Smoking and Health Profiles of Hypertensive Patients with COVID-19: An Exploratory Study of Key Physiological Markers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design
2.2. Protocol
2.3. Measurements
2.4. Data Analysis
3. Results
3.1. Health Profiles of Hypertensive Non-Smokers and Smokers with COVID-19
3.2. Correlational Patterns of Non-Smokers and Smokers
4. Discussions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Prasad, D.S.; Kabir, Z.; Dash, A.K.; Das, B.C. Smoking and cardiovascular health: A review of the epidemiology, pathogenesis, prevention and control of tobacco. Indian J. Med. Sci. 2009, 63, 520–533. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F.; Boersma, E.; Tilly, M.; Ikram, M.K.; Qi, H.; Kavousi, M. Trends in population attributable fraction of modifiable risk factors for cardiovascular diseases across three decades. Eur. J. Prev. Cardiol. 2024, 31, 1724–1733. [Google Scholar] [CrossRef] [PubMed]
- Dahdah, A.; Jaggers, R.M.; Sreejit, G.; Johnson, J.; Kanuri, B.; Murphy, A.J.; Nagareddy, P.R. Immunological insights into cigarette smoking-induced cardiovascular disease risk. Cells 2022, 11, 3190. [Google Scholar] [CrossRef] [PubMed]
- Hahad, O.; Kuntic, M.; Kuntic, I.; Daiber, A.; Münzel, T. Tobacco smoking and vascular biology and function: Evidence from human studies. Pflügers Arch.–Eur. J. Physiol. 2023, 475, 797–805. [Google Scholar] [CrossRef]
- Grievink, H.W.; Smit, V.; Huisman, B.W.; Gal, P.; Yavuz, Y.; Klerks, C.; Moerland, M. Cardiovascular risk factors: The effects of ageing and smoking on the immune system, an observational clinical study. Front. Immunol. 2022, 13, 968815. [Google Scholar] [CrossRef]
- Saint-André, V.; Charbit, B.; Biton, A.; Rouilly, V.; Possémé, C.; Bertrand, A.; Rottival, M.; Bergstedt, J.; Patin, E.; Albert, M.; et al. Smoking changes adaptive immunity with persistent effects. Nature 2024, 626, 827–835. [Google Scholar] [CrossRef]
- González-Rubio, J.; Navarro-López, C.; Lopez-Najera, E.; Lopez-Najera, A.; Jiménez-Díaz, L.; Navarro-López, J.D.; Najera, A. A systematic review and meta-analysis of hospitalised current smokers and COVID-19. Int. J. Environ. Res. Public Health 2020, 17, 7394. [Google Scholar] [CrossRef]
- Trofor, A.C.; Robu Popa, D.; Melinte, O.E.; Trofor, L.; Vicol, C.; Grosu-Creangă, I.A.; Cernomaz, A.T. Looking at the data on smoking and post-COVID-19 syndrome—A literature review. J. Pers. Med. 2024, 14, 97. [Google Scholar] [CrossRef]
- Carretero, O.A.; Oparil, S. Essential hypertension. Part I: Definition and etiology. Circulation 2000, 101, 329–335. [Google Scholar] [CrossRef]
- Dochi, M.; Sakata, K.; Oishi, M.; Tanaka, K.; Kobayashi, E.; Suwazono, Y. Smoking as an idependent risk factor for hypertension: A 14-year longitudinal study in male Japanese workers. Tohoku J. Exp. Med. 2009, 217, 37–43. [Google Scholar] [CrossRef]
- Virdis, A.; Giannarelli, C.; Fritsch Neves, M.; Taddei, S.; Ghiadoni, L. Cigarette smoking and hypertension. Curr. Pharm. Des. 2010, 16, 2518–2525. [Google Scholar] [CrossRef]
- Kaplan, R.C.; Baldoni, P.L.; Strizich, G.M.; Pérez-Stable, E.J.; Saccone, N.L.; Peralta, C.A.; Franceschini, N. Current smoking raises risk of incident hypertension: Hispanic Community Health Study–Study of Latinos. Am. J. Hypertens. 2021, 34, 190–197. [Google Scholar] [CrossRef] [PubMed]
- Vasile, C.M.; Padovani, P.; Rujinski, S.D.; Nicolosu, D.; Toma, C.; Turcu, A.A.; Cioboata, R. The increase in childhood obesity and its association with hypertension during pandemics. J. Clin. Med. 2023, 12, 5909. [Google Scholar] [CrossRef] [PubMed]
