Comparing 3D Tooth Movement When Implementing the Same Virtual Setup on Different Software Packages
<p>Replicated virtual setups from ClinCheck<sup>®</sup> Pro, Ortho Analyzer<sup>®</sup>, SureSmile<sup>®</sup>, and Ortho Insight 3D<sup>®</sup>.</p> "> Figure 2
<p>Color-coded maps outside the tolerance. Reference STL (ClinCheck<sup>®</sup> Pro). Target STL (Ortho Analyzer<sup>®</sup>, SureSmile<sup>®</sup>, Ortho Insight 3D<sup>®</sup>).</p> "> Figure 3
<p>Color-coded maps inside the tolerance. Reference STL (ClinCheck<sup>®</sup> Pro). Target STL (Ortho Analyzer<sup>®</sup>, SureSmile<sup>®</sup>, Ortho Insight 3D<sup>®</sup>).</p> "> Figure 4
<p>The workflow.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Statistical Analysis
4. Results
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wahl, N. Orthodontics in 3 millennia. Chapter 2: Entering the modern era. Am. J. Orthod. Dentofac. Orthop. 2005, 127, 510–515. [Google Scholar] [CrossRef] [PubMed]
- Angle, E.H. The latest and best in orthodontic mechanism. Dent. Cosm. 1928, 70, 1143–1158. [Google Scholar]
- Stolzenberg, J. The Russell attachment and its improved advantages. Int. J. Orthod. Dent. Child. 1935, 21, 837–840. [Google Scholar] [CrossRef]
- Andrews, L.F. The Straight-Wire Appliance: Syllabus of Philosophy and Techniques; LF Andrews: San Diego, CA, USA, 1975. [Google Scholar]
- Kesling, H.D. Coordinating the predetermined pattern and tooth positioner with conventional treatment. Am. J. Orthod. Oral Surg. 1946, 32, 285–293. [Google Scholar] [CrossRef]
- Logozzo, S.; Franceschini, G.; Kilpelä, A.; Governi, L.; Blois, L. A comparative analysis of intraoral 3D digital scanners for restorative dentistry. Internet J. Med. Technol. 2008, 5, 1–16. [Google Scholar]
- Coons, S.A.; Mann, R.W. Computer-Aided Design Related to the Engineering Design Process; MIT Electronic Systems Laboratory: Cambridge, MA, USA, 1960. [Google Scholar]
- Kravitz, N.D.; Groth, C.; Jones, P.E.; Graham, J.W.; Redmond, W.R. Intraoral digital scanners. J. Clin. Orthod. 2014, 48, 337–347. [Google Scholar] [PubMed]
- Mangano, F.; Gandolfi, A.; Luongo, G.; Logozzo, S. Intraoral scanners in dentistry: A review of the current literature. BMC Oral Health 2017, 17, 149. [Google Scholar] [CrossRef]
- Martin, C.B.; Chalmers, E.V.; McIntyre, G.T.; Cochrane, H.; Mossey, P.A. Orthodontic scanners: What’s available? J. Orthod. 2015, 42, 136–143. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, M.; Mehl, A.; Mormann, W.H.; Reich, S. Intraoral scanning systems—A current overview. Int. J. Comput. Dent. 2015, 18, 101–129. [Google Scholar] [PubMed]
- Fleming, P.S.; Marinho, V.; Johal, A. Orthodontic measurements on digital study models compared with plaster models: A systematic review. Orthod. Craniofacial Res. 2011, 14, 1–16. [Google Scholar] [CrossRef]
- Naidu, D.; Freer, T.J. Validity, reliability, and reproducibility of the iOC intraoral scanner: A comparison of tooth widths and Bolton ratios. Am. J. Orthod. Dentofac. Orthop. 2013, 144, 304–310. [Google Scholar] [CrossRef] [PubMed]
- Akyalcin, S.; Cozad, B.E.; English, J.D.; Colville, C.D.; Laman, S. Diagnostic accuracy of impression-free digital models. Am. J. Orthod. Dentofac. Orthop. 2013, 144, 916–922. [Google Scholar] [CrossRef] [PubMed]
- Galan-Lopez, L.; Barcia-Gonzalez, J.; Plasencia, E. A systematic review of the accuracy and efficiency of dental movements with Invisalign(R). Korean J. Orthod. 2019, 49, 140–149. [Google Scholar] [CrossRef] [PubMed]
