b>), 50:40:10 (<b>c</b>).</p> ">
Abstract
:1. Introduction
2. Experimental Methods
2.1. Synthesis of Nanocomposites
2.2. Investigation Method
3. Results and Discussion
3.1. Analysis of Thermal Transformations in Precursors of the FeCoSm/C Nanocomposite During IR Heating
3.2. Investigation of FeCoSm/C Nanocomposite Structure
3.3. Investigation of the Effect of Synthesis Conditions on the Structure of the Polymer Carbon Matrix of FeCoSm/C Nanocomposites
3.4. The Effect of Synthesis Conditions on the Radio-Absorbing Properties of FeCoSm/C Nanocomposites
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Seemann, K.; Leiste, H.; Zieber, C. Soft magnetic FeCoTaN film cores for new high-frequency CMOS compatible micro-inductors. J. Magn. Magn. Mater. 2007, 316, e879. [Google Scholar] [CrossRef]
- Yu, E.; Shim, J.S.; Kim, I.; Kim, J.; Han, S.H.; Kim, H.J.; Kim, K.H.; Yamaguchi, M. Development of FeCo-based thin films for gigahertz applications. IEEE Trans. Magn. 2005, 41, 3259–3261. [Google Scholar] [CrossRef]
- Chen, L.H.; Zhu, W.; Tiefel, T.H.; Jin, S.; Van Dover, R.B.; Korenivski, V. Fe-Cr-Hf-N and Fe-Cr-Ta-N soft magnetic thin films. IEEE Trans. Magn. 2017, 97, 3811–3813. [Google Scholar] [CrossRef]
- Kim, I.; Kim, J.; Kim, K.H.; Yamaguchi, M. High frequency characteristics and soft magnetic properties of FeCoBN nanocrystalline films. Phys. Status Solidi 2004, 201, 1777. [Google Scholar] [CrossRef]
- Zhao, Y.W.; Zhang, X.K.; Xiao, J.Q. Submicrometer laminated Fe/SiO2 soft magnetic composites—An effective route to materials for high-frequency applications. Adv. Mater. 2005, 17, 915. [Google Scholar] [CrossRef]
- Vopsaroiua, M.; Georgieva, M.; Grundy, P.J.; Vallejo GFernandez Manzoor, S.; Thwaites, M.J.; O’Grady, K. Preparation of high moment CoFe films with controlled grain size and coercivity. J. Appl. Phys. 2005, 97, 10N303. [Google Scholar] [CrossRef]
- Wang, B.; Wu, Q.; Fu, Y.; Liu, T. A review on carbon/magnetic metal composites for microwave absorption. J. Mater. Sci. Technol. 2021, 86, 91–109. [Google Scholar] [CrossRef]
- Xi, L.; Zhou, J.J.; Sun, Q.J.; Li, X.Y.; Ma, J.H.; Zuo, Y.L.; Xue, D.S. Tunable cut-off frequency by in-plane uniaxial anisotropy in (Fe 66.9Co33.1)86.8Sm13.2 films. J. Phys. D Appl. Phys. 2011, 44, 295002. [Google Scholar] [CrossRef]
- Tian, J.; Zhang, S.; Qu, X.; Zhang, M. Co-reduction synthesis of uniform ferromagnetic SmCo nanoparticles. Mater. Lett. 2014, 68, 212–214. [Google Scholar] [CrossRef]
- Ma, Z.; Yang, S.; Zhang, T.; Jiang, C. The chemical synthesis of SmCo5 single-crystal particles with small size and high performance. Chem. Eng. J. 2016, 304, 993–999. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, Y.; Xu, H.; Wu, Q.; Zhang, H.; Liu, W.; Yue, M. Strategies for the Synthesis of Nanostructured SmCo5 Magnetic Particles for Permanent Magnetic Application. ACS Appl. Nano Mater. 2024, 7, 4252–4263. [Google Scholar] [CrossRef]
- Chuantao, M. Magnetic properties of exchange coupled SmCo5/FeCo composite particles synthesized by magnetic self-assembly. Chem. Phys. Lett. 2018, 696, 31–35. [Google Scholar] [CrossRef]