- Larsiani, L.S.N.; Tamtomo, D.G.; Murti, B. Meta-analysis correlations between hypertension, smoking, and severity risk of COVID-19. J. Epidemiol. Public Health 2022, 7, 311–321. [Google Scholar] [CrossRef]
- Watanabe, M.; Balena, A.; Tuccinardi, D.; Tozzi, R.; Risi, R.; Masi, D.; Gnessi, L. Central obesity, smoking habit, and hypertension are associated with lower antibody titres in response to COVID-19 mRNA vaccine. Diabetes Metab. Res. Rev. 2022, 38, e3465. [Google Scholar] [CrossRef]
- Mahamat-Saleh, Y.; Fiolet, T.; Rebeaud, M.E.; Mulot, M.; Guihur, A.; El Fatouhi, D.; Louali, D.E.; Peiffer-Smadja, N.; Aune, D.; Severi, G. Diabetes, hypertension, body mass index, smoking and COVID-19-related mortality: A systematic review and meta-analysis of observational studies. BMJ Open 2021, 11, e052777. [Google Scholar] [CrossRef]
- Letelier, P.; Encina, N.; Morales, P.; Riffo, A.; Silva, H.; Riquelme, I.; Guzmán, N. Role of biochemical markers in the monitoring of COVID-19 patients. J. Med. Biochem. 2021, 40, 115. [Google Scholar] [CrossRef]
- Ponti, G.; Maccaferri, M.; Ruini, C.; Tomasi, A.; Ozben, T. Biomarkers associated with COVID-19 disease progression. Crit. Rev. Clin. Lab. Sci. 2020, 57, 389–399. [Google Scholar] [CrossRef]
- Szekely, Y.; Lichter, Y.; Taieb, P.; Banai, A.; Hochstadt, A.; Merdler, I.; Gal Oz, A.; Rothschild, E.; Baruch, G.; Peri, Y.; et al. Spectrum of cardiac manifestations in COVID-19: A systematic echocardiographic study. Circulation 2020, 142, 342–353. [Google Scholar] [CrossRef]
- Mahat, R.K.; Rathore, V.; Singh, N.; Singh, N.; Singh, S.K.; Shah, R.K.; Garg, C. Lipid profile as an indicator of COVID-19 severity: A systematic review and meta-analysis. Clin. Nutr. ESPEN 2021, 45, 91–101. [Google Scholar] [CrossRef]
- Bode, B.; Garrett, V.; Messler, J.; McFarland, R.; Crowe, J.; Booth, R.; Klonoff, D.C. Glycemic characteristics and clinical outcomes of COVID-19 patients hospitalized in the United States. J. Diabetes Sci. Technol. 2020, 14, 813–821. [Google Scholar] [CrossRef]
- Liu, Y.M.; Xie, J.; Chen, M.M.; Zhang, X.; Cheng, X.; Li, H.; Li, H.; Zhou, F.; Qin, J.J.; Lei, F.; et al. Kidney function indicators predict adverse outcomes of COVID-19. Med 2021, 2, 38–48. [Google Scholar] [CrossRef] [PubMed]
- Abdulla, S.; Hussain, A.; Azim, D.; Abduallah, E.H.; Elawamy, H.; Nasim, S.; Naveed, H. COVID-19-induced hepatic injury: A systematic review and meta-analysis. Cureus 2020, 12, e10923. [Google Scholar] [CrossRef]
- Spitalul Clinic de BI si PNF “Victor Babes” Craiova. Available online: https://www.vbabes-cv.ro/ (accessed on 20 September 2024).
- COVID-19 Epidemiological Update—9 October 2024, Edition 172. Available online: https://www.who.int/publications/m/item/covid-19-epidemiological-update-edition-172 (accessed on 1 November 2024).
- Kim, K.I. Risk stratification of cardiovascular disease according to age groups in new prevention guidelines: A review. J. Lipid Atheroscler. 2023, 12, 96. [Google Scholar] [CrossRef] [PubMed]
- Humphrey, J.D.; Harrison, D.G.; Figueroa, C.A.; Lacolley, P.; Laurent, S. Central artery stiffness in hypertension and aging: A problem with cause and consequence. Circ. Res. 2016, 118, 379–381. [Google Scholar] [CrossRef]
- Popețiu, R.O.; Donath-Miklos, I.; Borta, S.M.; Rus, L.A.; Vîlcea, A.; Nica, D.V.; Pușchiță, M. Serum YKL-40 levels, leukocyte profiles, and acute exacerbations of advanced COPD. J. Clin. Med. 2023, 12, 6106. [Google Scholar] [CrossRef] [PubMed]
- CDC Tobacco Glossary. Available online: https://archive.cdc.gov/ (accessed on 10 October 2024).
