Project Initiate: A Clinical Feasibility Trial of Equitable Access to Early Neurodevelopmental Therapy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Procedures
2.2. Outcome Measures
2.3. Data Collection
2.4. Data Analysis
3. Results
4. Discussion
Limitations of This Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fathi, O.; Nelin, L.D.; Shepherd, E.G.; Reber, K.M. Development of a small baby unit to improve outcomes for the extremely premature infant. J. Perinatol. 2022, 42, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Bell, E.F.; Hintz, S.R.; Hansen, N.I.; Bann, C.M.; Wyckoff, M.H.; DeMauro, S.B.; Walsh, M.C.; Vohr, B.R.; Stoll, B.J.; Carlo, W.A.; et al. Mortality, in-hospital morbidity, care practices, and 2-year outcomes for extremely preterm infants in the US, 2013–2018. JAMA 2022, 327, 248–263. [Google Scholar] [CrossRef]
- Pappas, A.; Milano, G.; Chalak, L.F. Hypoxic-ischemic encephalpathy: Changing outcomes across the spectrum. Clin. Perinatol. 2023, 50, 31–52. [Google Scholar] [CrossRef] [PubMed]
- Sood, E.; Newburger, J.W.; Anixt, J.S.; Cassidy, A.R.; Jackson, J.L.; Jonas, R.A.; Lisanti, A.J.; Lopez, K.N.; Peyvandi, S.; Marino, B.S.; et al. Neurodevelopmental outcomes for individuals with congenital heart disease: Updates in neuroprotection, risk-stratification, evaluation, and management: A scientific statement from the American Heart Association. Circulation 2024, 149, e997–e1022. [Google Scholar] [CrossRef] [PubMed]
- Dunbar, M.; Kirton, A. Perinatal stroke. Semin. Pediatr. Neurol. 2019, 32, 100767. [Google Scholar] [CrossRef]
- DeMaster, D.; Bick, J.; Johnson, U.; Montroy, J.J.; Landry, S.; Duncan, A.F. Nurturing the preterm infant brain: Leveraging neuroplasticity to improve neurobehavioral outcomes. Pediatr. Res. 2019, 85, 166–175. [Google Scholar] [CrossRef]
- Inder, T.E.; Volpe, J.J.; Anderson, P.J. Defining the neurologic consequences of preterm birth. N. Engl. J. Med. 2023, 389, 441–453. [Google Scholar] [CrossRef] [PubMed]
- Khurana, S.; Kane, A.E.; Brown, S.E.; Tarver, T.; Dusing, S.C. Effect of neonatal therapy on the motor, cognitive, and behavioral development of infants born preterm: A systematic review. Dev. Med. Child Neurol. 2020, 62, 684–692. [Google Scholar] [CrossRef] [PubMed]
- Stark, A.R.; Pursley, D.M.; Papile, L.-A.; Eichenwald, E.C.; Hankins, C.T.; Buck, R.K.; Wallace, T.J.; Bondurant, P.G.; Faster, N.E. Standards for levels of neonatal care: II, III, and IV. Pediatrics 2023, 151, e2023061957. [Google Scholar] [CrossRef] [PubMed]
- U.S. Department of Education. Individuals with Disabilities Education Act. Public Law 108-446. 2004. Available online: https://www.congress.gov/bill/108th-congress/house-bill/1350/text (accessed on 11 December 2024).
