Translating Biomarker Research into Clinical Practice in Orthopaedic Trauma: A Systematic Review
Abstract
:1. Introduction
2. Methods
3. Results
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Funding
Conflicts of Interest
References
- Pape, H.-C.; Halvachizadeh, S.; Leenen, L.; Velmahos, G.D.; Buckley, R.; Giannoudis, P.V. Timing of Major Fracture Care in Polytrauma Patients—An Update on Principles, Parameters and Strategies for 2020. Injury 2019, 50, 1656–1670. [Google Scholar] [CrossRef]
- Mock, C.; Joshipura, M.; Arreola-Risa, C.; Quansah, R. An Estimate of the Number of Lives That Could Be Saved through Improvements in Trauma Care Globally. World J. Surg. 2012, 36, 959–963. [Google Scholar] [CrossRef] [PubMed]
- Miclau, T.; Hoogervorst, P.; Shearer, D.W.; El Naga, A.N.; Working, Z.M.; Martin, C.; Pesántez, R.; Hüttl, T.; Kojima, K.E.; Schütz, M.; et al. Current Status of Musculoskeletal Trauma Care Systems Worldwide. J. Orthop. Trauma 2018, 32, S64–S70. [Google Scholar] [CrossRef]
- Hoogervorst, P.; Shearer, D.W.; Miclau, T. The Burden of High-Energy Musculoskeletal Trauma in High-Income Countries. World J. Surg. 2020, 44, 1033–1038. [Google Scholar] [CrossRef] [PubMed]
- Stinner, D.J.; Edwards, D. Surgical Management of Musculoskeletal Trauma. Surg. Clin. N. Am. 2017, 97, 1119–1131. [Google Scholar] [CrossRef] [PubMed]
- Turen, C.H.; Dube, M.A.; LeCroy, M.C. Approach to the Polytraumatized Patient With Musculoskeletal Injuries. J. Am. Acad. Orthop. Surg. 1999, 7, 154–165. [Google Scholar] [CrossRef] [PubMed]
- Manikis, P.; Jankowski, S.; Zhang, H.; Kahn, R.J.; Vincent, J.-L. Correlation of Serial Blood Lactate Levels to Organ Failure and Mortality After Trauma. Am. J. Emerg. Med. 1995, 13, 619–622. [Google Scholar] [CrossRef]
- Elliott, D.C. An Evaluation of the End Points of Resuscitation. J. Am. Coll. Surg. 1998, 187, 536–547. [Google Scholar] [CrossRef] [PubMed]
- Nauth, A.; Hildebrand, F.; Vallier, H.; Moore, T.; Leenen, L.; Mckinley, T.; Pape, H.-C. Polytrauma: Update on Basic Science and Clinical Evidence. OTA Int. Open Access J. Orthop. Trauma 2021, 4, e116. [Google Scholar] [CrossRef]
- Wise, P.M.; Saiz, A.M.; Haller, J.; Wenke, J.C.; Schaer, T.; Schneider, P.; Morshed, S.; Bahney, C.S. Preclinical Models of Orthopaedic Trauma: Orthopaedic Research Society (ORS) and Orthopaedic Trauma Association (OTA) Symposium 2022. OTA Int. 2024, 7, e303. [Google Scholar] [CrossRef]
- Spijkerman, R.; Hesselink, L.; Bongers, S.; Van Wessem, K.J.P.; Vrisekoop, N.; Hietbrink, F.; Koenderman, L.; Leenen, L.P.H. Point-of-Care Analysis of Neutrophil Phenotypes: A First Step Toward Immuno-Based Precision Medicine in the Trauma ICU. Crit. Care Explor. 2020, 2, e0158. [Google Scholar] [CrossRef] [PubMed]
- Lord, J.M.; Midwinter, M.J.; Chen, Y.-F.; Belli, A.; Brohi, K.; Kovacs, E.J.; Koenderman, L.; Kubes, P.; Lilford, R.J. The Systemic Immune Response to Trauma: An Overview of Pathophysiology and Treatment. Lancet 2014, 384, 1455–1465. [Google Scholar] [CrossRef] [PubMed]
- Weinberg, D.S.; Narayanan, A.S.; Moore, T.A.; Vallier, H.A. Assessment of Resuscitation as Measured by Markers of Metabolic Acidosis and Features of Injury. Bone Jt. J. 2017, 99-B, 122–127. [Google Scholar] [CrossRef]
- Sears, B.W.; Stover, M.D.; Callaci, J. Pathoanatomy and Clinical Correlates of the Immunoinflammatory Response Following Orthopaedic Trauma. J. Am. Acad. Orthop. Surg. 2009, 17, 255–265. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Sterne, J.A.; Hernán, M.A.; Reeves, B.C.; Savović, J.; Berkman, N.D.; Viswanathan, M.; Henry, D.; Altman, D.G.; Ansari, M.T.; Boutron, I.; et al. ROBINS-I: A Tool for Assessing Risk of Bias in Non-Randomised Studies of Interventions. BMJ 2016, 355, i4919. [Google Scholar] [CrossRef] [PubMed]