- Lee, J.; Kim, J.; Kim, D.; Lee, G.; Oh, Y.B.; Hwang, T.Y.; Lim, J.H.; Cho, H.B.; Kim, J.; Choa, Y.H. Exchange-Coupling Interaction in Zero- and One-Dimensional Sm2Co17/FeCo Core−Shell Nanomagnets. ACS Appl. Mater. Interfaces 2019, 11, 26222–26227. [Google Scholar] [CrossRef] [PubMed]
- Wei, Q.; Lulu, Y.; Qiang, Z.; Pingzhan, S.; Baoru, B.; Juan, D. High-Performance Anisotropic Nanocomposites with a Novel Core/shell Microstructure. ACS Appl. Mater. Interfaces 2022, 14, 15558–15564. [Google Scholar] [CrossRef]
- Kirkpatrick, S.; McHenry, M.E.; DeGraef, M.; Smith, P.A.; Nakamura, Y.; Laughlin, D.E.; Brunsman, E.M.; Scott, J.H.; Majetich, S.A. Magnetic properties of carbon-coated Sm-Co-C and Mn-Al-C alloy nanoparticles. Scr. Metall. Mater. 1995, 33, 1703–1708. [Google Scholar] [CrossRef]
- Yu, L.; Li, B.; Sheng, L.; An, K.; Zhao, X. The microwave absorbing properties of SmCo attached single wall carbon nanotube/epoxy composites. J. Alloys Compd. 2013, 575, 123–127. [Google Scholar] [CrossRef]
- Li, Z.; Mahariq, I.; Fouad, Y.; Abduvalieva, D.; Alhadrawi, M. Facile construction of wide-band electromagnetic wave absorber based on honeycomb-like PU foam embedded with GO-rGO/SmCo5 nanocomposite for stealth application of drone. Vacuum 2024, 224, 113107. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y.; Li, Y.; Miao, X.; Shao, Y.; Liu, C.; Xu, F. Tunable microstructure and microwave absorption properties of the SmCo5/Sm2Co17 binary-phase magnetic absorbent prepared via a reduction diffusion method. J. Alloys Compd. 2024, 973, 172843. [Google Scholar] [CrossRef]
- Kozhitov, L.V.; Muratov, D.G.; Kostishin, V.G.; Suslyaev, V.I.; Korovin, E.Y.; Popkova, A.V. FeCo/C nanocomposites: Synthesis, magnetic and electromagnetic properties. Russ. J. Inorg. Chem. 2017, 62, 1499–1507. [Google Scholar] [CrossRef]
- Yakushko, E.V.; Kozhitov, L.V.; Muratov, D.G.; Korovin, E.Y.; Lomov, A.A.; Popkova, A.V. Radar Absorbing NiCo Nanoparticles in Carbon Matrix of Nanocomposites in the Microwave Range. Russ. Phys. J. 2021, 63, 2226–2235. [Google Scholar] [CrossRef]
- Muratov, D.G.; Kozhitov, L.V.; Korovushkin, V.V.; Korovin, E.Y.; Popkova, A.V.; Novotortsev, V.M. Synthesis, structure and electromagnetic properties of nanocomposites with three-component FeCoNi nanoparticles. Russ. Phys. J. 2019, 61, 1788–1797. [Google Scholar] [CrossRef]
- Muratov, D.G.; Kozhitov, L.V.; Yakushko, E.V.; Tarala, V.A.; Korovin, E.Y. Synthesis, structure and electromagnetic properties of FeCoAl/C nanocomposites. Mod. Electron. Mater. 2021, 7, 99–108. [Google Scholar] [CrossRef]
- Zaporotskova, I.; Muratov, D.; Kozhitov, L.; Popkova, A.; Boroznina, N.; Boroznin, S.; Vasiliev, A.; Tarala, V.; Korovin, E. Nanocomposites Based on Pyrolyzed Polyacrylonitrile Doped with FeCoCr/C Transition Metal Alloy Nanoparticles: Synthesis, Structure, and Electromagnetic Properties. Polymers 2023, 15, 3596. [Google Scholar] [CrossRef]
- Available online: https://himikatus.ru/art/phase-diagr1/Co-Sm.php?ysclid=m19g504jj150534841 (accessed on 15 January 2025).