- Solomon, S.D. (Ed.) Essential Echocardiography: A Practical Guide with DVD; Springer Science & Business Media: Berlin, Germany, 2007; pp. 45–78. [Google Scholar]
- Vîlcea, A.; Borta, S.M.; Popețiu, R.O.; Alexandra, R.L.; Pilat, L.; Nica, D.V.; Pușchiță, M. High ADMA is associated with worse health profile in heart failure patients hospitalized for episodes of acute decompensation. Medicina 2024, 60, 813. [Google Scholar] [CrossRef] [PubMed]
- Borta, S.M.; Donath-Miklos, I.; Popetiu, R.; Nica, D.V.; Nitusca, D.; Marian, C.; Puschiţă, M. Mannose-binding lectin 2 gene polymorphisms and predisposition to allergic bronchial asthma in a western Romanian children population: An observational study. J. Int. Med. Res. 2022, 50, 03000605221109389. [Google Scholar] [CrossRef] [PubMed]
- Purnell, J.Q. What is obesity?: Definition as a disease, with implications for care. Gastroenterol. Clin. 2023, 52, 261–275. [Google Scholar] [CrossRef]
- Sprent, P.; Smeeton, N.C. Applied Nonparametric Statistical Methods; CRC Press: Boca Raton, FL, USA, 2016; pp. 21–65. [Google Scholar]
- Grelus, A.; Nica, D.V.; Miklos, I.; Belengeanu, V.; Ioiart, I.; Popescu, C. Clinical significance of measuring global hydroxymethylation of white blood cell DNA in prostate cancer: Comparison to PSA in a pilot exploratory study. Int. J. Mol. Sci. 2017, 18, 2465. [Google Scholar] [CrossRef]
- Hosmer, D.W., Jr.; Lemeshow, S.; Sturdivant, R.X. Applied Logistic Regression; John Wiley & Sons: Hoboken, NJ, USA, 2013; pp. 15–38. [Google Scholar]
- Allison, P. Logistic Regression Using SAS: Theory and Application, 2nd ed.; SAS Institute: Cary, NC, USA, 2012; pp. 40–95. [Google Scholar]
- Gruia, A.T.; Suciu, M.; Barbu-Tudoran, L.; Azghadi, S.M.R.; Cristea, M.I.; Nica, D.V.; Vaduva, A.; Mumtean, D.; Mic, A.A.; Mic, F.A. Mesenchymal stromal cells differentiating to adipocytes accumulate autophagic vesicles instead of functional lipid droplets. J. Cell. Physiol. 2016, 231, 863–875. [Google Scholar] [CrossRef] [PubMed]
- Nicita-Mauro, V.; Maltese, G.; Nicita-Mauro, C.; Lasco, A.; Basile, G. Non-smoking for successful aging: Therapeutic perspectives. Curr. Pharm. Des. 2010, 16, 775–782. [Google Scholar] [CrossRef] [PubMed]
- Petrie, K.; Abramson, M.J.; George, J. Smoking, respiratory symptoms, lung function, and life expectancy: A longitudinal study of aging. Respirology 2024, 29, 471–478. [Google Scholar] [CrossRef] [PubMed]
- Whitehead, A.K.; Erwin, A.P.; Yue, X. Nicotine and vascular dysfunction. Acta Physiol. 2021, 231, e13631. [Google Scholar] [CrossRef]
- Ohta, Y.; Kawano, Y.; Hayashi, S.; Iwashima, Y.; Yoshihara, F.; Nakamura, S. Effects of cigarette smoking on ambulatory blood pressure, heart rate, and heart rate variability in treated hypertensive patients. Clin. Exp. Hypertens. 2016, 38, 510–513. [Google Scholar] [CrossRef] [PubMed]
- Barthélémy, H.; Mougenot, E.; Duracinsky, M.; Salmon-Ceron, D.; Bonini, J.; Péretz, F.; Chassany, O.; Carrieri, P. Smoking increases the risk of post-acute COVID-19 syndrome: Results from a French community-based survey. Tob. Induc. Dis. 2022, 20, 59. [Google Scholar] [CrossRef]
