Phenotypic Evaluation of Rare Cystic Fibrosis Transmembrane Conductance Regulator Mutation Combinations in People with Cystic Fibrosis in Queensland, Australia
<p>Full list of CFTR mutation variants encountered within the TPCH CF cohort with the predominant CFTR mutations seen in ≥2 pwCF highlighted. The remaining mutations are collated as ‘other’. F580del mutations predominate (43.8% homozygous, 48.8% heterozygous) with G551D the second most prevalent mutation (0.6% homozygous, 9.6% heterozygous).</p> "> Figure 2
<p>Geographic origins of <span class="html-italic">CFTR</span> mutations in pwCF under the care of the ACFC at TPCH [<a href="#B6-jcm-13-06210" class="html-bibr">6</a>,<a href="#B7-jcm-13-06210" class="html-bibr">7</a>,<a href="#B8-jcm-13-06210" class="html-bibr">8</a>,<a href="#B9-jcm-13-06210" class="html-bibr">9</a>,<a href="#B10-jcm-13-06210" class="html-bibr">10</a>,<a href="#B11-jcm-13-06210" class="html-bibr">11</a>,<a href="#B12-jcm-13-06210" class="html-bibr">12</a>,<a href="#B13-jcm-13-06210" class="html-bibr">13</a>,<a href="#B14-jcm-13-06210" class="html-bibr">14</a>,<a href="#B15-jcm-13-06210" class="html-bibr">15</a>,<a href="#B16-jcm-13-06210" class="html-bibr">16</a>,<a href="#B17-jcm-13-06210" class="html-bibr">17</a>,<a href="#B18-jcm-13-06210" class="html-bibr">18</a>,<a href="#B19-jcm-13-06210" class="html-bibr">19</a>,<a href="#B20-jcm-13-06210" class="html-bibr">20</a>,<a href="#B21-jcm-13-06210" class="html-bibr">21</a>,<a href="#B22-jcm-13-06210" class="html-bibr">22</a>,<a href="#B23-jcm-13-06210" class="html-bibr">23</a>,<a href="#B24-jcm-13-06210" class="html-bibr">24</a>,<a href="#B25-jcm-13-06210" class="html-bibr">25</a>,<a href="#B26-jcm-13-06210" class="html-bibr">26</a>].</p> ">
Abstract
:1. Introduction
2. Methods
3. Results
3.1. CFTR Mutation Profiles
3.2. Geographic Origin of CFTR Mutations
3.3. Rare CFTR Mutation Combinations
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Veit, G.; Avramescu, R.G.; Chiang, A.N.; Houck, S.A.; Cai, Z.; Peters, K.W.; Hong, J.S.; Pollard, H.B.; Guggino, W.B.; Balch, W.E.; et al. From CFTR biology toward combinatorial pharmacotherapy: Expanded classification of cystic fibrosis mutations. Mol. Biol. Cell 2016, 27, 424–433. [Google Scholar] [CrossRef] [PubMed]
- The Clinical and Functional Translation of CFTR (CFTR2). Available online: http://cftr2.org (accessed on 15 July 2024).