- Orton, J.; Doyle, L.W.; Tripathi, T.; Boyd, R.; Anderson, P.J.; Spittle, A. Early developmental intervention programmes provided post hospital discharge to prevent motor and cognitive impairment in preterm infants. Cochrane Database Syst. Rev. 2024, 2024, CD005495. [Google Scholar] [CrossRef]
- Morgan, C.; Darrah, J.; Gordon, A.M.; Harbourne, R.; Spittle, A.; Johnson, R.; Fetters, L. Effectiveness of motor interventions in infants with cerebral palsy: A systematic review. Dev. Med. Child Neurol. 2016, 58, 900–909. [Google Scholar] [CrossRef]
- Litt, J.S.; Glymour, M.M.; Hauser-Cram, P.; Hehir, T.; McCormick, M.C. Early intervention services improve school-age functional outcome among neonatal intensive care unit graduates. Acad. Pediatr. 2018, 18, 468–474. [Google Scholar] [CrossRef] [PubMed]
- McManus, B.M.; Richardson, Z.; Schenkman, M.; Murphy, N.; Morrato, E.H. Timing and intensity of early intervention service use and outcomes among a safety-net population of children. JAMA Netw. Open 2019, 2, e187529. [Google Scholar] [CrossRef] [PubMed]
- Khetani, M.A.; Richardson, Z.; McManus, B.M. Social disparities in early intervention service use and provider-reported outcomes. J. Dev. Behav. Pediatr. 2017, 38, 501–509. [Google Scholar] [CrossRef] [PubMed]
- Nwabara, O.; Rogers, C.; Inder, T.; Pineda, R. Early therapy services following neonatal intensive care unit discharge. Phys. Occup. Ther. Pediatr. 2017, 37, 414–424. [Google Scholar] [CrossRef]
- Feinberg, E.; Silverstine, M.; Donahue, S.; Bliss, R. The impact of race on participation in part C early intervention services. J. Dev. Behav. Pediatr. 2011, 32, 284–291. [Google Scholar] [CrossRef] [PubMed]
- Atkins, K.L.; Dolata, J.K.; Blasco, P.M.; Saxton, S.N.; Duvall, S.W. Early intervention referral outcomes for children at increased risk of experiencing developmental delays. Matern. Child Health J. 2020, 24, 204–212. [Google Scholar] [CrossRef] [PubMed]
- Richardson, Z.S.; Khetani, M.A.; Scully, E.; Dooling-Litfin, J.; Murphy, N.J.; McManus, B.M. Social and functional characteristics of receipt and service use intensity of core early intervention services. Acad. Pediatr. 2019, 19, 722–732. [Google Scholar] [CrossRef]
- Romo, M.L.; McVeigh, K.H.; Jordan, P.; Stingone, J.A.; Chan, P.Y.; Askew, G.L. Birth characteristics of children who used early intervention and special education services in New York City. J. Public Health 2020, 42, e401–e411. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, A.; Trenkle, J.; Liddle, A. Accessibility of outpatient physical therapy for Illinois children ages 0–3 (SP168). Dev. Med. Child Neurol. 2023, 65 (Suppl. S3), 90. [Google Scholar]
- Peyton, C.; Sukal Moulton, T.; Carroll, A.J.; Anderson, E.; Brozek, A.; Davis, M.M.; Horowitz, J.; Jayaraman, A.; O’Brien, M.; Patrick, C.; et al. Starting at birth: An integrative, state-of-the-science framework for optimizing infant neuromotor health. Front. Pediatr. 2021, 9, 787196. [Google Scholar] [CrossRef]
- Campbell, S.K.; Hedeker, D. Validity of the Test of Infant Motor Performance for discriminating among infants with varying risk for poor motor outcome. J. Pediatr. 2001, 139, 546–551. [Google Scholar] [CrossRef] [PubMed]
