Urinary Output as a Predictor of Mortality in Cardiogenic Shock: An Explorative Retrospective Analysis
<p>Patient selection flowchart.</p> "> Figure 2
<p>Boxplots illustrating urinary output parameters (mL/h) in relation to 30-day mortality. Outliers are marked as dots, with extreme values represented by asterisks. Abbreviations: UO0–6 = urinary output 0–6 h post-admission; UO6–12 = urinary output 6–12 h post-admission; UO12–24 = urinary output 12–24 h post-admission.</p> "> Figure 3
<p>Kaplan–Meier survival curves for cumulative urinary output after 24 h stratified into 4 groups (<0.5 mL/kg/h, 0.5–1 mL/kg/h, 1–2 mL/kg/h, >2 ml/kg/h). Exploratory log-rank test for patients with <0.5 mL/kg/h versus all remaining patients with ≥0.5 ml/kg/h.</p> "> Figure 4
<p>Receiver operating characteristics (ROC) curves for urinary output parameters and SAPS 3 in relation to 30-day mortality. The reference line is set at an area of 0.5. Abbreviations: UO0–6 = urinary output 0–6 h in mL/h; UO6–12 = urinary output 6–12 h in mL/h; UO12–24 = urinary output 12–24 h in mL/h; SAPS 3 = Simplified Acute Physiology Score 3.</p> "> Figure 5
<p>Receiver operating characteristic (ROC) curves for the three primary urinary output parameters in multivariate combination (orange line) and for urinary output 0–24 h (violet line) in relation to 30-day mortality. AUCs are listed in <a href="#jcm-13-07706-t005" class="html-table">Table 5</a>.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Objectives
2.2. Study Design
2.3. Study Population
2.3.1. Inclusion Criteria
- -
- SBP < 90 mmHg for >30 min or use of catecholamines to maintain a SBP > 90 mmHg;
- -
- Clinical or radiological signs of pulmonary congestion;
- -
- Reduced end-organ perfusion (neurological impairment, cold extremities, oliguria with <30 mL/h, or serum lactate concentration >2 mmol/L).
2.3.2. Exclusion Criteria
- Under 18 years of age;
- Pregnancy;
- Treated for suicidal/autoaggressive actions;
- Treated for intoxication;
- Absence of complete medical records;
- Duration of ICU stay < 24 h;
- Admission transfers from other hospitals without initial ICU admission data;
- Existence of any directive for terminal care at or before ICU admission.
2.4. Data Collection
2.5. Statistical Methods
2.5.1. Descriptive Statistics
2.5.2. Inferential Statistics
2.5.3. Primary Objective
2.5.4. Secondary Objectives
2.5.5. Multiple Testing
2.5.6. Statistical Software
3. Results
3.1. Patient Characteristics
3.2. Study Population Based on Urinary Output and Laboratory and Blood Pressure Values
3.3. Urinary Output Parameters and SAPS 3
3.4. Univariate Logistic Regression and Survival
3.5. Area Under the Receiver Operating Characteristics Curves (AUROCs)
3.6. Comparison of AUCs for Urinary Output Across Different Time Intervals in Predicting 30-Day Mortality
3.7. Multivariate Analysis of SAPS 3 and Urinary Output in 30-Day Mortality Prediction