- Ferrari, A.C. Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Commun. 2007, 143, 47–57. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Robertson, J. Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon. Phys. Rev. B 2001, 64, 075414. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Basko, D.M. Raman spectroscopy as a versatile tool for studying the properties o grapheme. Nat. Nanotechnol. 2013, 8, 235–246. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, A.C.; Robertson, J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 2000, 61, 14095–14107. [Google Scholar] [CrossRef]
- Efimov, M.N.; Muratov, D.G.; Klyuev, A.L.; Zhilyaeva, N.A.; Vasilev, A.A.; Ozkan, S.Z.; Karpacheva, G.P. Ultrasonic treatment duration: A nuanced parameter in synthesis affecting structural properties and orr performance of koh-activated carbon. Diam. Relat. Mater. 2024, 142, 110804. [Google Scholar] [CrossRef]
- Afghahi, S.S.; Shokuhfar, A.S. Two step synthesis, electromagnetic and microwawe absorbing properties of FeCo@C core-schell nanostructure. J. Magn. Magn. Mater. 2014, 370, 37–44. [Google Scholar] [CrossRef]
Fe:Co:Sm | Salt Weight, g | ||
---|---|---|---|
Fe(NO3)3∙9H2O | Co(NO3)2∙6H2O | Sm(NO3)3∙9H2O | |
50:40:10 | 0.719 | 0.394 | 0.059 |
40:40:20 | 0.576 | 0.394 | 0.118 |
30:30:40 | 0.432 | 0.296 | 0.237 |
Sample | Tsint., °C | Fe:Co:Sm | ν(ID1,2), sm−1 | ν(IG1), sm−1 | ν(ID3), sm−1 | ID1+D2/IG1 | ID3/IG1 | La *, nm |
---|---|---|---|---|---|---|---|---|
FeCoSm/C | 600 | 40:40:20 | 1357 | 1596 | 1536 | 1.68 | 0.50 | 2.6 |
700 | 1353 | 1599 | 1545 | 1.51 | 0.44 | 2.9 | ||
800 | 1351 | 1595 | 1519 | 1.29 | 0.32 | 3.4 | ||
700 | 50:40:10 | 1351 | 1588 | 1500 | 1.12 | 0.20 | 3.9 | |
FeCo/C | 700 | 50:50:0 | 1349 | 1594 | 1542 | 1.83 | 0.60 | 2.4 |
PPAN | 700 | 0 | 1355 | 1606 | 1543 | 1.59 | 0.55 | 2.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muratov, D.; Kozhitov, L.; Zaporotskova, I.; Popkova, A.; Korovin, E.; Boroznin, S.; Boroznina, N. Influence of Synthesis Conditions on the Structure, Composition, and Electromagnetic Properties of FeCoSm/C Nanocomposites. J. Compos. Sci. 2025, 9, 62. https://doi.org/10.3390/jcs9020062
Muratov D, Kozhitov L, Zaporotskova I, Popkova A, Korovin E, Boroznin S, Boroznina N. Influence of Synthesis Conditions on the Structure, Composition, and Electromagnetic Properties of FeCoSm/C Nanocomposites. Journal of Composites Science. 2025; 9(2):62. https://doi.org/10.3390/jcs9020062
Chicago/Turabian StyleMuratov, Dmitriy, Lev Kozhitov, Irina Zaporotskova, Alena Popkova, Evgeniy Korovin, Sergey Boroznin, and Natalia Boroznina. 2025. "Influence of Synthesis Conditions on the Structure, Composition, and Electromagnetic Properties of FeCoSm/C Nanocomposites" Journal of Composites Science 9, no. 2: 62. https://doi.org/10.3390/jcs9020062
APA StyleMuratov, D., Kozhitov, L., Zaporotskova, I., Popkova, A., Korovin, E., Boroznin, S., & Boroznina, N. (2025). Influence of Synthesis Conditions on the Structure, Composition, and Electromagnetic Properties of FeCoSm/C Nanocomposites. Journal of Composites Science, 9(2), 62. https://doi.org/10.3390/jcs9020062