- Sterne, J.A.C.; Savović, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, C.J.; Cheng, H.-Y.; Corbett, M.S.; Eldridge, S.M.; et al. RoB 2: A Revised Tool for Assessing Risk of Bias in Randomised Trials. BMJ 2019, 366, l4898. [Google Scholar] [CrossRef]
- Li, F.; Gao, L.; Zuo, J.; Wei, J. Efficacy of Damage Control Orthopedics Strategy in the Management of Lower Limb Trauma. Surg. Open Sci. 2024, 19, 101–104. [Google Scholar] [CrossRef]
- Vallier, H.A.; Cureton, B.A.; Ekstein, C.; Oldenburg, F.P.; Wilber, J.H. Early Definitive Stabilization of Unstable Pelvis and Acetabulum Fractures Reduces Morbidity. J. Trauma Inj. Infect. Crit. Care 2010, 69, 677–684. [Google Scholar] [CrossRef]
- Vallier, H.A.; Moore, T.A.; Como, J.J.; Wilczewski, P.A.; Steinmetz, M.P.; Wagner, K.G.; Smith, C.E.; Wang, X.-F.; Dolenc, A.J. Complications Are Reduced with a Protocol to Standardize Timing of Fixation Based on Response to Resuscitation. J. Orthop. Surg. Res. 2015, 10, 155. [Google Scholar] [CrossRef]
- Von Lübken, F.; Prause, S.; Lang, P.; Friemert, B.D.; Lefering, R.; Achatz, G. Early Total Care or Damage Control Orthopaedics for Major Fractures? Results of Propensity Score Matching for Early Definitive versus Early Temporary Fixation Based on Data from the Trauma Registry of the German Trauma Society (TraumaRegister DGU®). Eur. J. Trauma Emerg. Surg. 2023, 49, 1933–1946. [Google Scholar] [CrossRef]
- Yamamoto, R.; Udagawa, K.; Nishida, Y.; Ono, S.; Sasaki, J. Damage Control Orthopedics and Decreased In-Hospital Mortality: A Nationwide Study. Injury 2019, 50, 2240–2246. [Google Scholar] [CrossRef] [PubMed]
- Enocson, A.; Lundin, N. Early versus Late Surgical Treatment of Pelvic and Acetabular Fractures a Five-Year Follow-up of 419 Patients. BMC Musculoskelet. Disord. 2023, 24, 848. [Google Scholar] [CrossRef] [PubMed]
- Gaski, G.E.; Metzger, C.; McCarroll, T.; Wessel, R.; Adler, J.; Cutshall, A.; Brown, K.; Vodovotz, Y.; Billiar, T.R.; McKinley, T.O. Early Immunologic Response in Multiply Injured Patients With Orthopaedic Injuries Is Associated With Organ Dysfunction. J. Orthop. Trauma 2019, 33, 220–228. [Google Scholar] [CrossRef]
- Enninghorst, N.; Toth, L.; King, K.L.; McDougall, D.; Mackenzie, S.; Balogh, Z.J. Acute Definitive Internal Fixation of Pelvic Ring Fractures in Polytrauma Patients: A Feasible Option. J. Trauma Inj. Infect. Crit. Care 2010, 68, 935–941. [Google Scholar] [CrossRef] [PubMed]
- Pape, H.-C.; Van Griensven, M.; Rice, J.; G??nsslen, A.; Hildebrand, F.; Zech, S.; Winny, M.; Lichtinghagen, R.; Krettek, C. Major Secondary Surgery in Blunt Trauma Patients and Perioperative Cytokine Liberation: Determination of the Clinical Relevance of Biochemical Markers. J. Trauma Inj. Infect. Crit. Care 2001, 50, 989–1000. [Google Scholar] [CrossRef]
- Harvin, J.A.; Harvin, W.H.; Camp, E.; Caga-Anan, Z.; Burgess, A.R.; Wade, C.E.; Holcomb, J.B.; Cotton, B.A. Early Femur Fracture Fixation Is Associated with a Reduction in Pulmonary Complications and Hospital Charges: A Decade of Experience with 1,376 Diaphyseal Femur Fractures. J. Trauma Acute Care Surg. 2012, 73, 1442–1449. [Google Scholar] [CrossRef] [PubMed]
- O’Toole, R.V.; O’Brien, M.; Scalea, T.M.; Habashi, N.; Pollak, A.N.; Turen, C.H. Resuscitation Before Stabilization of Femoral Fractures Limits Acute Respiratory Distress Syndrome in Patients With Multiple Traumatic Injuries Despite Low Use of Damage Control Orthopedics. J. Trauma Inj. Infect. Crit. Care 2009, 67, 1013–1021. [Google Scholar] [CrossRef]
- Arnold, S.C.; Lagazzi, E.; Wagner, R.K.; Rafaqat, W.; Abiad, M.; Argandykov, D.; Hoekman, A.H.; Panossian, V.; Nzenwa, I.C.; Cote, M.; et al. Two Big Bones, One Big Decision: When to Fix Bilateral Femur Fractures. Injury 2024, 55, 111610. [Google Scholar] [CrossRef]