- McCloskey, M.; Redmond, A.; Hill, A.; Elborn, J. Clinical Features Associated with a Delayed Diagnosis of Cystic Fibrosis. Respiration 2000, 67, 402–407. [Google Scholar] [CrossRef]
- Jaworska, J.; Marach-Mocarska, A.; Sands, D. Uncommon clinical presentation of cystic fibrosis in a patient homozygous for a rare CFTR mutation: A case report. BMC Pediatr. 2020, 20, 1–6. [Google Scholar] [CrossRef]
- Farrell, P.M.; White, T.B.; Ren, C.L.; Hempstead, S.E.; Accurso, F.; Derichs, N.; Howenstine, M.; McColley, S.A.; Rock, M.; Rosenfeld, M.; et al. Diagnosis of cystic fibrosis: Consensus guidelines from the cystic fibrosis foundation. J. Pediatr. 2017, 181, S4–S15.e1, Erratum in J. Pediatr. 2017, 181, S1–S3. [Google Scholar] [CrossRef]
- Lao, O.; Andres, A.M.; Mateu, E.; Bertranpetit, J.; Calafell, F. Spatial patterns of cystic fibrosis mutation spectra in European popu-lations. Eur. J. Hum. Genet. 2003, 11, 385–394. [Google Scholar] [CrossRef] [PubMed]
- Castellani, C.; Cuppens, H.; Macek, M., Jr.; Cassiman, J.J.; Kerem, E.; Durie, P.; Tullis, E.; Assael, B.M.; Bombieri, C.; Brown, A.; et al. Consensus on the use and interpretation of cystic fibrosis mutation analysis in clinic practice. J. Cyst. Fibros. 2010, 7, 179–196. [Google Scholar] [CrossRef]
- Loirat, F.; Hazout, S.; Lucotte, G. G542X as a probable Phoenician cystic fibrosis mutation. Hum. Biol. 1997, 69, 419–425. [Google Scholar] [PubMed]
- Feng, J.; Zhang, Y.; Yang, X. Heterogeneous spectrum of CFTR gene mutations in Chinese patients with CAVD and the dilemma of genetic blocking strategy. Reproduction 2022, 164, R47–R56. [Google Scholar] [CrossRef]
- Geborek, A.; Hjelte, L. Association between genotype and pulmonary phenotype in cystic fibrosis patients with severe mutations. J. Cyst. Fibros. 2011, 10, 187–192. [Google Scholar] [CrossRef]
- Schwartz, M.; Anvret, M.; Claustres, M.; Eiken, H.G.; Eiklid, K.; Schaedel, C.; Stolpe, L.; Tranebjærg, L. 394delTT: A Nordic cystic fibrosis mutation. Hum. Genet. 1994, 93, 157–161. [Google Scholar] [CrossRef]
- Penque, D.; Mendes, F.; Beck, S.; Farinha, C.; Pacheco, P.; Nogueira, P.; Lavinha, J.; Malhó, R.; Amaral, M.D. Cystic Fibrosis patients with the 3272-26A-->G mutation have mild disease, leaky alter-native mRNA splicing, and CFTR protein at the cell membrane. Hum. Mutat. 1999, 14, 133–144. [Google Scholar] [CrossRef]
- McDowell, T.L.; Shackleton, S.; Harris, A. I1269N: A Novel Mutation in Exon 20 of the Cystic Fibrosis Transmembrane Con-ductance Regulator (CFTR). Gene Nat. Genet. 1998, 2, 232–239. [Google Scholar] [CrossRef]
- Tosco, A.; Castaldo, A.; Colombo, C.; Claut, L.; Carnovale, V.; Iacotucci, P.; Lucarelli, M.; Cimino, G.; Fabrizzi, B.; Caporelli, N.; et al. Clinical outcomes of a large cohort of individuals with the F508del/5T;TG12 CFTR genotype. J. Cyst. Fibros. 2022, 21, 850–855. [Google Scholar] [CrossRef]
- Sugarman, E.A.; Rohlfs, E.M.; Silverman, L.M.; Allitto, B.A. CFTR mutation distribution among U.S. Hispanic and African American individuals: Evaluation in cystic fibrosis patient and carrier screening populations. Anesthesia Analg. 2004, 6, 392–399. [Google Scholar] [CrossRef]