- Varni, J.W.; Sherman, S.A.; Burwinkle, T.M.; Dickinson, P.E.; Dixon, P. The PedsQL Family Impact Module: Preliminary reliability and validity. Health Qual. Life Outcomes 2004, 2, 55. [Google Scholar] [CrossRef] [PubMed]
- Romeo, D.M.M.; Cioni, M.; Palermo, F.; Cilaura, S.; Romeo, M.G. Neurologic assessment in infants discharged from a neonatal intensive care unit. Eur. J. Paediatr. Neurol. 2013, 17, 192–198. [Google Scholar] [CrossRef]
- Einspieler, C.; Prechtl, H.F. Prechtl’s assessment of general movements: A diagnostic tool for the functional assesment of the young nervous system. Ment. Retard. Dev. Disabil. Res. Rev. 2005, 11, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Novak, I.; Morgan, C.; Adde, L.; Blackman, J.; Boyd, R.N.; Brunstrom-Hernandez, J.; Cioni, G.; Damiano, D.; Darrah, J.; Eliasson, A.-C.; et al. Early, Accurate Diagnosis and Early Intervention in Cerebral Palsy: Advances in Diagnosis and Treatment. JAMA Pediatr. 2017, 171, 897–907. [Google Scholar] [CrossRef] [PubMed]
- Pascal, A.; de Bruyn, N.; Naulaers, G.; Ortibus, E.; Hanssen, B.; Oostra, A.; de Coen, K.; Sonnaert, M.; Cloet, E.; Casaer, A.; et al. The impact of intraventricular hemorrhage and periventricular leukomalacia on mortality and neurodevelopmental outcome in very preterm and very low birthweight infants: A prospective population-based cohort study. J. Pediatr. 2023, 262, 113600. [Google Scholar] [CrossRef] [PubMed]
- Bach, A.M.; Fang, A.Y.; Bonifacio, S.; Rogers, E.E.; Scheffler, A.; Partridge, J.C.; Xu, D.; Barkovich, A.J.; Ferriero, D.M.; Glass, H.C.; et al. Early magnetic resonance imaging predicts 30-month outcomes after therapeutic hypothermia for neonatal encephalopathy. J. Pediatr. 2021, 238, 94–101. [Google Scholar] [CrossRef]
- Reid, S.M.; Dagia, C.D.; Ditchfield, M.R.; Carlin, J.B.; Reddihough, D.S. Population-based studies of brain imaging patterns in cerebral palsy. Dev. Med. Child Neurol. 2014, 56, 222–232. [Google Scholar] [CrossRef]
- Peyton, C.; Frazier, M.; Aaby, D.; Millman, R.; Rodriguez, S.; Boswell, L.; Msall, M.E.; Spittle, A.; de Regnier, R.-A.; Barbosa, V.M.; et al. Assessing neonatal intensive care unit (NICU) graduates across varied settings: A study on the feasibility of the Baby Moves App. J. Pediatr. 2024, 269, 113979. [Google Scholar] [CrossRef]
- Noelke, C.; McArdle, N.; Baek, M.; Huntington, N.; Huber, R.; Hardy, E.; Acevedo-Garcia, D. How We Built It: The Nuts and Bolts of Constructing the Child Opportunity Intex 2.0. Available online: https://www.diversitydatakids.org/research-library/research-brief/how-we-built-it (accessed on 30 October 2024).
- McCarty, D.B.; Letzkus, L.; Attridge, E.; Dusing, S.C. Efficacy of therapist supported interventions from the neoantal intensive care unit to home: A meta-review of systematic reviews. Clin. Perinatol. 2023, 50, 157–178. [Google Scholar] [CrossRef] [PubMed]
- Pineda, R.; Heiny, E.; Roussin, J.; Nellis, P.; Bogan, K.; Smith, J. Implementation of the Baby Bridge Program reduces timing between NICU discharge and therapy activation. J. Early Interv. 2020, 42, 275–296. [Google Scholar] [CrossRef]
- Toole, C.; DeGrazia, M.; Andrews, T.M.; Bouve, M.E.; Pezanowski, R.; Cole, A.; Kourembanas, S.; Hickey, P.A. No place like home: Improving the transition from NICU to home through the NICU to Nursery program. Adv. Neonatal Care 2024, 24, 46–57. [Google Scholar] [CrossRef] [PubMed]