- Yu, T.-P.; Chen, Y.-T.; Ko, P.-Y.; Wu, C.-H.; Yang, T.-H.; Hung, K.-S.; Wu, P.-T.; Wang, C.-J.; Yen, Y.-T.; Shan, Y.-S. Is Delayed Fixation Worthwhile in Patients with Long Bone Fracture Concomitant with Mild Traumatic Brain Injury? A Propensity Score–Matched Study. Injury 2023, 54, 110804. [Google Scholar] [CrossRef]
- Glass, N.E.; Burlew, C.C.; Hahnhaussen, J.; Weckbach, S.; Pieracci, F.M.; Moore, E.E.; Stahel, P.F. Early Definitive Fracture Fixation Is Safely Performed in the Presence of an Open Abdomen in Multiply Injured Patients. J. Orthop. Trauma 2017, 31, 624–630. [Google Scholar] [CrossRef]
- Andruszkow, H.; Dowrick, A.S.; Frink, M.; Zeckey, C.; Krettek, C.; Hildebrand, F.; Edwards, E.R.; Mommsen, P. Surgical Strategies in Polytraumatized Patients with Femoral Shaft Fractures—Comparing a German and an Australian Level I Trauma Centre. Injury 2013, 44, 1068–1072. [Google Scholar] [CrossRef] [PubMed]
- Testa, G.; Vescio, A.; Aloj, D.C.; Papotto, G.; Ferrarotto, L.; Massé, A.; Sessa, G.; Pavone, V. Definitive Treatment of Femoral Shaft Fractures: Comparison between Anterograde Intramedullary Nailing and Monoaxial External Fixation. JCM 2019, 8, 1119. [Google Scholar] [CrossRef] [PubMed]
- Fröhlich, M.; Schäfer, N.; Caspers, M.; Böhm, J.K.; Stürmer, E.K.; Bouillon, B.; Maegele, M. Temporal Phenotyping of Circulating Microparticles after Trauma: A Prospective Cohort Study. Scand. J. Trauma Resusc. Emerg. Med. 2018, 26, 33. [Google Scholar] [CrossRef] [PubMed]
- Haupt, J.; Krysiak, N.; Unger, M.; Bogner-Flatz, V.; Biberthaler, P.; Hanschen, M.; Van Griensven, M.; Haug, A.T. The Potential of Adipokines in Identifying Multiple Trauma Patients at Risk of Developing Multiple Organ Dysfunction Syndrome. Eur. J. Med. Res. 2021, 26, 38. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.; Qian, H.; Wu, G.; Bao, N.; Song, Y. Neutrophil-Derived Long Noncoding RNA IL-7R Predicts Development of Multiple Organ Dysfunction Syndrome in Patients with Trauma. Eur. J. Trauma Emerg. Surg. 2022, 48, 1545–1553. [Google Scholar] [CrossRef]
- Pape, H.-C.; Grimme, K.; Van Griensven, M.; Sott, A.H.; Giannoudis, P.; Morley, J.; Roise, O.; Ellingsen, E.; Hildebrand, F.; Wiese, B.; et al. Impact of Intramedullary Instrumentation versus Damage Control for Femoral Fractures on Immunoinflammatory Parameters: Prospective Randomized Analysis by the EPOFF Study Group. J. Trauma Inj. Infect. Crit. Care 2003, 55, 7–13. [Google Scholar] [CrossRef]
- Pape, H.-C.; Rixen, D.; Morley, J.; Husebye, E.E.; Mueller, M.; Dumont, C.; Gruner, A.; Oestern, H.J.; Bayeff-Filoff, M.; Garving, C.; et al. Impact of the Method of Initial Stabilization for Femoral Shaft Fractures in Patients With Multiple Injuries at Risk for Complications (Borderline Patients). Ann. Surg. 2007, 246, 491–501. [Google Scholar] [CrossRef]
- Rixen, D.; Steinhausen, E.; Sauerland, S.; Lefering, R.; Maegele, M.G.; Bouillon, B.; Grass, G.; Neugebauer, E.A.M.; Damage Control Study Group. Randomized, Controlled, Two-Arm, Interventional, Multicenter Study on Risk-Adapted Damage Control Orthopedic Surgery of Femur Shaft Fractures in Multiple-Trauma Patients. Trials 2016, 17, 47. [Google Scholar] [CrossRef]
- Briggs, G.D.; Lemmert, K.; Lott, N.J.; De Malmanche, T.; Balogh, Z.J. Biomarkers to Guide the Timing of Surgery: Neutrophil and Monocyte L-Selectin Predict Postoperative Sepsis in Orthopaedic Trauma Patients. JCM 2021, 10, 2207. [Google Scholar] [CrossRef] [PubMed]
- Lumsdaine, W.; Easton, R.M.; Lott, N.J.; White, A.; Malmanche, T.L.D.; Lemmert, K.; Weber, D.G.; Balogh, Z.J. Neutrophil Oxidative Burst Capacity for Peri-Operative Immune Monitoring in Trauma Patients. Injury 2014, 45, 1144–1148. [Google Scholar] [CrossRef]
- Pape, H.-C.; Griensven, M.V.; Hildebrand, F.F.; Tzioupis, C.T.; Sommer, K.L.; Krettek, C.C.; Giannoudis, P.V. Systemic Inflammatory Response After Extremity or Truncal Fracture Operations. J. Trauma Inj. Infect. Crit. Care 2008, 65, 1379–1384. [Google Scholar] [CrossRef] [PubMed]