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Verbrugge, F.H.; Guazzi, M.; Testani, J.M.; Borlaug, B.A. Altered Hemodynamics and End-Organ Damage in Heart Failure: Impact on the Lung and Kidney. Circulation 2020, 142, 998–1012. [Google Scholar] [CrossRef]
- Jentzer, J.C.; Bihorac, A.; Brusca, S.B.; Del Rio-Pertuz, G.; Kashani, K.; Kazory, A.; Kellum, J.A.; Mao, M.; Moriyama, B.; Morrow, D.A.; et al. Contemporary Management of Severe Acute Kidney Injury and Refractory Cardiorenal Syndrome: JACC Council Perspectives. J. Am. Coll. Cardiol. 2020, 76, 1084–1101. [Google Scholar] [CrossRef] [PubMed]
- Sheikh, O.; Nguyen, T.; Bansal, S.; Prasad, A. Acute Kidney Injury in Cardiogenic Shock: A Comprehensive Review. Catheter. Cardiovasc. Interv. 2021, 98, E91–E105. [Google Scholar] [CrossRef] [PubMed]
- Ghionzoli, N.; Sciaccaluga, C.; Mandoli, G.E.; Vergaro, G.; Gentile, F.; D’Ascenzi, F.; Mondillo, S.; Emdin, M.; Valente, S.; Cameli, M. Cardiogenic Shock and Acute Kidney Injury: The Rule Rather than the Exception. Heart Fail. Rev. 2021, 26, 487–496. [Google Scholar] [CrossRef]
- O’Brien, C.; Beaubien-Souligny, W.; Amsallem, M.; Denault, A.; Haddad, F. Cardiogenic Shock: Reflections at the Crossroad Between Perfusion, Tissue Hypoxia, and Mitochondrial Function. Can. J. Cardiol. 2020, 36, 184–196. [Google Scholar] [CrossRef] [PubMed]
- Tarvasmäki, T.; Haapio, M.; Mebazaa, A.; Sionis, A.; Silva-Cardoso, J.; Tolppanen, H.; Lindholm, M.G.; Pulkki, K.; Parissis, J.; Harjola, V.-P.; et al. Acute Kidney Injury in Cardiogenic Shock: Definitions, Incidence, Haemodynamic Alterations, and Mortality. Eur. J. Heart Fail. 2018, 20, 572–581. [Google Scholar] [CrossRef]
- Jentzer, J.C.; Hollenberg, S.M. Vasopressor and Inotrope Therapy in Cardiac Critical Care. J. Intensive Care Med. 2021, 36, 843–856. [Google Scholar] [CrossRef]
- Bosserdt, M.; Martus, P.; Tauber, R.; Dreger, H.; Dewey, M.; Schönenberger, E.; CAD–Man Study Group Investigators. Serum Creatinine Baseline Fluctuation and Acute Kidney Injury after Intravenous or Intra-Arterial Contrast Agent Administration—An Intraindividual Comparison as Part of a Randomized Controlled Trial. Nephrol. Dial. Transplant. 2022, 37, 1191–1194. [Google Scholar] [CrossRef]
- Merdji, H.; Levy, B.; Jung, C.; Ince, C.; Siegemund, M.; Meziani, F. Microcirculatory Dysfunction in Cardiogenic Shock. Ann. Intensive Care 2023, 13, 38. [Google Scholar] [CrossRef]
- Vincent, J.-L.; De Backer, D. Circulatory Shock. N. Engl. J. Med. 2013, 369, 1726–1734. [Google Scholar] [CrossRef]
- Marenzi, G.; Assanelli, E.; Campodonico, J.; De Metrio, M.; Lauri, G.; Marana, I.; Moltrasio, M.; Rubino, M.; Veglia, F.; Montorsi, P.; et al. Acute Kidney Injury in ST-Segment Elevation Acute Myocardial Infarction Complicated by Cardiogenic Shock at Admission. Crit. Care Med. 2010, 38, 438–444. [Google Scholar] [CrossRef] [PubMed]