- Petreska, L.; Kočeva, S.; Gordova-Muratovska, A.; Nestorov, R.; Efremov, G.D. Identification of two new mutations (711 + 3A→G and V1397E) in CF chromosomes of Albanian and Macedonian origin. Hum. Mol. Genet. 1994, 3, 999–1000. [Google Scholar] [CrossRef] [PubMed]
- Dörk, T.; Macek, M., Jr.; Mekus, F.; Tümmler, B.; Tzountzouris, J.; Casals, T.; Krebsová, A.; Koudová, M.; Sakmaryová, I.; Macek, M., Sr.; et al. Characterization of a novel 21-kb deletion, CFTRdele2,3(21 kb), in the CFTR gene: A cystic fibrosis mutation of Slavic origin common in Central and East Europe. Hum. Genet. 2000, 106, 259–268. [Google Scholar] [CrossRef]
- Schrijver, I.; Pique, L.; Graham, S.; Pearl, M.; Cherry, A.; Kharrazi, M. The Spectrum of CFTR Variants in Nonwhite Cystic Fibrosis Patients: Implications for Molecular Diagnostic Testing. J. Mol. Diag. 2016, 18, 39–50. [Google Scholar] [CrossRef]
- Dugueperoux, I.; De Braekeleer, M. The CFTR 3849+10kbC->T and 2789+5G->A alleles are associated with a mild CF phenotype. ERJ 2005, 25, 468–473. [Google Scholar] [CrossRef]
- Ramalho, S.S.; Silva, I.A.L.; Amaral, M.D.; Farinha, C.M. Rare Trafficking CFTR Mutations Involve Distinct Cellular Retention Ma-chineries and Require Different Rescuing Strategies. Int. J. Mol. Sci. 2022, 23, 24. [Google Scholar] [CrossRef]
- Petrova, N.V.; Kashirskaya, N.Y.; Vasilyeva, T.A.; Kondratyeva, E.I.; Zhekaite, E.K.; Voronkova, A.Y.; Sherman, V.D.; Galkina, V.A.; Ginter, E.K.; Kutsev, S.I.; et al. Analysis of CFTR Mutation Spectrum in Ethnic Russian Cystic Fibrosis Patients. Genes 2020, 11, 554. [Google Scholar] [CrossRef]
- Neil, F.; Martin, J.; Dastot-Le Moal, F.; Costes, B.; Boissier, B.; Delattre, V.; Goossens, M.; Girodon, E. Rapid detection of CFTR gene rearrangements impact on genetic counselling in cystic fibrosis. J. Med. Genet. 2004, 41, e118. [Google Scholar] [CrossRef]
- Bobadilla, J.L.; Macek, M., Jr.; Fine, J.P.; Farrell, P.M. Cystic Fibrosis: A Worldwide Analysis of CFTR Mutations—Correlation With Incidence Data and Application to Screening. Hum. Mutat. 2002, 19, 575–606. [Google Scholar] [CrossRef] [PubMed]
- Yiallouros, P.K.; Matthaiou, A.; Anagnostopoulou, P.; Kouis, P.; Libik, M.; Adamidi, T.; Eleftheriou, A.; Demetriou, A.; Ioannou, P.; Tanteles, G.A.; et al. Demographic characteristics, clinical and laboratory features, and the distribution of pathogenic variants in the CFTR gene in the Cypriot cystic fibrosis (CF) population demonstrate the utility of a national CF patient registry. Orphanet J. Rare Dis. 2021, 16, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Ideozu, J.E.; Liu, M.; Riley-Gillis, B.M.; Paladugu, S.R.; Rahimov, F.; Krishnan, P.; Tripathi, R.; Dorr, P.; Levy, H.; Singh, A.; et al. Diversity of CFTR variants across ancestries charaterised using 454727 UK biobank whole exome sequences. Genome Med. 2024, 16, 43. [Google Scholar] [CrossRef] [PubMed]
- Ziętkiewicz, E.; Rutkiewicz, E.; Pogorzelski, A.; Klimek, B.; Voelkel, K.; Witt, M. CFTR Mutations Spectrum and the Efficiency of Molecular Diagnostics in Polish Cystic Fibrosis Patients. PLoS ONE 2014, 9, e89094. [Google Scholar] [CrossRef]
- European Cystic Fibrosis Society, Annual Report 2022. Available online: https://www.ecfs.eu/sites/default/files/Slidedeck_AnnualReport_2022_ECFSPR.pdf (accessed on 3 October 2024).