- Hietbrink, F.; Koenderman, L.; Althuizen, M.; Leenen, L.P.H. Modulation of the Innate Immune Response after Trauma Visualised by a Change in Functional PMN Phenotype. Injury 2009, 40, 851–855. [Google Scholar] [CrossRef] [PubMed]
- Richards, J.E.; Matuszewski, P.E.; Grif, S.M.; Guillamondegui, O.D.; Obremskey, W.T.; Evans, J.M. The Role of Elevated Lactate as a Risk Factor for Pulmonary Morbidity After Early Fixation of Femoral Shaft Fractures. J. Orthop. Trauma 2016, 30, 312–318. [Google Scholar]
- Oladipo, V.; Portney, D.; Haber, J.; Baker, H.; Strelzow, J. Lactic Acid Levels Are Associated with Morbidity, Length of Stay, and Total Treatment Costs in Urban Trauma Patients with Lower Extremity Long Bone Fractures. Eur. J. Orthop. Surg. Traumatol. 2024, 34, 1963–1970. [Google Scholar] [CrossRef]
- Nishida, Y.; Yamamoto, R.; Ono, S.; Sasaki, J. Association between Preoperative Lactate Level and Early Complications after Surgery for Isolated Extremity Fracture. BMC Musculoskelet. Disord. 2024, 25, 314. [Google Scholar] [CrossRef] [PubMed]
- Gabay, C.; Kushner, I. Acute-Phase Proteins and Other Systemic. New Engl. J. Med. 1999, 340, 448–454. [Google Scholar] [CrossRef]
- Madry, H.; Grässel, S.; Nöth, U.; Relja, B.; Bernstein, A.; Docheva, D.; Kauther, M.D.; Katthagen, J.C.; Bader, R.; Van Griensven, M.; et al. The Future of Basic Science in Orthopaedics and Traumatology: Cassandra or Prometheus? Eur. J. Med. Res. 2021, 26, 56. [Google Scholar] [CrossRef] [PubMed]
- Vincent, J.-L.; Quintairos, E.; Silva, A.; Couto, L.; Taccone, F.S. The Value of Blood Lactate Kinetics in Critically Ill Patients: A Systematic Review. Crit Care 2016, 20, 257. [Google Scholar] [CrossRef]
- Frohlich, V.; Johandl, S.; De Zwart, P.; Stockle, U.; Ochs, B. Navigated TKA after Osteotomy versus Primary Navigated TKA: A Matched-Pair Analysis. Orthopedics 2016, 39, S77–S82. [Google Scholar] [CrossRef]
- Holcomb, J.B.; Tilley, B.C.; Baraniuk, S.; Fox, E.E.; Wade, C.E.; Podbielski, J.M.; Del Junco, D.J.; Brasel, K.J.; Bulger, E.M.; Callcut, R.A.; et al. Transfusion of Plasma, Platelets, and Red Blood Cells in a 1:1:1 vs a 1:1:2 Ratio and Mortality in Patients With Severe Trauma: The PROPPR Randomized Clinical Trial. JAMA 2015, 313, 471. [Google Scholar] [CrossRef] [PubMed]
- Bassett, M.D.; Smith, C.E. General Anesthesia for Trauma. In Essentials of Trauma Anesthesia; Varon, A.J., Smith, C., Eds.; Cambridge University Press: Cambridge, UK, 2012; pp. 76–94. ISBN 978-1-139-06133-9. [Google Scholar]
- Chong, M.A.; Wang, Y.; Berbenetz, N.M.; McConachie, I. Does Goal-Directed Haemodynamic and Fluid Therapy Improve Peri-Operative Outcomes?: A Systematic Review and Meta-Analysis. Eur. J. Anaesthesiol. 2018, 35, 469–483. [Google Scholar] [CrossRef]
- Brohi, K.; Singh, J.; Heron, M.; Coats, T. Acute Traumatic Coagulopathy. J. Trauma Inj. Infect. Crit. Care 2003, 54, 1127–1130. [Google Scholar] [CrossRef] [PubMed]
- Tobin, J.M.; Barras, W.P.; Bree, S.; Williams, N.; McFarland, C.; Park, C.; Steinhiser, D.; Stone, R.C.; Stockinger, Z. Anesthesia for Trauma Patients. Mil. Med. 2018, 183, 32–35. [Google Scholar] [CrossRef]
- Nizamuddin, J.; O’Connor, M. Chapter 46: Anesthesia for Surgical Patients. In Schwartz’s Principles of Surgery; McGraw Hill Medical: New York, NY, USA, 2019. [Google Scholar]
- Davis, M.L.; Rocca, G.J.D.; Brenner, M.; Cribari, C.; Cryer, H.G.; Ficke, J.R.; Hartsock, L.; Henley, M.B.; Henry, P.D.G.; Jenkins, D.H.; et al. ACS Tqip Best Practices in the Management of Orthopaedic Trauma. Presented at the ACS Trauma Quality Improvement Program. 2015. Available online: https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://www.facs.org/media/mkbnhqtw/ortho_guidelines.pdf&ved=2ahUKEwjp0NXBkb-LAxWUFFkFHUbkImsQFnoECAgQAQ&usg=AOvVaw2wg6Vb-SqWCjcM2PBIKz83 (accessed on 1 February 2025).