- Conroy, K.; Rea, C.; Kovacikova, G.I.; Sprecher, E.; Reisinger, E.; Durant, H.; Starmer, A.; Cox, J.; Toomey, S.L. Ensuring timely connection to early intervention for young children with developmental delays. Pediatrics 2018, 142, e20174017. [Google Scholar] [CrossRef]
- Feinberg, E.; Stransky, M.L.; Augustyn, M.; Broder-Fingert, S.; Bennett, A.; Weitzman, C.; Kuhn, J.; Chu, A.; Cabral, H.J.; Fenick, A.M.; et al. Effect of family navigation on participation in Part C Early Intervention. Acad. Pediatr. 2023, 23, 904–912. [Google Scholar] [CrossRef]
- Soghier, L.M.; Kritikos, K.I.; Carty, C.L.; Glass, P.; Tuchman, L.K.; Streisand, R.; Fratantoni, K.R. Parental depression symptoms at Neonatal Intensive Care Unit discharge and associated factors. J. Pediatr. 2020, 227, 163–169.e1. [Google Scholar] [CrossRef]
- Bernardo, J.; Rent, S.; Arias-Shah, A.; Hoge, M.K.; Shaw, R.J. Parental stress and mental health symptoms in the NICU: Recognition and interventions. Neoreviews 2021, 22, e496–e505. [Google Scholar] [CrossRef]
- Barfield, W.D.; Clements, K.M.; Lee, K.G.; Kotelchuck, M.; Wilber, N.; Wise, P.H. Using linked data to assess patterns of early intervention (EI) referral among very low birth weight infants. Matern. Child Health J. 2008, 12, 24–33. [Google Scholar] [CrossRef]
- Wang, C.J.; Elliott, M.N.; Rogowski, J.; Lim, N.; Ratner, J.A.; Schuster, M.A. Factors influencing the enrollment of eligible extremely-low-birth-weight children in the Part C Early Intervention program. Acad. Pediatr. 2009, 9, 283–287. [Google Scholar] [CrossRef] [PubMed]
- Ramey, S.L.; DeLuca, S.C.; Stevenson, R.D.; Conaway, M.; Darragh, A.R.; Lo, W. Constraint-induced movement therapy for cerebral palsy: A randomized trial. Pediatrics 2021, 148, e2020033878. [Google Scholar] [CrossRef]
Intervention Group (n = 46) | Standard of Care Group (n = 14) | |
---|---|---|
Male, N (%) | 20 (43.4%) | 9 (64.3%) |
Race, N (%) | ||
Black | 26 (56.6%) | 4 (28.6%) |
Other | 10 (21.7%) | 4 (28.6%) |
Other/White | 0 | 1 (7.1%) |
White | 10 (21.7) | 4 (28.6%) |
Undisclosed | 0 | 1 (7.1%) |
Ethnicity, N (%) | ||
Hispanic or Latino | 18 (39.1%) | 9 (64.3%) |
Non-Hispanic or Latino | 28 (60.9%) | 5 (35.7%) |
Birth weight (grams), mean (SD) | 2093 (1051) | 2540 (1196) |
<1000 g, N (%) | 13 (28.3%) | 3 (21.4%) |
Gestational age (weeks), mean (SD) | 33.9 (5.2) | 35 (6.2) |
Neuroimaging: moderate-severe abnormal findingsm N (%) | 15 (32.6%) | 8 (57.1%) |
Congenital anomalies/syndrome, N (%) | 19 (41.3%) | 6 (42.8%) |
Congenital heart disease, N (%) | 7 (15.5%) | 3 (21.4%) |
Neonatal surgery, N (%) | 9 (19.5%) | 4 (28.4%) |
Technology dependent at discharge, N (%) | ||
Tube feedings, N (%) | 4 (8.7%) | 1 (7.1%) |
Supplemental oxygen, N (%) | 5 (10.9%) | 0 |
Intervention Group | Standard of Care Group | p-Value | |
---|---|---|---|
Very low, N (%) | 34 (79.3%) | 1 (7.1%) | <0.001 |
Low, N (%) | 8 (17.4%) | 2 (14.3%) | |
Moderate, N (%) | 3 (6.5%) | 2 (14.3%) | |
High, N (%) | 1 (2.2%) | 5 (35.7%) | |
Very high N (%) | 0 | 4 (28.6%) |
TIMP Results | Intervention Group (n = 46) | Standard of Care Group (n = 14) | p-Value |
---|---|---|---|