- Can Bostan, O.; Ozben, B.; Bayram, T.; Sayar, N.; Eryuksel, E. The effect of smoking on atrial and ventricular functions in healthy subjects: A speckle tracking echocardiography study. J. Clin. Ultrasound 2020, 48, 462–469. [Google Scholar] [CrossRef]
- Batista, A.N.R.; Garcia, T.; Franco, E.A.T.; Azevedo, P.S.; Barbosa, M.F.; Zornoff, L.A.M.; Minicucci, M.F.; Paiva, S.; Zuchi, J.W.; de Godoy, I.; et al. Comparison of morphometry and ventricular function of healthy and smoking young people. BMC Cardiovasc. Disord. 2020, 20, 66. [Google Scholar] [CrossRef]
- Moreira, H.T.; Armstrong, A.C.; Nwabuo, C.C.; Vasconcellos, H.D.; Schmidt, A.; Sharma, R.K.; Lima, J.A. Association of smoking and right ventricular function in middle age: CARDIA study. Open Heart 2020, 7, e001270. [Google Scholar] [CrossRef]
- Bieber, S.; Kraechan, A.; Hellmuth, J.C.; Muenchhoff, M.; Scherer, C.; Schroeder, I.; Weckbach, L.T. Left and right ventricular dysfunction in patients with COVID-19-associated myocardial injury. Infection 2021, 49, 491–500. [Google Scholar] [CrossRef]
- Grossman, C.; Grossman, A.; Koren-Morag, N.; Azaria, B.; Goldstein, L.; Grossman, E. Interventricular septum thickness predicts future systolic hypertension in young healthy pilots. Hypertens. Res. 2008, 31, 15–20. [Google Scholar] [CrossRef] [PubMed]
- Eliakim-Raz, N.; Prokupetz, A. Interventricular septum and posterior wall thickness are associated with higher systolic blood pressure. J. Clin. Hypertens. 2015, 18, 703–706. [Google Scholar] [CrossRef] [PubMed]
- Abel, N.; Schupp, T.; Abumayyaleh, M.; Schmitt, A.; Reinhardt, M.; Lau, F.; Ayoub, M.; Mashayekhi, K.; Akin, M.; Rusnak, J.; et al. Prognostic implications of septal hypertrophy in patients with heart failure with mildly reduced ejection fraction. J. Clin. Med. 2024, 13, 523. [Google Scholar] [CrossRef] [PubMed]
- Triposkiadis, F.; Xanthopoulos, A.; Boudoulas, K.D.; Giamouzis, G.; Boudoulas, H.; Skoularigis, J. The interventricular septum: Structure, function, dysfunction, and diseases. J. Clin. Med. 2022, 11, 3227. [Google Scholar] [CrossRef] [PubMed]
- Barbieri, A.; Bursi, F.; Mantovani, F.; Valenti, C.; Quaglia, M.; Berti, E.; Modena, M.G. Left ventricular hypertrophy reclassification and death: Application of the recommendation of the American Society of Echocardiography/European Association of Echocardiography. Eur. Heart J. Cardiovasc. Imaging 2012, 13, 109–117. [Google Scholar] [CrossRef] [PubMed]
- Luo, C.; Ware, D.L.; Zwischenberger, J.B.; Clark, J.W. A mechanical model of the human heart relating septal function to myocardial work and energy. Cardiovasc. Eng. 2008, 8, 174–184. [Google Scholar] [CrossRef] [PubMed]
- Isaykina, O.Y.; Rozanov, V.B.; Aleksandrov, A.A.; Kotova, M.B.; Isaykina, M.A.; Drapkina, O.M. Association of smoking with indicators of the structure and function of the left ventricle of the heart in middle-aged men. Ration. Pharmacother. Cardiol. 2021, 17, 512–520. [Google Scholar] [CrossRef]
- Dweck, M.R.; Bularga, A.; Hahn, R.T.; Bing, R.; Lee, K.K.; Chapman, A.R.; Haugaa, K. Global evaluation of echocardiography in patients with COVID-19. Eur. Heart J. Cardiovasc. Imaging 2020, 21, 949–958. [Google Scholar] [CrossRef]