- Bolcato, V.; Franzetti, C.; Fassina, G.; Basile, G.; Martinez, R.M.; Tronconi, L.P. Comparative Study on Informed Consent Regulation in Health Care among Italy, France, United Kingdom, Nordic Countries, Germany, and Spain. J. Forensic Leg. Med. 2024, 103, 102674. [Google Scholar] [CrossRef]
Author | Confouding | Selection of Participants | Deviations from Intended Interventions | Missing Data | Measurement of Outcomes | Selection of the Reported Result | Overall Bias | Notes |
---|---|---|---|---|---|---|---|---|
Li et al. 2024 [18] | + | + | + | + | + | + | Low-risk | |
Vallier et al. 2010 [19] | + | ? | + | + | + | + | Mod-risk | Unclear selection criteria. |
Vallier et al. 2015 [20] | - | + | + | + | + | + | High-risk | Lack of matching. |
Lubken et al. 2023 [21] | - | + | + | + | + | + | High-risk | Lack of matching. |
Yamamoto et al. 2019 [22] | + | ? | + | + | + | + | Mod-risk | Unclear selection criteria. |
Enocson et al. 2023 [23] | - | + | + | + | + | + | High-risk | Lack of matching. |
Gaski et al. 2019 [24] | - | - | + | + | + | + | High-risk | Lack of matching due to case-series. |
Enninghorst et al. 2010 [25] | + | + | + | + | + | + | Low-risk | |
Pape et al. 2001 [26] | + | + | + | + | + | + | Low-risk | |
Harvin et al. 2012 [27] | - | - | + | + | + | + | High-risk | Lack of matching. |
O’Toole et al. 2009 [28] | - | - | + | + | + | + | High-risk | Lack of matching. |
Arnold et al. 2024 [29] | + | + | + | + | + | + | Low-risk | |
Yu et al. 2023 [30] | + | ? | + | + | + | + | Mod-risk | Unclear intervention criteria. |
Glass et al. 2017 [31] | + | + | + | + | + | + | Low-risk | |
Andruszkow et al. 2013 [32] | + | ? | ? | + | + | + | Mod-risk | Unclear selection methodology. |
Testa et al. 2019 [33] | + | ? | + | + | - | + | High-risk | Unclear intervention criteria. Missing ISS. |
Frohlich et al. 2018 [34] | + | + | + | + | + | + | Low-risk | |
Haupt et al. 2021 [35] | + | + | + | + | + | + | Low-risk | |
Jin et al. 2022 [36] | + | + | + | + | + | + | Low-risk |
Author | Randomisation Process | Deviations from Intended Interventions | Missing Outcome Data | Measurement of Outcomes | Selection of the Reported Result | Overall Bias | Notes |
---|---|---|---|---|---|---|---|
Pape et al. 2003 [37] | + | + | + | + | + | Low-risk | |
Pape et al. 2007 [38] | + | + | + | + | + | Low-risk | |
Rixen et al. 2016 [39] | + | + | + | + | + | Low-risk |
Study | Biomarker | POC vs. Delayed | Time to Results | Analysis | p-Value | Odds Ratio |
---|---|---|---|---|---|---|
Briggs [40] | Monocyte L-selectin | POC | ~30 min | Sepsis | 0.001 | 1.5 |
Neutrophil L-selectin | POC | ~30 min | Sepsis | 0.005 | 1.56 | |
Lumsdaine [41] | Neutrophil oxidative burst capacity (fMLP) | POC | ~45 min | Post-op infection | 0.024 | |
Pape [42] | IL-6 | Delayed | ELISA 4–6 h | Pre vs. post op | <0.05 | |
IL-8 | Delayed | ELISA 4–6 h | Pre vs. post op | <0.05 | ||
Gaski [24] | IL-10 | Delayed | Bioassay 4–6 h | Nosoicomial infection | 0.01 | |
Degree of organ dysfunction | <0.05 | |||||
IL-6 | Delayed | Bioassay 4–6 h | Nosoicomial infection | 0.15 | ||
Degree of organ dysfunction | <0.05 | |||||
IL-1RA | Delayed | Bioassay 4–6 h | Nosoicomial infection | 0.13 | ||
Degree of organ dysfunction | <0.05 | |||||
MCP-1 | Delayed | Bioassay 4–6 h | Nosoicomial infection | 0.08 | ||
Degree of organ dysfunction | <0.05 | |||||
IL-8 | Delayed | Bioassay 4–6 h | Nosoicomial infection | 0.15 | ||
Degree of organ dysfunction | <0.05 | |||||
HMGB1 | Delayed | Bioassay 4–6 h | Nosoicomial infection | 0.03 | ||
Degree of organ dysfunction | <0.05 | |||||
MIG | Delayed | Bioassay 4–6 h | Nosoicomial infection | 0.05 | ||
Degree of organ dysfunction | <0.05 | |||||
IL-23 | Delayed | Bioassay 4–6 h | Nosoicomial infection | 0.11 | ||
Degree of organ dysfunction | <0.05 | |||||