- Bottiroli, M.; Calini, A.; Morici, N.; Tavazzi, G.; Galimberti, L.; Facciorusso, C.; Ammirati, E.; Russo, C.; Montoli, A.; Mondino, M. Acute Kidney Injury in Patients with Acute Decompensated Heart Failure-Cardiogenic Shock: Prevalence, Risk Factors and Outcome. Int. J. Cardiol. 2023, 383, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Padkins, M.; Breen, T.; Van Diepen, S.; Barsness, G.; Kashani, K.; Jentzer, J.C. Incidence and Outcomes of Acute Kidney Injury Stratified by Cardiogenic Shock Severity. Catheter. Cardiovasc. Interv. 2021, 98, 330–340. [Google Scholar] [CrossRef] [PubMed]
- Hochman, J.S.; Sleeper, L.A.; Webb, J.G.; Sanborn, T.A.; White, H.D.; Talley, J.D.; Buller, C.E.; Jacobs, A.K.; Slater, J.N.; Col, J.; et al. Early Revascularization in Acute Myocardial Infarction Complicated by Cardiogenic Shock. N. Engl. J. Med. 1999, 341, 625–634. [Google Scholar] [CrossRef]
- Thiele, H.; Zeymer, U.; Neumann, F.-J.; Ferenc, M.; Olbrich, H.-G.; Hausleiter, J.; Richardt, G.; Hennersdorf, M.; Empen, K.; Fuernau, G.; et al. Intraaortic Balloon Support for Myocardial Infarction with Cardiogenic Shock. N. Engl. J. Med. 2012, 367, 1287–1296. [Google Scholar] [CrossRef]
- Thiele, H.; Akin, I.; Sandri, M.; Fuernau, G.; de Waha, S.; Meyer-Saraei, R.; Nordbeck, P.; Geisler, T.; Landmesser, U.; Skurk, C.; et al. PCI Strategies in Patients with Acute Myocardial Infarction and Cardiogenic Shock. N. Engl. J. Med. 2017, 377, 2419–2432. [Google Scholar] [CrossRef] [PubMed]
- Thiele, H.; Zeymer, U.; Akin, I.; Behnes, M.; Rassaf, T.; Mahabadi, A.A.; Lehmann, R.; Eitel, I.; Graf, T.; Seidler, T.; et al. Extracorporeal Life Support in Infarct-Related Cardiogenic Shock. N. Engl. J. Med. 2023, 389, 1286–1297. [Google Scholar] [CrossRef]
- Jentzer, J.C.; Burstein, B.; Van Diepen, S.; Murphy, J.; Holmes, D.R.; Bell, M.R.; Barsness, G.W.; Henry, T.D.; Menon, V.; Rihal, C.S.; et al. Defining Shock and Preshock for Mortality Risk Stratification in Cardiac Intensive Care Unit Patients. Circ. Heart Fail. 2021, 14, e007678. [Google Scholar] [CrossRef] [PubMed]
- Harjola, V.-P.; Lassus, J.; Sionis, A.; Køber, L.; Tarvasmäki, T.; Spinar, J.; Parissis, J.; Banaszewski, M.; Silva-Cardoso, J.; Carubelli, V.; et al. Clinical Picture and Risk Prediction of Short-Term Mortality in Cardiogenic Shock. Eur. J. Heart Fail. 2015, 17, 501–509. [Google Scholar] [CrossRef]
- Pöss, J.; Köster, J.; Fuernau, G.; Eitel, I.; de Waha, S.; Ouarrak, T.; Lassus, J.; Harjola, V.-P.; Zeymer, U.; Thiele, H.; et al. Risk Stratification for Patients in Cardiogenic Shock After Acute Myocardial Infarction. J. Am. Coll. Cardiol. 2017, 69, 1913–1920. [Google Scholar] [CrossRef]
- Fuernau, G.; Poenisch, C.; Eitel, I.; Denks, D.; de Waha, S.; Pöss, J.; Heine, G.H.; Desch, S.; Schuler, G.; Adams, V.; et al. Prognostic Impact of Established and Novel Renal Function Biomarkers in Myocardial Infarction with Cardiogenic Shock: A Biomarker Substudy of the IABP-SHOCK II-Trial. Int. J. Cardiol. 2015, 191, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Lauridsen, M.D.; Gammelager, H.; Schmidt, M.; Rasmussen, T.B.; Shaw, R.E.; Bøtker, H.E.; Sørensen, H.T.; Christiansen, C.F. Acute Kidney Injury Treated with Renal Replacement Therapy and 5-Year Mortality after Myocardial Infarction-Related Cardiogenic Shock: A Nationwide Population-Based Cohort Study. Crit. Care 2015, 19, 452. [Google Scholar] [CrossRef] [PubMed]