- Dawson, K.P.; Frossard, P.M. The geographic distribution of cystic fibrosis mutations gives clues about population origins. Eur. J. Pediatr. 2000, 159, 496–499. [Google Scholar] [CrossRef]
- Amaral, M.D.; de Boeck, K. Theranostics by testing CFTR modulators in patient-derived materials: The current status and a proposal for subjects with rare CFTR mutations. J. Cyst. Fibros. 2019, 18, 685–692. [Google Scholar] [CrossRef]
- Rowe, S.M.; Clancy, J.P.; Wilschanski, M. Nasal potential difference measurements to assess CFTR ion channel activity. Methods Mol. Biol. 2011, 741, 69–86. [Google Scholar] [CrossRef]
- Hug, M.J.; Tümmler, B. Intestinal current measurements to diagnose cystic fibrosis. J. Cyst. Fibros. 2004, 3, 157–158. [Google Scholar] [CrossRef]
- Jain, M.; Olsen, H.E.; Paten, B.; Akeson, M. The Oxford Nanopore MinION: Delivery of nanopore sequencing to the genomics community. Genome Biol. 2016, 17, 1–11. [Google Scholar] [CrossRef]
Mutation | Nucleotide Change | Legacy Name | refSNP | Variant Type | Cohort Proportion |
---|---|---|---|---|---|
p.Phe508del | c.1521_1523del | F508del | rs113993960 | Deletion (3 nucleotides) | Homozygote—141 (43.8%) |
Heterozygote—157 (48.8%) | |||||
p.Gly551Asp | c.1652G>A | G551D | rs75527207 | Missense—risk allele A | Homozygote—2 (0.6%) |
Heterozygote—31 (9.6%) | |||||
p.Arg177His | c.350G>A | R117H | rs78655421 | Missense—risk allele A | Heterozygote—20 (6.2%) |
p.Gly543X | c.1624G>T | G542X | rs113993959 | Nonsense—risk allele T | Heterozygote—11 (3.4%) |
p.Asn1303Lys | c.3909C>G | N1303K | rs80034486 | Missense—risk allele G | Heterozygote—8 (2.5%) |
p.Ala455Glu | c.1364C>A | A455E | rs74551128 | Missense—risk allele A | Heterozygote—6 (1.9%) |
p.? | c.489+1G>T | 621+1G>T | rs78756941 | Variant to splice donor/acceptor site | Heterozygote—6 (1.9%) |
p.Ile507del | c.1519_1521delATC | I507del | rs121908745 | Frame insertion/deletion | Heterozygote—5 (1.6%) |
p.Gln1281His | c.3873G>C | Q1291H | rs121909015 | Single nucleotide variant | Heterozygote—4 (1.2%) |
p.? | c.1585-1G>A | 1717-1G>A | rs76713772 | Variant to splice donor/acceptor site | Heterozygote—4 (1.2%) |
CFTR Mutation | Functional Testing CFTR Mutation 1 | Functional Testing CFTR Mutation 2 | Global Database Records (CFTR2) |
---|---|---|---|
P67L/3272-26A->G | Missense | Missense | Unknown combination |
W1282X/I1269N | Nonsense | Missense | Unknown combination |
F508del/V1108L (c.3322delG) * | Frame insertion/deletion | Unknown | Unknown combination |
G542X/T1246I | Nonsense | Missense | Unknown combination |
1898+1G->A (1766+1G>A)/2622 + 1G->T (2490+1G>T) | Unknown | Variant to splice donor/acceptor site | Unknown combination |
E60X/Q1291H | Nonsense | Nonsense | Unknown combination |
G551D/D110H * | Missense | Missense | Unknown combination |
1249-1G>A (c.1117-5A>G)/c.1210-34(TG)12(T)5 | Variant to splice donor/acceptor site | Unknown | Unknown combination |
V520F/1461ins4 | Missense | Insertion/deletion variant | Unknown combination |
(A) Rare CFTR Mutation Combinations—Phenotypes | ||||||||||
CFTR Genotype | Baseline FEV1 | BMI | Sweat Chloride (mmol/L) | Pancreatic Insufficiency | CFRD | CFLD | HbA1c | Bone Health (BMD) | Microbiology | CFTR Modulator |