Hietbrink [43] | IL-6 | Delayed | ELISA 4–6 h | Degree of organ dysfunction (ISS) | 0.0001 | |
Active FC-gammaRII (CD32) | Delayed | ELISA 4–6 h | Degree of organ dysfunction (ISS) | 0.120 | ||
MAC-1 | Delayed | ELISA 4–6 h | Degree of organ dysfunction (ISS) | 0.092 | ||
Spijkerman [11] | CD16bright/CD62Ldim Neutrophils | POC | ~30 min | Infection | 0.002 | |
Frohlich [34] | CD144+ | Delayed | Flow cytometry 2–4 h | ISS | <0.001 | |
CD42B+ | Delayed | Flow cytometry 2–4 h | ISS | <0.001 | ||
Haupt [35] | Leptin | Delayed | ELISA 4–6 h | Multiple organ failure | 0.027 | |
IL-17A | Delayed | ELISA 4–6 h | Multiple organ failure | <0.05 | ||
Jin [36] | RNA IL-7R | Delayed | PCR 2–4 h | Multiple organ failure | 0.001 | |
Richards [44] | Admission lactate | POC | ~30 min | Pulmonary complications | <0.001 | |
Preoperative lactate | POC | ~30 min | Pulmonary complications | >0.05 | ||
Oladipo [45] | Lactate | POC | ~30 min | Post-operative morbidity | 0.015 | 1.305 |
Lactate | POC | ~30 min | LOS | <0.001 | ||
Nishida [46] | Lactate | POC | ~30 min | Post-op complications | 0.04 | 2.64 |
Lactate | POC | ~30 min | LOS | 0.78 |
Study | Study Design | Sample Size | Pathology | Criteria for DCO vs. EAC | ISS | Main Findings |
---|---|---|---|---|---|---|
Li et al. 2024 [18] | CC | 120 | Lower extremity | Judgement of the on-scene paramedics and doctors of the emergency department. | DCO: 28.1 EAC: 21.3 p < 0.001 | Damage control surgery is more often selected to treat patients with more severe lower limb injuries, which leads to lower complication rates. |
Vallier et al. 2010 [19] | CC | 645 | Pelivs and acetabular fxs | Surgeon preference, delayed patient presentation to our hospital, operating room availability, severe head injuries, or inadequate resuscitation. | DCO: 24.9 EAC: 26.9 p = 0.05 | Early fixation of unstable pelvis and acetabular fractures in multiply injured patients reduces morbidity and length of intensive care unit stay, which may decrease treatment costs. Further study to ascertain the effects of associated systemic injuries and the utility of physiologic and laboratory parameters. |
Vallier et al. 2015 [20] | PC | 355 | Femur, pelvis, acetabular, or spine fractures | Surgeon choice 47 Intensivist choice 6 Medically unstable 5 Operating room unavailable 4 Severe head injury 2 Patient choice 2 | DCO: 34 EAC: 25.1 p < 0.001 | Our EAC protocol recommends definitive fixation within 36 h in resuscitated patients. Early fixation was associated with fewer complications and shorter length of stay. The EAC recommendations are safe and effective for the majority of severely injured patients with mechanically unstable femur, pelvis, acetabular, or spine fractures requiring fixation. |
Lubken et al. 2023 [21] | CC | 12569 | Extremity or pelvic fractures | NR | DCO: 30.5 EAC: 25.9 p < 0.001 | DCO was considerably more often associated with packed red blood cell (pRBC) transfusions (33.9% vs. 13.4%), catecholamine therapy (14.1% vs. 6.8%), lower extremity injuries (72.4% vs. 53.5%), unstable pelvic fractures (41.0% vs. 25.9%), penetrating injuries (2.8% vs. 1.5%), and shock (20.5% vs. 10.8%) and unconsciousness (23.7% vs. 16.3%) on admission. |
Yamamoto et al. 2019 [22] | CC | 19319 | Extremity injury | NR | DCO: 9 EAC: 9 p < 0.001 | DCO was associated with decreased in-hospital mortality in patients with major fractures. |
Enocson et al. 2023 [23] | CC | 419 | Pelvic or acetabular fx | NR | NR | Early (within 72 h) definitive surgery of patients with pelvic or acetabular fractures seems safe with regard to risk for reoperation, other adverse events, and mortality. |