- Rodenas-Alesina, E.; Wang, V.N.; Brahmbhatt, D.H.; Scolari, F.L.; Mihajlovic, V.; Fung, N.L.; Otsuki, M.; Billia, F.; Overgaard, C.B.; Luk, A. CALL-K Score: Predicting the Need for Renal Replacement Therapy in Cardiogenic Shock. Eur. Heart J. Acute Cardiovasc. Care 2022, 11, 377–385. [Google Scholar] [CrossRef] [PubMed]
- Beer, B.N.; Jentzer, J.C.; Weimann, J.; Dabboura, S.; Yan, I.; Sundermeyer, J.; Kirchhof, P.; Blankenberg, S.; Schrage, B.; Westermann, D. Early Risk Stratification in Patients with Cardiogenic Shock Irrespective of the Underlying Cause—The Cardiogenic Shock Score. Eur. J. Heart Fail. 2022, 24, 657–667. [Google Scholar] [CrossRef]
- Moreno, R.P.; Metnitz, P.G.H.; Almeida, E.; Jordan, B.; Bauer, P.; Campos, R.A.; Iapichino, G.; Edbrooke, D.; Capuzzo, M.; Le Gall, J.-R.; et al. SAPS 3--From Evaluation of the Patient to Evaluation of the Intensive Care Unit. Part 2: Development of a Prognostic Model for Hospital Mortality at ICU Admission. Intensive Care Med. 2005, 31, 1345–1355. [Google Scholar] [CrossRef] [PubMed]
- Metnitz, P.G.H.; Moreno, R.P.; Almeida, E.; Jordan, B.; Bauer, P.; Campos, R.A.; Iapichino, G.; Edbrooke, D.; Capuzzo, M.; Le Gall, J.-R.; et al. SAPS 3--From Evaluation of the Patient to Evaluation of the Intensive Care Unit. Part 1: Objectives, Methods and Cohort Description. Intensive Care Med. 2005, 31, 1336–1344. [Google Scholar] [CrossRef] [PubMed]
- Menon, V.; Slater, J.N.; White, H.D.; Sleeper, L.A.; Cocke, T.; Hochman, J.S. Acute Myocardial Infarction Complicated by Systemic Hypoperfusion without Hypotension: Report of the SHOCK Trial Registry. Am. J. Med. 2000, 108, 374–380. [Google Scholar] [CrossRef]
- Hasdai, D.; Holmes, D.R.; Califf, R.M.; Thompson, T.D.; Hochman, J.S.; Pfisterer, M.; Topol, E.J. Cardiogenic Shock Complicating Acute Myocardial Infarction: Predictors of Death. GUSTO Investigators. Global Utilization of Streptokinase and Tissue-Plasminogen Activator for Occluded Coronary Arteries. Am. Heart J. 1999, 138, 21–31. [Google Scholar] [CrossRef]
- Thiele, H.; Zeymer, U.; Neumann, F.-J.; Ferenc, M.; Olbrich, H.-G.; Hausleiter, J.; de Waha, A.; Richardt, G.; Hennersdorf, M.; Empen, K.; et al. Intra-Aortic Balloon Counterpulsation in Acute Myocardial Infarction Complicated by Cardiogenic Shock (IABP-SHOCK II): Final 12 Month Results of a Randomised, Open-Label Trial. Lancet 2013, 382, 1638–1645. [Google Scholar] [CrossRef] [PubMed]
- Wigger, O.; Bloechlinger, S.; Berger, D.; Häner, J.; Zanchin, T.; Windecker, S.; Räber, L.; Schefold, J.C. Baseline Serum Bicarbonate Levels Independently Predict Short-Term Mortality in Critically Ill Patients with Ischaemic Cardiogenic Shock. Eur. Heart J. Acute Cardiovasc. Care 2018, 7, 45–52. [Google Scholar] [CrossRef]