Discharge TIMP assessed, N (%) | 44 (95.7%) | 12 (85.7%) | 0.19 |
Age at discharge TIMP (weeks PMA), mean (SD) | 40.45 (2.75) | 42.9 (1.78) | 0.005 |
Baseline TIMP Z-score, mean (SD) | −0.28 (0.74) | −0.79 (0.45) | 0.03 |
3–4 month TIMP assessed, N (%) | 36 (78.3%) | 10 (71.4%) * | 0.6 |
Age at 3–4 month TIMP (weeks PMA), mean (SD) | 53.4 (6.4) | 54.8 (2.5) | 0.47 |
3–4 month TIMP Z-score, mean (SD) | −0.8 (1.1) | −1.23 (1.1) | 0.27 |
3–4 month TIMP Score below or far below average range, N (%) | 10 (27%) | 5 (50%) | 0.17 |
Paired discharge and 3–4 month TIMP Scores, N (%) | 36 (78.3%) | 10 (71.4%) | 0.6 |
Change Z-scores from discharge to 3 months ** | −0.47 (1.2) | −0.42 (1.2) | 0.91 |
Assessment | Intervention Group (n = 46) | Standard of Care Group (n = 14) | p-Value |
---|---|---|---|
Number with HINE (%) | 34 (74%) | 10 (71.4%) | 0.85 |
HINE total score, mean (SD) | 61.3 (7.7) | 57.6 (10.1) | 0.21 |
HINE score < 57, N (%) | 9 (26%) | 5 (50%) | 0.16 |
HINE asymmetries > 5, N (%) | 2 (5.9%) | 0 | 0.43 |
HINE asymmetry score, mean (SD) | 1.7 (1.9) | 2 (0.9) | 0.62 |
Number with GMA (%) * | 33 (71.7%) | 12 (85.7%) | 0.29 |
GMA-atypical ** fidgety movements, N (%) | 4 (12.1) | 2 (16.7%) | 0.69 |
High risk for CP, N (%) *** | 7 (15.2%) | 4 (28.6%) | 0.26 |
PEDS QL FIM Scores | Intervention Group (n = 46) | Standard of Care Group (n = 14) | p-Value |
---|---|---|---|
Completed predischarge PedsQL, N (%) | 38 (91.3%) * | 14 (100%) | 0.23 |
Postmenstrual age at completion | 39.8 (2.6) | 41.3 (2.2) | 0.06 |
Predischarge FIM Total Score, mean (SD) | 83.6 (15.6) | 75.3 (17.6) | 0.1 |
Predischarge FIM Parent HRQL Summary Score, mean (SD) | 84.3 (17.1) | 76.3 (19.7) | 0.15 |
Predischarge FIM Family Functioning Score, mean (SD) | 84.4 (17.7) | 76.1 (18.5) | 0.14 |
Completed follow-up PedsQL, N (%) | 30 (65%) * | 11 (78.6%) | 0.52 |
Postmenstrual age at completion | 54.3 (5.0) | 55 (2.4) | 0.64 |
Follow up FIM Total Score, mean (SD) | 86.4 (14.6) | 78.2 (19.9) | 0.16 |
Follow up FIM Parent HRQL Summary Score, mean (SD) | 85.2 (17.2) | 78.1 (18.3) | 0.26 |
Follow up FIM Family Functioning Score, mean (SD) | 86.8 (17.8) | 76.7 (28.5) | 0.19 |
Barriers to Providing Study Therapy Visits | Solutions Used in Project Initiate |
Communication lacking between the NICU/CICU and study therapists | Closed-loop communication for referrals Set up therapy appointments before discharge |
Communication difficulties between the study therapist and parent | Before discharge, establish a reliable communication plan (via phone or email, correct phone number, best times for phone calls) |
Housing or family instability | Refer back to NICU/CICU social worker |
Infant readmission to the hospital Parental illness or surgery | Continue contact with families during hospitalization |
Parent work schedule | Flexible hours for therapy sessions |
Barriers to Navigating Outpatient “Bridge” Services | Solutions Used in Project Initiate |
Communication delays between navigator and parent | Telephone calls made from an identified phone number so parents know who is calling, use of text messaging, or email |
Lack of NICU clinician referral for outpatient therapy at discharge | Navigator contacted physicians for referrals |