- Fu, Y.C.; Xu, Z.L.; Zhao, M.Y.; Xu, K. The association between smoking and renal function in people over 20 years old. Front. Med. 2022, 9, 870278. [Google Scholar] [CrossRef]
- Gokalp, C.; Guner Oytun, M.; Gunay, E.; Dogdus, M.; Demirci, M.S.; Sen, S.; Toz, H. Increase in interventricular septum thickness may be the first sign of cardiovascular change in kidney donors. Echocardiography 2020, 37, 276–282. [Google Scholar] [CrossRef]
- Sproston, N.R.; Ashworth, J.J. Role of C-reactive protein at sites of inflammation and infection. Front. Immunol. 2018, 9, 754. [Google Scholar] [CrossRef] [PubMed]
- Nordenberg, D.; Yip, R.; Binkin, N.J. The effect of cigarette smoking on hemoglobin levels and anemia screening. JAMA 1990, 264, 1556–1559. [Google Scholar] [CrossRef] [PubMed]
- Cioboata, R.; Nicolosu, D.; Streba, C.T.; Vasile, C.M.; Olteanu, M.; Nemes, A.; Turcu, A.A. Post-COVID-19 syndrome based on disease form and associated comorbidities. Diagnostics 2022, 12, 2502. [Google Scholar] [CrossRef] [PubMed]
- Kazemi, E.; Soldoozi Nejat, R.; Ashkan, F.; Sheibani, H. The laboratory findings and different COVID-19 severities: A systematic review and meta-analysis. Ann. Clin. Microbiol. Antimicrob. 2021, 20, 17. [Google Scholar] [CrossRef]
- Huang, F.; Chen, J.; Liu, X.; Han, F.; Cai, Q.; Peng, G.; Fang, Z.; Wang, L.; Li, X.; Zhu, H.; et al. Cigarette smoking reduced renal function deterioration in hypertensive patients may be mediated by elevated homocysteine. Oncotarget 2016, 7, 86000. [Google Scholar] [CrossRef]
- Overwyk, K.J.; Pfeiffer, C.M.; Storandt, R.J.; Zhao, L.; Zhang, Z.; Campbell, N.R.C.; Wiltz, J.L.; Merritt, R.K.; Cogswell, M.E. Serum sodium and potassium distribution and characteristics in the US population, National Health and Nutrition Examination Survey 2009–2016. J. Appl. Lab. Med. 2021, 6, 63–78. [Google Scholar] [CrossRef]
- Lever, A.F.; Beretta-Piccoli, C.; Brown, J.J.; Davies, D.L.; Fraser, R.; Robertson, J.I. Sodium and potassium in essential hypertension. Br. Med. J. (Clin. Res. Ed.) 1981, 283, 463–468. [Google Scholar] [CrossRef]
- Armaly, Z.; Kinaneh, S.; Skorecki, K. Renal manifestations of COVID-19: Physiology and pathophysiology. J. Clin. Med. 2021, 10, 1216. [Google Scholar] [CrossRef]
- Swart, R.M.; Hoorn, E.J.; Betjes, M.G.; Zietse, R. Hyponatremia and inflammation: The emerging role of interleukin-6 in osmoregulation. Nephron Physiol. 2011, 118, p45–p51. [Google Scholar] [CrossRef]
- Gheorghe, G.; Ilie, M.; Bungau, S.; Stoian, A.M.P.; Bacalbasa, N.; Diaconu, C.C. Is there a relationship between COVID-19 and hyponatremia? Medicina 2021, 57, 55. [Google Scholar] [CrossRef]
- Guan, W.J.; Ni, Z.Y.; Hu, Y.; Liang, W.H.; Ou, C.Q.; He, J.X.; Liu, L.; Shan, H.; Lei, C.L.; Hui, D.S.C.; et al. Clinical characteristics of coronavirus disease 2019 in China. N. Engl. J. Med. 2020, 382, 1708–1720. [Google Scholar] [CrossRef] [PubMed]