- Faber, R.D.; Burstone, C.J.; Solonche, D.J. Computerized interactive orthodontic treatment planning. Am. J. Orthod. 1978, 73, 36–46. [Google Scholar] [CrossRef]
- Kuroda, T.; Motohashi, N.; Tominaga, R.; Iwata, K. Three-dimensional dental cast analyzing system using laser scanning. Am. J. Orthod. Dentofac. Orthop. 1996, 110, 365–369. [Google Scholar] [CrossRef]
- Ojima, K.; Kau, C.H. A perspective in accelerated orthodontics with aligner treatment. Semin. Orthod. 2017, 23, 76–82. [Google Scholar] [CrossRef]
- Boyd, R.L.; Miller, R.; Vlaskalic, V. The Invisalign system in adult orthodontics: Mild crowding and space closure cases. J. Clin. Orthod. 2000, 34, 203–212. [Google Scholar]
- Simon, M.; Keilig, L.; Schwarze, J.; Jung, B.A.; Bourauel, C. Treatment outcome and efficacy of an aligner technique–regarding incisor torque, premolar derotation and molar distalization. BMC Oral Health 2014, 14, 68. [Google Scholar] [CrossRef]
- Kravitz, N.D.; Kusnoto, B.; BeGole, E.; Obrez, A.; Agran, B. How well does Invisalign work? A prospective clinical study evaluating the efficacy of tooth movement with Invisalign. Am. J. Orthod. Dentofac. Orthop. 2009, 135, 27–35. [Google Scholar] [CrossRef]
- Boyd, R.L. Esthetic orthodontic treatment using the invisalign appliance for moderate to complex malocclusions. J. Dent. Educ. 2008, 72, 948–967. [Google Scholar] [CrossRef]
- Djeu, G.; Shelton, C.; Maganzini, A. Outcome assessment of Invisalign and traditional orthodontic treatment compared with the American Board of Orthodontics objective grading system. Am. J. Orthod. Dentofac. Orthop. 2005, 128, 292–298; discussion 298. [Google Scholar] [CrossRef] [PubMed]
- Lagravere, M.O.; Flores-Mir, C. The treatment effects of Invisalign orthodontic aligners: A systematic review. J. Am. Dent. Assoc. 2005, 136, 1724–1729. [Google Scholar] [CrossRef]
- Lin, L.; Fang, Y.; Liao, Y.; Chen, G.; Gao, C.; Zhu, P. 3D Printing and Digital Processing Techniques in Dentistry: A Review of Literature. Adv. Eng. Mater. 2019, 21, 1801013. [Google Scholar] [CrossRef]
- Graham, J.W.; Groth, C.; Kravitz, N.D.; Jones, P.E.; Redmond, W.R. Three-Dimensional Printing Technology. J. Clin. Orthod. 2014, 48, 475–485. [Google Scholar]
- Hou, D.; Capote, R.; Bayirli, B.; Chan, D.C.N.; Huang, G. The effect of digital diagnostic setupson orthodontic treatment planning. Am. J. Orthod. Dentofac. Orthop. 2020, 157, 542–549. [Google Scholar] [CrossRef] [PubMed]
- Dastoori, M.; Bouserhal, J.P.; Halazonetis, D.J.; Athanasiou, A.E. Anterior teeth rootinclination prediction derived from digital models-A comparative study of plasterstudy casts and CBCT images. J. Clin. Exp. Dent. 2018, 10, e1069–e1074. [Google Scholar] [PubMed]
- Magkavali-Trikka, P.; Halazonetis, D.J.; Athanasiou, A.E. Estimation of rootinclination of anterior teeth from virtual study models: Accuracy of a commercialsoftware. Prog. Orthod. 2019, 20, 43. [Google Scholar] [CrossRef] [Green Version]
Tooth Movement Variables | ClinCheck® Pro (n = 682) Mean ± SD | Ortho Analyzer® (n = 682) Mean ± SD | SureSmile® (n = 682) Mean ± SD | Ortho Insight 3D® (n = 682) Mean ± SD | p-Value |
---|---|---|---|---|---|
Extrusion/Intrusion (mm) | 0.063 ± 0.025 | 0.329 ± 0.025 | 0.092 ± 0.025 | 0.136 ± 0.025 | 0.0001 * |
Translation Buccal/Lingual (mm) | 0.248 ± 0.036 | 0.077 ± 0.036 | 0.234 ± 0.036 | 0.133 ± 0.036 | 0.0004 * |
Translation Mesial/Distal (mm) | 0.016 ± 0.026 | −0.027 ± 0.026 | 0.023 ± 0.026 | 0.023 ± 0.026 | 0.4630 |
Rotation Mesial/Distal (°) | −0.788 ± 0.350 | −0.741 ± 0.350 | −0.836 ± 0.350 | −0.865 ± 0.350 | 0.9945 |