Enninghorst et al. 2010 [25] | CC | 45 | Pelvic ring fx | Depending on the fracture pattern and the availability of pelvic specialist surgeon, acute temporary external or acute definitive internal fixation is performed. | DCO: 24 EAC: 30 p > 0.05 | Acute open reduction internal fixation of unstable pelvic ring fractures within 6 h could be safely performed even in severely shocked patients with multiple injuries. The procedure did not lead to increased rates of transfusion, mortality, intensive care unit length of stay, or overall length of stay. |
Pape et al. 2003 [37] | RCT | 35 | Femoral shaft | In the emergency room, all patients were randomly assigned to one treatment arm after all injuries had been categorised and the inclusion criteria were met. Patients were randomised to either femoral nailing or damage control by initial external fixation (DCO) and secondary femoral nailing. | DCO: 23.2 EAC: 21.7 p > 0.05 | A sustained inflammatory response was measured after primary (<24 h) intramedullary femoral instrumentation, but not after initial external fixation or after secondary conversion to an intramedullary implant. |
Pape et al. 2007 [38] | RCT | 165 | Femoral shaft | For all patients who met the inclusion criteria, the sealed envelope that contained the type of treatment was opened after completion of the diagnostics and grading of the patient’s status to account for the exclusion criteria. | DCO: 29.0 EAC: 23.3 p < 0.001 | In stable patients, primary femoral nailing is associated with shorter ventilation time. In borderline patients, it is associated with a higher incidence of lung dysfunctions when compared with those who underwent external fixation and later conversion to intermedullary nail. |
O’Toole et al. 2009 [28] | CC | 227 | Femoral shaft | The reason why each patient was selected for DCO cannot be accurately determined. | DCO: 41.4 EAC: 36.6 p < 0.05 | In the context of resuscitation before reamed intramedullary nailing of femoral shaft fractures, our rate of acute respiratory distress syndrome was lower (p < 0.001) than that of a similar study reported in the literature. |
Arnold et al. 2024 [29] | RC | 558 | Femur shaft fractures | NR | DCO: 25 EAC: 16 p < 0.001 | Early definitive fixation (≤24 h) is preferred over delayed definitive fixation (>24 h) for patients with bilateral femur shaft fractures. Although mortality does not differ, overall morbidity and deep venous thrombosis rates, as well as length of hospital and intensive care unit stay, are significantly lower. |
Yu et al. 2023 [30] | RC | 181 | Long bone fractures | NR | DCO: 23.0 EAC: 21.9 p > 0.05 | Delaying fixation may not be necessary to prevent the second hit phenomenon and has not demonstrated any clear benefits. |
Rixen et al. 2016 [39] | RCT | 34 | Femoral shaft | All multiple-trauma patients who presented to the participating hospitals with femur shaft fractures were screened. If all inclusion criteria were fulfilled, the patient was randomised and documentation began. | DCO: 39.8 EAC: 38.9 p > 0.05 | No advantage of the damage control concept could be detected in the treatment of femur fractures in multiple-trauma patients. |
Andruszkow et al. 2013 [32] | RC | 207 | Femoral shaft | NR | GermanDCO: 34.4 EAC: 25.5 p < 0.001 Australian DCO: 41.0 EAC: 34.0 p < 0.001 | Despite a higher ISS in the DCO group, there were no differences in posttraumatic complications and survival depending on EAC or DCO treatment. |
Testa et al. 2019 [33] | RC | 147 | Femoral shaft | NR | NR | Intramedullay nail is the gold standard for definitive treatment of femoral shaft fractures. In patients with severe associated injuries, external fixation should be a good alternative. |
Study | Outcomes | DCO Group | EAC Group | Significance |
---|---|---|---|---|
Li [18] | Infections | 2 (5%) | 10 (12.5%) | NR |
Delayed union | 3 (7.5%) | 12 (15%) | NR | |
Material failure | 2 (5%) | 3 (4%) | NR | |