- Richardson, S.; Hirsch, J.S.; Narasimhan, M.; Crawford, J.M.; McGinn, T.; Davidson, K.W.; Barnaby, D.P.; Buda, M.; Busch, M.W.; Chelico, J.D.; et al. COVID-19 Research Consortium. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City area. JAMA 2020, 323, 2052–2059. [Google Scholar] [CrossRef]
- Adamczak, M.; Surma, S.; Więcek, A. Hyponatremia in patients with arterial hypertension: Pathophysiology and management. Arch. Med. Sci. 2023, 19, 1630. [Google Scholar] [CrossRef]
- Park, S.K.; Ryoo, J.H.; Kang, J.G.; Jung, J.Y. Smoking status, intensity of smoking, and their relation to left ventricular hypertrophy in working-aged Korean men. Nicotine Tob. Res. 2021, 23, 1176–1182. [Google Scholar] [CrossRef] [PubMed]
- Moosazadeh, M.; Ebrahimnejad, P.; Kheradmand, M.; Modanloo, M.; Mardanshah, F.; Mahboobi, S.; Kianmehr, F. Association between smoking and lipid profile in men aged 35 to 70 years: Dose–response analysis. Am. J. Men’s Health 2024, 18, 15579883241249655. [Google Scholar] [CrossRef]
- Maeda, K.; Noguchi, Y.; Fukui, T. The effects of cessation from cigarette smoking on the lipid and lipoprotein profiles: A meta-analysis. Prev. Med. 2003, 37, 283–290. [Google Scholar] [CrossRef] [PubMed]
- Liang, D.; Liu, C.; Wang, Y. The association between triglyceride-glucose index and the likelihood of cardiovascular disease in the US population of older adults aged ≥60 years: A population-based study. Cardiovasc. Diabetol. 2024, 23, 151. [Google Scholar] [CrossRef] [PubMed]
- Ochoa-Ramírez, L.A.; De la Herrán Arita, A.K.; Sanchez-Zazueta, J.G.; Ríos-Burgueño, E.; Murillo-Llanes, J.; De Jesús-González, L.A.; Osuna-Ramos, J.F. Association between lipid profile and clinical outcomes in COVID-19 patients. Sci. Rep. 2024, 14, 12139. [Google Scholar] [CrossRef]
- Zinellu, A.; Paliogiannis, P.; Fois, A.G.; Solidoro, P.; Carru, C.; Mangoni, A.A. Cholesterol and triglyceride concentrations, COVID-19 severity, and mortality: A systematic review and meta-analysis with meta-regression. Front. Public Health 2021, 9, 705916. [Google Scholar] [CrossRef]
- Rosenson, R.S.; Brewer, H.B., Jr.; Ansell, B.J.; Barter, P.; Chapman, M.J.; Heinecke, J.W.; Kontush, A.; Tall, A.R.; Gotto, A.M., Jr.; Webb, N.R.; et al. Dysfunctional HDL and atherosclerotic cardiovascular disease. Nat. Rev. Cardiol. 2016, 13, 48–60. [Google Scholar] [CrossRef]
- Nakatsuji, H.; Kishida, K.; Kitamura, T.; Nakajima, C.; Funahashi, T.; Shimomura, I. Dysregulation of glucose, insulin, triglyceride, blood pressure, and oxidative stress after an oral glucose tolerance test in men with abdominal obesity. Metabolism 2010, 59, 520–526. [Google Scholar] [CrossRef] [PubMed]
- Popețiu, R.O.; Donath-Miklos, I.; Borta, S.M.; Moldovan, S.D.; Pilat, L.; Nica, D.V.; Pușchiță, M. Serum YKL-40 levels in patients with asthma or COPD: A pilot study. Medicina 2023, 59, 383. [Google Scholar] [CrossRef] [PubMed]
- Eng, J. Sample size estimation: How many individuals should be studied? Radiology 2003, 227, 309–313. [Google Scholar] [CrossRef]
Characteristic | Strata | Non-Smokers | Smokers | p |
---|---|---|---|---|
Sex | Male | 31 (62%) | 38 (76%) | 0.131 |
Female | 19 (38%) | 12 (24%) | ||
Origin | Rural | 23 (46%) | 21 (42%) | 0.840 |