Angulation Mesial/Distal (°) | −0.149 ± 0.156 | 0.054 ± 0.156 | −0.208 ± 0.156 | −0.090 ± 0.156 | 0.6871 |
Inclination Buccal/Lingual (°) | 0.740 ± 0.202 | 0.831 ± 0.202 | 0.686 ± 0.202 | 0.715 ± 0.202 | 0.9580 |
Sample Comparison | Mean (mm) | Standard Deviation (mm) | p-Value |
---|---|---|---|
ClinCheck® Pro–SureSmile® | 0.063–0.092 | ±0.621–±0.652 | 0.226 |
ClinCheck® Pro–Ortho Insight 3D® | 0.063–0.136 | ±0.621–±0.637 | 0.026 * |
ClinCheck® Pro–Ortho Analyzer® | 0.063–0.330 | ±0.621–±0.656 | 0.000 * |
SureSmile®–Ortho Insight 3D® | 0.092–0.136 | ±0.652–±0.637 | 0.311 |
SureSmile®–Ortho Analyzer® | 0.092–0.330 | ±0.652–±0.656 | 0.000 * |
Ortho Insight 3D®–Ortho Analyzer® | 0.136–0.330 | ±0.637–±0.656 | 0.000 * |
Sample Comparison | Mean (mm) | Standard Deviation (mm) | p-Value |
---|---|---|---|
ClinCheck® Pro–SureSmile® | 0.248–0.234 | ±0.864–±0.832 | 0.814 |
ClinCheck® Pro–Ortho Insight 3D® | 0.248–0.133 | ±0.864–±0.915 | 0.004 * |
ClinCheck® Pro–Ortho Analyzer® | 0.248–0.077 | ±0.864–±1.095 | 0.001 * |
SureSmile®–Ortho Insight 3D® | 0.234–0.133 | ±0.832–±0.915 | 0.009 * |
SureSmile®–Ortho Analyzer® | 0.234–0.077 | ±0.832–±1.095 | 0.002 * |
Ortho Insight 3D®–Ortho Analyzer® | 0.133–0.077 | ±0.915–±1.095 | 0.601 |
Sample Comparison | Mean (n) | Standard Deviation (n) | p-Value |
---|---|---|---|
ClinCheck® Pro–SureSmile® | 20.92–12.96 | ±6.64–±4.71 | 0.000 * |
ClinCheck® Pro–Ortho Insight 3D® | 20.92–17.36 | ±6.64–±6.05 | 0.085 |
ClinCheck® Pro–Ortho Analyzer® | 20.92–25.76 | ±6.64–±12.01 | 0.379 |
SureSmile®–Ortho Insight 3D® | 12.96–17.36 | ±4.71–±6.05 | 0.014 * |
SureSmile®–Ortho Analyzer® | 12.96–25.76 | ±4.71–±12.01 | 0.009 * |
Ortho Insight 3D®–Ortho Analyzer® | 17.36–25.76 | ±6.05–±12.01 | 0.000 * |
Sample Comparison | Mean (n) | Standard Deviation (n) | p-Value |
---|---|---|---|
ClinCheck® Pro–SureSmile® | 21.17–21.20 | ±5.20–±5.30 | 0.970 |
ClinCheck® Pro–Ortho Insight 3D® | 21.17–12.96 | ±5.20–±4.71 | 0.000 * |
ClinCheck® Pro–Ortho Analyzer® | 21.17–25.76 | ±5.20–±12.01 | 0.461 |
SureSmile®–Ortho Insight 3D® | 21.20–12.96 | ±5.30–±4.71 | 0.000 * |
SureSmile®–Ortho Analyzer® | 21.20–25.76 | ±5.30–±12.01 | 0.708 |
Ortho Insight 3D®–Ortho Analyzer® | 12.96–25.76 | ±4.71–±12.01 | 0.000 * |
Sample Comparison | Mean (n) | Standard Deviation (n) | p-Value |
---|---|---|---|
ClinCheck® Pro–SureSmile® | 13.38–7.76 | ±3.09–±3.11 | 0.000 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dhingra, A.; Palomo, J.M.; Stefanovic, N.; Eliliwi, M.; Elshebiny, T. Comparing 3D Tooth Movement When Implementing the Same Virtual Setup on Different Software Packages. J. Clin. Med. 2022, 11, 5351. https://doi.org/10.3390/jcm11185351
Dhingra A, Palomo JM, Stefanovic N, Eliliwi M, Elshebiny T. Comparing 3D Tooth Movement When Implementing the Same Virtual Setup on Different Software Packages. Journal of Clinical Medicine. 2022; 11(18):5351. https://doi.org/10.3390/jcm11185351
Chicago/Turabian StyleDhingra, Azad, Juan Martin Palomo, Neda Stefanovic, Manhal Eliliwi, and Tarek Elshebiny. 2022. "Comparing 3D Tooth Movement When Implementing the Same Virtual Setup on Different Software Packages" Journal of Clinical Medicine 11, no. 18: 5351. https://doi.org/10.3390/jcm11185351
APA StyleDhingra, A., Palomo, J. M., Stefanovic, N., Eliliwi, M., & Elshebiny, T. (2022). Comparing 3D Tooth Movement When Implementing the Same Virtual Setup on Different Software Packages. Journal of Clinical Medicine, 11(18), 5351. https://doi.org/10.3390/jcm11185351