Lack of local options or long waiting lists for outpatient pediatric therapy services (including lack of Medicaid providers) | Navigator researched options for parents Recommendation of online resources (e.g., https://pathways.org, accessed on 11 December 2024) |
Parent work schedule | Navigator researched providers with extended hours |
Transportation difficulties | Navigator provided information about transportation resources available within the community |
Infant readmission to hospital | Navigator encouraged parents to request therapy during hospitalization Continue contact with families during hospitalization |
Barriers to Enrollment in EI | Recommended Solutions |
Uncertainty about whether referral was received by EI | After discharge, EI should provide a notification that a referral has been received IFSP should be made before discharge |
Communication between the parent and EI | Telephone calls should be made from an identified phone number, so parents know who is calling, or allow contact by email |
Video services only offered | Increasing numbers of therapists offering EI to provide more choice |
Confusion about qualifying diagnoses | Education of hospital staff, EI coordinators, EI providers, and families about eligible conditions. Develop an IFSP before discharge in collaboration with the family, the EI team, and the NICU team |
Difficulties scheduling in-home evaluations | Schedule the first therapy appointment with parents before hospital discharge |
Shortage of therapists in EI | Advocacy and improving the training “pipeline” for therapists—develop a statewide task force with professional schools Use outpatient therapy services as a “bridge” to EI |
Infant readmission to the hospital | EI coordinators should continue contact with family during admission and schedule appointments for home therapy promptly after discharge |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trenkle, J.; Liddle, A.; Boswell, L.; Drumm, D.; Barnes, D.; Jedraszko, A.M.; Andrews, B.; Murphy, S.; Msall, M.E.; Gaebler-Spira, D.; et al. Project Initiate: A Clinical Feasibility Trial of Equitable Access to Early Neurodevelopmental Therapy. J. Clin. Med. 2024, 13, 7681. https://doi.org/10.3390/jcm13247681
Trenkle J, Liddle A, Boswell L, Drumm D, Barnes D, Jedraszko AM, Andrews B, Murphy S, Msall ME, Gaebler-Spira D, et al. Project Initiate: A Clinical Feasibility Trial of Equitable Access to Early Neurodevelopmental Therapy. Journal of Clinical Medicine. 2024; 13(24):7681. https://doi.org/10.3390/jcm13247681
Chicago/Turabian StyleTrenkle, Jessica, Alison Liddle, Lynn Boswell, Dawn Drumm, Denise Barnes, Aneta M. Jedraszko, Bree Andrews, Shannon Murphy, Michael E. Msall, Deborah Gaebler-Spira, and et al. 2024. "Project Initiate: A Clinical Feasibility Trial of Equitable Access to Early Neurodevelopmental Therapy" Journal of Clinical Medicine 13, no. 24: 7681. https://doi.org/10.3390/jcm13247681
APA StyleTrenkle, J., Liddle, A., Boswell, L., Drumm, D., Barnes, D., Jedraszko, A. M., Andrews, B., Murphy, S., Msall, M. E., Gaebler-Spira, D., & deRegnier, R. -A. (2024). Project Initiate: A Clinical Feasibility Trial of Equitable Access to Early Neurodevelopmental Therapy. Journal of Clinical Medicine, 13(24), 7681. https://doi.org/10.3390/jcm13247681