Urban | 27 (54%) | 29 (58%) | ||
Diabetes | Yes | 19 (38%) | 21 (42%) | 0.838 |
No | 31 (62%) | 29 (58%) | ||
Obesity | Yes | 8 (16%) | 6 (12%) | 0.774 |
No | 42 (84%) | 44 (88%) |
Characteristic | Non-Smokers | Smokers | Reference Range |
---|---|---|---|
Age (years) | 71 (67; 78) | 69 (62; 78.5) | |
SBP (mm Hg) | 140 (130; 154) | 147 (130; 158) | 90–130 |
DBP (mm Hg) | 80 (80; 90) | 80 (75; 90) | 60–80 |
HR (bpm) | 85 (77; 95) | 97 (81; 117) | 60–100 |
EF (%) | 47 (33; 57) | 40 (25; 50) | 50–70 |
LAS (mm) | 42 (37.25; 45) | 44.5 (40; 49) | <41 |
LAD (mm) | 42 (37; 46) | 44 (41; 81) | 25–53 |
LVD (mm) | 46 (44; 57) | 50 (42; 57) | 39–59 |
LVEDV (mL) | 110 (102.5; 121) | 115 (105; 125) | 46–150 |
LVESV (mL) | 70.5 (48.5; 1089.5) | 72.5 (53.25; 97.75) | 14–61 |
IVSd (cm) | 1.1 (1; 1.2) | 1.2 (1; 1.3) | 0.6–1.2 |
PSAP (mm Hg) | 48.5 (38.25; 60.75) | 50 (38; 65) | <40 |
RDW-CV (%) | 14.75 (14.1; 15.87) | 15.25 (14.15; 15.87) | 11.5–15.4 |
RDW-SD (fL) | 45.8 (44.12; 49) | 47.35 (41.15; 47.95) | 39–46 |
ESR (mm/h) | 26 (14; 43.5) | 32.5 (20; 47) | 0–30 |
CRP (mg/L) | 13 (9; 22) | 12 (6; 21) | <10 |
Hemoglobin (g/dL) | 12.2 (11.2; 13.7) | 13.5 (11.7; 14.9) | 12.1–17.2 |
Random glucose (mg/dL) | 130 (113; 161) | 134 (110; 166) | <200 |
HbA1c (%) | 6.7 (6; 7.8) | 6.85 (6; 7.95) | <6.5 |
Serum urea (mg/dL) | 46.5 (38.25; 64.2) | 52.5 (41.75; 68) | <49 |
Serum uric acid (mg/dL) | 7.71 (6.2; 10.3) | 8.4 (7; 10.5) | 3–7 |
Serum creatinine (mg/dL) | 0.98 (0.87; 1.25) | 1.06 (0.92; 1.35) | 0.6–1.3 |
Serum sodium (mmol/L) | 146 (132.25; 147) | 138 (136; 140) | 135–147 |
Serum potassium (mmol/L) | 4.3 (4; 4.6) | 4.2 (4; 4.6) | 3.6–5.2 |
Total cholesterol (mg/dL) | 162 (116; 182) | 150 (116; 285) | <200 |
LDL (mg/dL) | 94 (73; 123) | 93 (73; 124) | <130 |
HDL (mg/dL) | 43 (36; 49) | 39 (33; 47) | >40 |
Triglycerides (mg/dL) | 104 (88; 152) | 135 (97; 180) | <150 |
AST (UI/L) | 27.5 (18.25; 39.75) | 29 (22.25; 41.75) | 5–56 |
ALT (UI/L) | 25 (16.25; 36.25) | 25.5 (18.25; 36.75) | 9–40 |
Variable | Estimate | Chi-Square | p |
---|---|---|---|
Age | 0.124 | 6.25 | 0.013 * |
SBP | −0.01 | 1.17 | 0.616 |
DBP | 0.012 | 0.25 | 0.710 |
HR | −0.029 | 3.94 | 0.047 * |
EF | 0.021 | 0.44 | 0.505 |
LAS | −0.164 | 6.16 | 0.013 * |
LAD | −0.092 | 4.19 | 0.040 * |
LVD | −0.064 | 1.45 | 0.228 |
LVEDV | 0.004 | 0.26 | 0.608 |
LVESV | −0.023 | 4.37 | 0.036 * |
IVSd | −10.465 | 11.41 | <0.001 *** |
PSAP | 0.02 | 0.91 | 0.340 |
RDW-CV | −0.12 | 1.60 | 0.206 |
RDW-SD | −0.151 | 2.96 | 0.085 |
ESR | −0.015 | 0.42 | 0.518 |
CRP | −0.061 | 4.43 | 0.035 * |
Hemoglobin | −0.486 | 6.63 | 0.011 * |
Random glucose | 0.004 | 0.52 | 0.472 |
HbA1c | 0.075 | 0.06 | 0.819 |
Serum urea | −0.059 | 4.66 | 0.036 * |
Serum uric acid | 0.075 | 0.22 | 0.639 |
Serum creatinine | −0.234 | 0.03 | 0.869 |
Serum sodium | 0.228 | 13.30 | <0.001 *** |
Serum potassium | 1.594 | 6.43 | 0.011 * |
Total cholesterol | 0.045 | 9.47 | 0.002 ** |
LDL | −0.085 | 0.57 | 0.452 |
HDL | 0.010 | 6.98 | 0.008 ** |
Triglycerides | −0.022 | 16.99 | <0.001 *** |
AST | −0.023 | 2.33 | 0.127 |
ALT | 0.019 | 3.19 | 0.074 |