Adjusted complication rate | 19.50% | 30.50% | <0.01 | |
Vallier (2010) [19] | Initial OR time | 22 | 125 | p < 0.005 |
Total OR time | 152 | 125 | no sig | |
ICU LOS | 12 | 13 | no sig | |
Hospital LOS | 17 | 21 | no sig | |
Pna | 45 | 14 | 0.024 | |
ARDS | 34 | 8 | 0.019 | |
Pulm complication | 73 | 21 | 0.0024 | |
Any complication | 81 | 29 | 0.006 | |
Vallier (2015) [20] | Abdominal injury | 31 | 66 | 0.0002 |
Chest injury | 42 | 167 | no sig | |
Head injury | 43 | 149 | 0.08 | |
Lubken [21] | Transfusion | 2774 | 586 | <0.001 |
Number of surgical procedures | 7 | 4 | <0.001 | |
ICU LOS | 8 | 3 | <0.001 | |
Hospital LOS | 26 | 20 | <0.001 | |
Sepsis | 804 | 245 | <0.001 | |
MOF | 2836 | 876 | <0.001 | |
Inhospital mortality | 887 | 167 | <0.001 | |
Yamamoto [22] | In hospital mortality | 40 | 66 | 0.011 |
Mortality 28 days | 35 | 61 | 0.008 | |
Pulm complication | 17 | 20 | no sig | |
Cardiac complication | 15 | 20 | no sig | |
Enocson [23] | Infections | 13 | 14 | NR |
Nonunion | 3 | 5 | NR | |
Nerve injury | 37 | 26 | NR | |
DVT | 9 | 7 | NR | |
Intraoperative bleeding | 575 | 720 | <0.01 | |
Hospital LOS | 10 | 10 | no sig | |
Enninghorst [25] | Transfusion | 7 | 5 | no sig |
DVT | 2 | 1 | no sig | |
ICU LOS | 4 | 3 | no sig | |
Hospital LOS | 37 | 25 | no sig | |
Mortality | 3 | 0 | no sig | |
Pape (2003) [37] | ICU LOS | 3.3 | 4.8 | no sig |
ARDS | 0 | 0 | no sig | |
Pape (2001) [26] | Blood loss intraop | 190 | 210 | no sig |
ICU LOS | 13.1 | 12.6 | no sig | |
Organ dysfunction | 9 | 33 | 0.01 | |
ARDS | 1 | 6 | 0.06 | |
Pape (2007) [38] | ICU LOS (HRs) | 298 | 197 | no sig |
Hours of ventilation | 209 | 127 | no sig | |
ARDS (%) | 10 | 9 | no sig | |
Sepsis (%) | 12 | 13 | no sig | |
Harvin [27] | Hospital LOS | 10 | 6 | <0.001 |
Mortality | 6 | 4 | 0.01 | |
DVT | 10 | 8 | <0.001 | |
Hospital charges | 97,018 | 59,561 | <0.001 | |
O′Toole [28] | Transfusion % | 92.9 | 58.3 | <0.05 |
ARDS % | 0 | 1.5 | no sig | |
Mortality | 17.9 | 2.0 | <0.05 | |
Arnold [29] | Morbidity | 63 | 36 | 0.003 |
Hospital LOS | 15 | 10 | <0.001 | |
Post procedure LOS | 14 | 11 | 0.045 | |
Mortality | 6 | 5 | no sig | |
Yu [30] | Hospital LOS | 14.8 | 15.3 | no sig |
Wound complications | 5 | 10 | no sig | |
Glass [31] | Hospital LOS | 32 | 33 | no sig |
Andruszkow [32] | Infections requiring revision | 15 | 1 | 0.002 |
German-MODS | 11.8% | 4.6% | no sig | |
German-Mortality | 17.6 | 0 | 0.05 | |
German-Hospital LOS | 54.5 | 29.8 | <0.001 | |
German-ICU LOS | 27.7 | 10.7 | <0.001 | |
Australian-MODS | 12.5 | 11.7 | no sig | |
Australian-Mortality | 7.5 | 4.3 | no sig | |
Australian-Hospital LOS | 24.8 | 20.5 | 0.03 | |
Australian-ICU LOS | 12.2 | 7.6 | 0.002 | |
Rixen [39] | Hospital LOS | 32.3 | 30.2 | no sig |
Transfusion requirements | 4.7 | 6.6 | no sig | |
ICU LOS | 21.8 | 12.4 | 0.037 | |
Testa [33] | Time to weight bearing | 21.8 | 21.2 | no sig |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baur, A.; Saiz, A.M., Jr. Translating Biomarker Research into Clinical Practice in Orthopaedic Trauma: A Systematic Review. J. Clin. Med. 2025, 14, 1329. https://doi.org/10.3390/jcm14041329
Baur A, Saiz AM Jr. Translating Biomarker Research into Clinical Practice in Orthopaedic Trauma: A Systematic Review. Journal of Clinical Medicine. 2025; 14(4):1329. https://doi.org/10.3390/jcm14041329
Chicago/Turabian StyleBaur, Alexander, and Augustine Mark Saiz, Jr. 2025. "Translating Biomarker Research into Clinical Practice in Orthopaedic Trauma: A Systematic Review" Journal of Clinical Medicine 14, no. 4: 1329. https://doi.org/10.3390/jcm14041329
APA StyleBaur, A., & Saiz, A. M., Jr. (2025). Translating Biomarker Research into Clinical Practice in Orthopaedic Trauma: A Systematic Review. Journal of Clinical Medicine, 14(4), 1329. https://doi.org/10.3390/jcm14041329