- Lindholm, M.G.; Hongisto, M.; Lassus, J.; Spinar, J.; Parissis, J.; Banaszewski, M.; Silva-Cardoso, J.; Carubelli, V.; Salvatore, D.; Sionis, A.; et al. Serum Lactate and A Relative Change in Lactate as Predictors of Mortality in Patients With Cardiogenic Shock—Results from the Cardshock Study. Shock 2020, 53, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Jentzer, J.C.; Kashani, K.B.; Wiley, B.M.; Patel, P.C.; Baran, D.A.; Barsness, G.W.; Henry, T.D.; Van Diepen, S. Laboratory Markers of Acidosis and Mortality in Cardiogenic Shock: Developing a Definition of Hemometabolic Shock. Shock 2022, 57, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Klemm, G.; Markart, S.; Hermann, A.; Staudinger, T.; Hengstenberg, C.; Heinz, G.; Zilberszac, R. Lactate as a Predictor of 30-Day Mortality in Cardiogenic Shock. J. Clin. Med. 2024, 13, 1932. [Google Scholar] [CrossRef]
- Fuernau, G.; Desch, S.; de Waha-Thiele, S.; Eitel, I.; Neumann, F.-J.; Hennersdorf, M.; Felix, S.B.; Fach, A.; Böhm, M.; Pöss, J.; et al. Arterial Lactate in Cardiogenic Shock: Prognostic Value of Clearance Versus Single Values. JACC Cardiovasc. Interv. 2020, 13, 2208–2216. [Google Scholar] [CrossRef] [PubMed]
- Distelmaier, K.; Roth, C.; Binder, C.; Schrutka, L.; Schreiber, C.; Hoffelner, F.; Heinz, G.; Lang, I.M.; Maurer, G.; Koinig, H.; et al. Urinary Output Predicts Survival in Patients Undergoing Extracorporeal Membrane Oxygenation Following Cardiovascular Surgery. Crit. Care Med. 2016, 44, 531–538. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Hu, T.; Liu, T.; Wang, W. Simplified Acute Physiology Score III Is Excellent for Predicting In-Hospital Mortality in Coronary Care Unit Patients with Acute Myocardial Infarction: A Retrospective Study. Front. Cardiovasc. Med. 2022, 9, 989561. [Google Scholar] [CrossRef]
- Kellner, P.; Prondzinsky, R.; Pallmann, L.; Siegmann, S.; Unverzagt, S.; Lemm, H.; Dietz, S.; Soukup, J.; Werdan, K.; Buerke, M. Predictive Value of Outcome Scores in Patients Suffering from Cardiogenic Shock Complicating AMI: APACHE II, APACHE III, Elebute-Stoner, SOFA, and SAPS II. Med. Klin.-Intensivmed. Notfallmedizin 2013, 108, 666–674. [Google Scholar] [CrossRef]
- Freund, A.; Pöss, J.; de Waha-Thiele, S.; Meyer-Saraei, R.; Fuernau, G.; Eitel, I.; Feistritzer, H.-J.; Rubini, M.; Huber, K.; Windecker, S.; et al. Comparison of Risk Prediction Models in Infarct-Related Cardiogenic Shock. Eur. Heart J. Acute Cardiovasc. Care 2021, 10, 890–897. [Google Scholar] [CrossRef]
- Rab, T.; Ratanapo, S.; Kern, K.B.; Basir, M.B.; McDaniel, M.; Meraj, P.; King, S.B.; O’Neill, W. Cardiac Shock Care Centers: JACC Review Topic of the Week. J. Am. Coll. Cardiol. 2018, 72, 1972–1980. [Google Scholar] [CrossRef]
- Møller, J.E.; Engstrøm, T.; Jensen, L.O.; Eiskjær, H.; Mangner, N.; Polzin, A.; Schulze, P.C.; Skurk, C.; Nordbeck, P.; Clemmensen, P.; et al. Microaxial Flow Pump or Standard Care in Infarct-Related Cardiogenic Shock. N. Engl. J. Med. 2024, 390, 1382–1393. [Google Scholar] [CrossRef]