P67L/3272-26A->G | 1.38 (52.1%) | 29.4 | 51 | Yes | No | No | 5.5% | Osteoporosis | PsA, S. aureus | Tezacaftor/ivacaftor |
W1282X/I1269N | 1.65 (52.2%) | 35.8 | N/A | Yes | No | No | 5.30% | Osteoporosis | PsA (intermittent) | Nil |
F508del/V1108L (c.3322delG) | 3.75 (103.4%) | 21.8 | N/A | Yes | No * | No | 5.70% | Normal | PsA, S. aureus, Asp. fumigatus | Elexacaftor/tezacaftor /ivacaftor |
F508del/V1108L (c.3322delG) | 2.37 (68.5%) | 19.4 | N/A | Yes | Yes | Yes | 10.60% | Osteopenia | PsA, S. aureus, Asp. fumigatus | Elexacaftor/tezacaftor /ivacaftor |
G542X/T1246I | 1.25 (47.6%) | 24.3 | 53 | No | No | No | 5.80% | Normal | PsA | Nil |
1898+1G->A (1766+1G>A)/2622+1G->T (2490+1G>T) | 3.04 (95.0%) | 26.1 | N/A | Yes | Yes | No | 5.80% | Normal | PsA, S. aureus | Nil |
E60X/Q1291H | 0.95 (35.4%) | 28.6 | 49 | Yes | Yes | No | 8.50% | Osteopenia | PsA, S. aureus | Nil |
G551D/D110H | 2.61 (63.2%) | 24.7 | 28 | Yes | No | No | 5.30% | Osteopenia | Nil regular | Ivacaftor |
G551D/D110H | 4.03 (104.4%) | 22.2 | 23 | Yes | No | No | 5.00% | Osteopenia | Nil regular | Ivacaftor |
1249-1G>A (c.1117-5A>G)/c.1210-34(TG)12(T)5 | 2.55 (54.5%) | 30.7 | 57 | No | No | No | N/A | No BMD | Nil regular | Nil |
V520F/1461ins4 | 2.90 (67.6%) | 23.6 | N/A | Yes | No | No | 6.10% | Normal | S. aureus | Nil |
(B) Non-disease Causing CFTR Mutation Combinations—Phenotypes | ||||||||||
CFTR Genotype | Baseline FEV1 | BMI | Sweat Chloride (mmol/L) | Pancreatic Insufficiency | CFRD | CFLD | HbA1c | Bone Health (BMD) | Microbiology | CFTR Modulator |
F508del/I148T | 2.79 (67.8%) | 20.9 | 110 | Yes | No * | No | 5.30% | Osteopenia | S. aureus | Elexacaftor/tezacaftor /ivacaftor |
F508del/M470V | 0.94 (24.1%) | 34.3 | 43 | Yes | Yes | Yes | 9.00% | Osteopenia | PsA | Elexacaftor/tezacaftor /ivacaftor |
F508del/I1027T | 1.49 (39.2%) | 26.4 | N/A | Yes | No | Yes | 5.00% | Normal | PsA | Elexacaftor/tezacaftor /ivacaftor |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Evans, I.E.S.; Wood, M.; Moore, V.; Reid, D.W. Phenotypic Evaluation of Rare Cystic Fibrosis Transmembrane Conductance Regulator Mutation Combinations in People with Cystic Fibrosis in Queensland, Australia. J. Clin. Med. 2024, 13, 6210. https://doi.org/10.3390/jcm13206210
Evans IES, Wood M, Moore V, Reid DW. Phenotypic Evaluation of Rare Cystic Fibrosis Transmembrane Conductance Regulator Mutation Combinations in People with Cystic Fibrosis in Queensland, Australia. Journal of Clinical Medicine. 2024; 13(20):6210. https://doi.org/10.3390/jcm13206210
Chicago/Turabian StyleEvans, Ieuan Edward Shepherd, Michelle Wood, Vanessa Moore, and David William Reid. 2024. "Phenotypic Evaluation of Rare Cystic Fibrosis Transmembrane Conductance Regulator Mutation Combinations in People with Cystic Fibrosis in Queensland, Australia" Journal of Clinical Medicine 13, no. 20: 6210. https://doi.org/10.3390/jcm13206210
APA StyleEvans, I. E. S., Wood, M., Moore, V., & Reid, D. W. (2024). Phenotypic Evaluation of Rare Cystic Fibrosis Transmembrane Conductance Regulator Mutation Combinations in People with Cystic Fibrosis in Queensland, Australia. Journal of Clinical Medicine, 13(20), 6210. https://doi.org/10.3390/jcm13206210