Non-Smoker | Smoker | |||||
---|---|---|---|---|---|---|
IVSd | Serum Sodium | Triglycerides | IVSd | Serum Sodium | Triglycerides | |
Age | −0.03 | −0.21 | −0.05 | 0.34 * | 0.06 | −0.03 |
SBP | 0.16 | −0.10 | −0.12 | −0.06 | 0.05 | 0.07 |
DBP | 0.04 | 0.13 | −0.02 | −0.04 | 0.19 | 0.26 |
HR | 0.06 | 0.16 | 0.04 | 0.03 | 0.25 | 0.05 |
FE | −0.03 | −0.13 | 0.32 * | 0.16 | 0.31 * | 0.44 * |
LAS | 0.05 | −0.18 | 0.01 | 0.05 | 0.03 | 0.05 |
LAD | −0.10 | −0.10 | −0.28 * | −0.15 | −0.11 | −0.31 * |
LVD | 0.12 | 0.05 | 0.09 | −0.08 | −0.30 * | −0.31 * |
LVEDV | 0.68 * | 0.02 | 0.08 | 0.63 * | 0.16 | 0.21 |
LVESV | 0.06 | −0.28 | 0.07 | 0.11 | 0.11 | −0.11 |
IVSd | 1.00 | 0.33 * | 0.19 | 1.00 | 0.32 * | 0.03 |
PSAP | −0.03 | −0.01 | −0.32 * | 0.16 | −0.01 | −0.25 |
ESR | 0.23 | 0.12 | 0.17 | 0.13 | 0.21 | −0.04 |
CRP | 0.04 | 0.09 | −0.24 | 0.10 | −0.11 | 0.03 |
Hemoglobin | 0.04 | −0.02 | 0.29 * | −0.08 | 0.05 | 0.35 * |
RDW-CV | −0.03 | 0.21 | −0.20 | 0.10 | −0.03 | −0.42 * |
RDW-SD | −0.01 | 0.27 | −0.19 | 0.05 | 0.12 | −0.26 |
Hemoglobin | 0.11 | 0.10 | 0.02 | 0.02 | 0.04 | 0.18 |
Random glucose | 0.08 | 0.01 | −0.02 | 0.04 | −0.10 | 0.15 |
Serum urea | 0.00 | 0.20 | −0.18 | 0.31 * | 0.07 | −0.35 * |
Serum uric acid | −0.17 | −0.04 | −0.18 | −0.05 | −0.17 | 0.11 |
Serum creatinine | 0.14 | 0.21 | −0.22 | 0.36 * | 0.11 | −0.12 |
Serum sodium | 0.33 * | 1.00 | 0.15 | 0.32 * | 1.00 | 0.16 |
Serum potassium | 0.20 | 0.05 | −0.18 | 0.04 | −0.09 | 0.10 |
Total cholesterol | 0.00 | −0.06 | 0.36 * | 0.22 | 0.12 | 0.35 * |
HDL | −0.11 | −0.21 | −0.05 | 0.28 | 0.09 | −0.03 |
LDL | 0.10 | −0.07 | 0.17 | 0.20 | 0.14 | 0.17 |
Triglycerides | 0.19 | 0.15 | 1.00 | 0.03 | 0.16 | 1.00 |
AST | −0.06 | 0.11 | −0.13 | 0.09 | −0.04 | −0.48 * |
ALT | 0.04 | 0.15 | −0.08 | 0.02 | 0.01 | −0.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haidar, L.; Bălteanu, M.A.; Georgescu, M.; Drăghici, G.A.; Laza, E.-A.; Șerb, A.-F.; Cioboată, R. Smoking and Health Profiles of Hypertensive Patients with COVID-19: An Exploratory Study of Key Physiological Markers. J. Clin. Med. 2024, 13, 7245. https://doi.org/10.3390/jcm13237245
Haidar L, Bălteanu MA, Georgescu M, Drăghici GA, Laza E-A, Șerb A-F, Cioboată R. Smoking and Health Profiles of Hypertensive Patients with COVID-19: An Exploratory Study of Key Physiological Markers. Journal of Clinical Medicine. 2024; 13(23):7245. https://doi.org/10.3390/jcm13237245
Chicago/Turabian StyleHaidar, Laura, Mara Amalia Bălteanu, Marius Georgescu, George Andrei Drăghici, Eveline-Anda Laza, Alina-Florina Șerb, and Ramona Cioboată. 2024. "Smoking and Health Profiles of Hypertensive Patients with COVID-19: An Exploratory Study of Key Physiological Markers" Journal of Clinical Medicine 13, no. 23: 7245. https://doi.org/10.3390/jcm13237245
APA StyleHaidar, L., Bălteanu, M. A., Georgescu, M., Drăghici, G. A., Laza, E. -A., Șerb, A. -F., & Cioboată, R. (2024). Smoking and Health Profiles of Hypertensive Patients with COVID-19: An Exploratory Study of Key Physiological Markers. Journal of Clinical Medicine, 13(23), 7245. https://doi.org/10.3390/jcm13237245