- Lauridsen, M.D.; Rorth, R.; Butt, J.H.; Kristensen, S.L.; Schmidt, M.; Moller, J.E.; Hassager, C.; Torp-Pedersen, C.; Gislason, G.; Kober, L.; et al. Five-Year Risk of Heart Failure and Death Following Myocardial Infarction with Cardiogenic Shock: A Nationwide Cohort Study. Eur. Heart J. Acute Cardiovasc. Care 2021, 10, 40–49. [Google Scholar] [CrossRef] [PubMed]
- Basir, M.B.; Lemor, A.; Gorgis, S.; Patel, K.C.; Kolski, B.C.; Bharadwaj, A.S.; Todd, J.W.; Tehrani, B.N.; Truesdell, A.G.; Lasorda, D.M.; et al. Early Utilization of Mechanical Circulatory Support in Acute Myocardial Infarction Complicated by Cardiogenic Shock: The National Cardiogenic Shock Initiative. J. Am. Heart Assoc. 2023, 12, e031401. [Google Scholar] [CrossRef] [PubMed]
- Schrage, B.; Beer, B.N.; Savarese, G.; Dabboura, S.; Yan, I.; Sundermeyer, J.; Becher, P.M.; Grahn, H.; Seiffert, M.; Bernhardt, A.; et al. Eligibility for Mechanical Circulatory Support Devices Based on Current and Past Randomised Cardiogenic Shock Trials. Eur. J. Heart Fail. 2021, 23, 1942–1951. [Google Scholar] [CrossRef] [PubMed]
- Jentzer, J.C.; van Diepen, S.; Henry, T.D. Understanding How Cardiac Arrest Complicates the Analysis of Clinical Trials of Cardiogenic Shock. Circ. Cardiovasc. Qual. Outcomes 2020, 13, e006692. [Google Scholar] [CrossRef] [PubMed]
- Josiassen, J.; Lerche Helgestad, O.K.; Møller, J.E.; Kjaergaard, J.; Hoejgaard, H.F.; Schmidt, H.; Jensen, L.O.; Holmvang, L.; Ravn, H.B.; Hassager, C. Hemodynamic and Metabolic Recovery in Acute Myocardial Infarction-Related Cardiogenic Shock Is More Rapid among Patients Presenting with out-of-Hospital Cardiac Arrest. PLoS ONE 2020, 15, e0244294. [Google Scholar] [CrossRef]
- Byrne, R.A.; Rossello, X.; Coughlan, J.J.; Barbato, E.; Berry, C.; Chieffo, A.; Claeys, M.J.; Dan, G.-A.; Dweck, M.R.; Galbraith, M.; et al. 2023 ESC Guidelines for the Management of Acute Coronary Syndromes. Eur. Heart J. 2023, 44, 3720–3826. [Google Scholar] [CrossRef]
- Heidenreich, P.A.; Bozkurt, B.; Aguilar, D.; Allen, L.A.; Byun, J.J.; Colvin, M.M.; Deswal, A.; Drazner, M.H.; Dunlay, S.M.; Evers, L.R.; et al. 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. J. Am. Coll. Cardiol. 2022, 79, e263–e421. [Google Scholar] [CrossRef]
- Baran, D.A.; Grines, C.L.; Bailey, S.; Burkhoff, D.; Hall, S.A.; Henry, T.D.; Hollenberg, S.M.; Kapur, N.K.; O’Neill, W.; Ornato, J.P.; et al. SCAI Clinical Expert Consensus Statement on the Classification of Cardiogenic Shock. Catheter. Cardiovasc. Interv. 2019, 94, 29–37. [Google Scholar] [CrossRef] [PubMed]
Overall (n = 96) | Non-Survivors (n = 32) | Survivors (n = 64) | p-Value | |
---|---|---|---|---|
Demographic Data | ||||
Male | 69 (71.9) | 22 (68.8) | 47 (73.5) | 0.63 |
Age, years | 65 (54–72) | 68 (60–75) | 64 (51–71) | 0.02 |
BMI, kg/m2 | 26.8 (24.1–30.8) | 26.1 (24.5–30.5) | 27.0 (23.9–31.0) | 0.91 |
Cardiogenic Shock | ||||
AMI | 42 (43.8) | 15 (46.9) | 27 (42.2) | 0.66 |
Cardiac arrest | 32 (33.3) | 13 (40.6) | 19 (29.7) | 0.28 |
Intensive Care Unit | ||||
Lenght of stay, days | 9 (4–20) | 6 (3–12) | 11 (6–24) | 0.00 |
Invasive ventilation | 80 (83.3) | 26 (81.3) | 54 (84.4) | 0.70 |
ECMO therapy | 34 (35.4) | 14 (43.8) | 20 (31.3) | 0.23 |
CRRT | 25 (26.0) | 12 (37.5) | 13 (20.3) | 0.07 |
SAPS 3 | 70 (59–82) | 81 (70–90) | 66 (55–76) | 0.00 |
Medical History | ||||
HTN | 51 (53.1) | 17 (53.1) | 34 (53.1) | 1.00 |
COPD | 9 (9.4) | 7 (21.9) | 2 (3.1) | 0.00 |
CKD | 18 (18.8) | 6 (18.8) | 12 (18.8) | 1.00 |
DM | 27 (28.1) | 11 (34.4) | 16 (25.0) | 0.34 |
CAD | 61 (63.5) | 21 (65.6) | 40 (62.5) | 0.76 |
PAD | 15 (15.6) | 7 (21.9) | 8 (12.5) | 0.23 |
Active malignoma | 4 (4.2) | 3 (9.4) | 1 (1.6) | 0.71 |
Overall (n = 96) | Non-Survivors (n = 32) | Survivors (n = 64) | p-Value | |
---|---|---|---|---|
SAPS 3 [points] | 70 (59–82) | 81 (70–90) | 66 (55–76) | <0.001 |
UO0–6 [mL/h] | 73 (29–121) | 50 (17–104) | 78 (40–130) | 0.07 |
UO6–12 [mL/h] | 53 (23–93) | 37 (8–82) | 58 (30–100) | 0.04 |
UO12–24 [mL/h] | 48 (21–79) | 35 (10–78) | 58 (25–79) | 0.08 |
UO0–24 [mL/h] | 59 (31–105) | 45 (20–84) | 63 (40–114) | 0.06 |
Fluid intake total 0–24 h [ml] | 5907 (3999–8031) | 6348 (5184–9269) | 5857 (3629–7263) | 0.08 |
Fluid balance total 0–24 h [ml] | 4333 (2139–6107) | 5518 (3284–7278) | 3636 (1406–5450) | 0.01 |
Lactate at admission [mmol/l] | 3.2 (2.1–5.9) | 4.0 (2.4–8.1) | 2.9 (2.0–5.4) | 0.10 |
Lactate 24 h [mmol/l] | 2.0 (1.2–3.1) | 3.5 (2.1–7.6) | 1.6 (1.1–2.3) | <0.001 |
Lactate clearance [%] | 35.3 (5.4–58.0) | 15.0 (-35.7–35.6) | 46.7 (27.3–63.9) | <0.001 |
Bilirubin [mg/dl] | 1.05 (0.54–1.87) | 1.19 (0.33–2.20) | 1.04 (0.60–1.83) | 0.56 |
Creatinine [mg/dl] | 1.41 (1.12–1.89) | 1.74 (1.21–2.74) | 1.35 (1.07–1.71) | 0.02 |
CRP [mg/dl] | 1.84 (0.49–9.20) | 0.94 (0.43–9.67) | 2.20 (0.92–8.6) | 0.27 |
ALAT [U/l] | 73 (25–222) | 73 (29–327) | 63 (25–200) | 0.58 |
ASAT [U/l] | 159 (64–509) | 171 (80–566) | 137 (64–432) | 0.49 |
Albumin [g/dl] | 2.9 (2.4–3.3) | 3.0 (2.5–3.5) | 2.8 (2.3–3.3) | 0.27 |
L/A-Ratio | 1.27 (0.73–2.13) | 1.44 (0.80–2.41) | 1.23 (0.69–1.93) | 0.24 |
Lowest pH within 24 h | 7.27 (7.18–7.33) | 7.20 (7.14–7.30) | 7.29 (7.23–7.34) | <0.001 |
Bicarbonate [mmol/l] | 21.3 (18.1–23.4) | 19.5 (17.2–22.8) | 21.6 (19.0–23.7) | 0.04 |
Systolic blood pressure [mmHg] | 103 (93–115) | 95 (86–105) | 106 (97–123) | <0.001 |
Diastolic blood pressure [mmHg] | 61 (55–69) | 58 (53–68) | 62 (55–70) | 0.19 |
MAP [mmHg] | 77 (66–84) | 73 (64–81) | 77 (69–86) | 0.01 |
Regression Coefficient | Odds Ratio | 95% CI | p-Value | ||
---|---|---|---|---|---|
Lower Limit | Upper Limit | ||||
UO0–6 | −0.249 | 0.780 | 0.602 | 1.009 | 0.059 |
UO6–12 | −0.359 | 0.699 | 0.522 | 0.935 | 0.016 |
UO12–24 | −0.271 | 0.763 | 0.576 | 1.010 | 0.059 |
SAPS 3 | 0.071 | 1.074 | 1.036 | 1.113 | <0.001 |
AUC | 95% CI | p-Value | ||
---|---|---|---|---|
Lower Limit | Upper Limit | |||
UO0–6 | 0.614 | 0.494 | 0.733 | 0.071 |
UO6–12 | 0.628 | 0.507 | 0.750 | 0.041 |
UO12–24 | 0.609 | 0.480 | 0.737 | 0.084 |
SAPS 3 | 0.765 | 0.665 | 0.865 | <0.001 |
AUC | 95% CI | p-Value | ||
---|---|---|---|---|
Lower Limit | Upper Limit | |||
UO0–6/UO6–12/UO12–24 multivariate | 0.633 | 0.515 | 0.751 | 0.034 |
UO0–24 | 0.618 | 0.479 | 0.740 | 0.06 |
∆ AUC | 95% CI | p-Value | ||
---|---|---|---|---|
Lower Limit | Upper Limit | |||
UO0–6 versus UO6–12 | 0.0149 | −0.0926 | 0.1220 | 0.786 |
UO0–6 versus UO12–24 | 0.0049 | −0.1400 | 0.1500 | 0.947 |
UO6–12 versus UO12–24 | 0.0198 | −0.0717 | 0.1110 | 0.672 |
Regression Coefficient | Odds Ratio | 95% CI | p-Value | ||
---|---|---|---|---|---|
Lower Limit | Upper Limit | ||||
UO0–6 | −0.154 | 0.858 | 0.645 | 1.140 | 0.290 |
SAPS 3 | 0.068 | 1.070 | 1.032 | 1.110 | <0.001 |
UO6–12 | −0.251 | 0.778 | 0.567 | 1.068 | 0.121 |
SAPS 3 | 0.066 | 1.068 | 1.030 | 1.107 | <0.001 |
UO12–24 | −0.161 | 0.852 | 0.622 | 1.165 | 0.316 |
SAPS 3 | 0.067 | 1.070 | 1.032 | 1.109 | <0.001 |
UO0–24 | −0.174 | 0.840 | 0.613 | 1.153 | 0.281 |
SAPS 3 | 0.067 | 1.070 | 1.032 | 1.109 | <0.001 |
AUC | 95% CI | p-Value | ||
---|---|---|---|---|
Lower Limit | Upper Limit | |||
SAPS 3 + UO0–6 multivariate | 0.766 | 0.668 | 0.863 | <0.001 |
SAPS 3 + UO6–12 multivariate | 0.779 | 0.684 | 0.875 | <0.001 |
SAPS 3 + UO12–24 multivariate | 0.768 | 0.669 | 0.866 | <0.001 |
SAPS 3 + UO0–24 multivariate | 0.770 | 0.672 | 0.867 | <0.001 |
SAPS 3 | 0.765 | 0.665 | 0.865 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Markart, S.; Hermann, A.; Chiari, F.; Heinz, G.; Speidl, W.S.; Lenz, M.; Hengstenberg, C.; Schellongowski, P.; Staudinger, T.; Zilberszac, R. Urinary Output as a Predictor of Mortality in Cardiogenic Shock: An Explorative Retrospective Analysis. J. Clin. Med. 2024, 13, 7706. https://doi.org/10.3390/jcm13247706
Markart S, Hermann A, Chiari F, Heinz G, Speidl WS, Lenz M, Hengstenberg C, Schellongowski P, Staudinger T, Zilberszac R. Urinary Output as a Predictor of Mortality in Cardiogenic Shock: An Explorative Retrospective Analysis. Journal of Clinical Medicine. 2024; 13(24):7706. https://doi.org/10.3390/jcm13247706
Chicago/Turabian StyleMarkart, Sebastian, Alexander Hermann, Florian Chiari, Gottfried Heinz, Walter S. Speidl, Max Lenz, Christian Hengstenberg, Peter Schellongowski, Thomas Staudinger, and Robert Zilberszac. 2024. "Urinary Output as a Predictor of Mortality in Cardiogenic Shock: An Explorative Retrospective Analysis" Journal of Clinical Medicine 13, no. 24: 7706. https://doi.org/10.3390/jcm13247706
APA StyleMarkart, S., Hermann, A., Chiari, F., Heinz, G., Speidl, W. S., Lenz, M., Hengstenberg, C., Schellongowski, P., Staudinger, T., & Zilberszac, R. (2024). Urinary Output as a Predictor of Mortality in Cardiogenic Shock: An Explorative Retrospective Analysis. Journal of Clinical Medicine, 13(24), 7706. https://doi.org/10.3390/jcm13247706