Phylogeny and Taxonomy of the Naematelia aurantialba Complex in Southwestern China
<p>Phylogenetic tree of <span class="html-italic">Naematelia</span> with related species based on maximum likelihood analysis from a two-loci (ITS, nrLSU) dataset. ML ≥ 50% and BI ≥ 70% are indicated above the branches.</p> "> Figure 2
<p><span class="html-italic">Naematelia aurantialba</span>: (<b>a</b>,<b>b</b>) fresh basidiomata; note the <span class="html-italic">Stereum</span> basidiomata (arrow); (<b>a</b>) HKAS 89568; (<b>b</b>) HKAS 90938). Bars = 20 mm.</p> "> Figure 3
<p><span class="html-italic">Naematelia aurantialba</span>: (1) basidiospores germinating by budding or by repetition (HKAS89568); (2) basidia at different stages of development; a haustorium attached to a host hypha (arrow) (HKAS89568); (3) basidiospores germinating by budding or by repetition (HKAS19954, holotype). Bars = 10 μm.</p> "> Figure 4
<p><span class="html-italic">Naematelia nodulosa</span> (HKAS141719, holotype): (<b>a</b>) fresh basidioma; (<b>b</b>) vertical sections of basidioma; (<b>c</b>) fresh basidioma and host, namely <span class="html-italic">Stereum hirsutum</span> or its allies (arrow). Bars = 20 mm.</p> "> Figure 5
<p><span class="html-italic">Naematelia nodulosa</span>: (1) parasite hyphae with haustoria, conidiophores and conidia, and unclamped host hypha (arrow) in trama (HKAS 141591); (2) parasite hyphae with haustoria, conidiophore and conidia, and unclamped host hypha (arrow) in trama (HKAS141719, holotype); (3) basidia at different stages of development (HKAS141719, holotype). Bars = 10 m.</p> "> Figure 6
<p><span class="html-italic">Naematelia pedicellata</span> (HKAS 112730, holotype): (<b>a</b>) fresh basidioma; note the <span class="html-italic">Stereum</span> basidiomata on the upper right of the trunk (arrow); (<b>b</b>) vertical sections of basidioma. Bars = 20 mm.</p> "> Figure 7
<p><span class="html-italic">Naematelia pedicellata</span> (HKAS 112730, holotype): 1. hymenium with stalked basidia at different stages of development and hyphidia; 2. cell immediately below a basidium with conidia; 3. basidiospores, germinating by budding or by repetition; 4. parasite hyphae with haustoria, conidiophore and conidia, and unclamped hyphae of host (arrows) in trama. Bars = 10 μm.</p> "> Figure 8
<p><span class="html-italic">Naematelia sinensis</span> (HKAS144460): (<b>a</b>) fresh basidioma; (<b>b</b>) vertical sections of basidioma. Bars = 20 mm.</p> "> Figure 9
<p><span class="html-italic">Naematelia sinensis</span> (HKAS144460): (1) tramal hyphae with conidiophores and conidia; (2) hymenium with basidia at different stages of development, with haustoria attached to unclamped hypha of host (arrow); (3) basidiospores, germinating by repetition. Bars = 10 μm.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Morphological Characterization
2.2. DNA Extraction, Sequencing, and Data Processing
2.3. Phylogenetic Analysis
2.4. Availability of Data and Materials
3. Results
3.1. Molecular Analyses
3.2. Taxonomy
4. Discussion
- 1 Basidiomata occur in subtropical forests at altitudes of 1800–2600 m above sea level………………………………………………………………………………… 2
- 1′ Basidiomata occur in subalpine temperate forests at altitudes of 3000–3800 m above sea level………………………………………………………………… N. aurantialba
- 2 Surface of basidioma knob-like, trama with small cavities, basidia two spored, conidia numerous and everywhere…………………………………………………N. nodulosa
- 2′ Surface of basidioma cerebriform, trama with or without small cavities, basidia four spored, conidia abundant to numerous……………………………………………… 3
- 3 Surface of basidioma yellow to orange yellow, basidia not stalked, basidiospores 9.5–11 μm long, with Q = 1.11–1.24……………………………….….…………………N. sinensis
- 3′ Surface of basidioma dull ochraceous, basidia long stalked (stalks up to 40 μm long), basidiospores 10.5–12.5 μm long, with Q = 1.18–1.38……………………… N. pedicellata
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, X.Z.; Wang, Q.M.; Göker, M.; Groenewald, M.; Kachalkin, A.V.; Lumbsch, H.T.; Millanes, A.M.; Wedin, M.; Yurkov, A.M.; Boekhout, T.; et al. Towards an integrated phylogenetic classification of the Tremellomycetes. Stud. Mycol. 2015, 81, 85–147. [Google Scholar] [CrossRef] [PubMed]
- Fries, E.M. Observationes Mycologicae Praecipue ad Illustrandam Floram Suecicam; Secunda, P., Ed.; Gerh Bonnier: Hafniae, Denmark, 1818; pp. 1–370. [Google Scholar]
- Clements, F.E. The Genera of Fungi; H.W. Wilson Company: New York, NY, USA, 1931. [Google Scholar]
- Hawksworth, D.L.; Millanes, A.M.; Wedin, M.; Prado, J.; Lendemer, J.; Tripp, E. Fixing the application of the generic name Naematelia (Tremellales) by lectotypification. Taxon 2016, 65, 1093–1096. [Google Scholar] [CrossRef]
- Bandoni, R.J.; Oberwinkler, F. On some species of Tremella described by Alfred Möller. Mycologia 1983, 75, 854–863. [Google Scholar] [CrossRef]
- Bandoni, R.J. The genus Naematelia. Am. Midl. Nat. 1961, 66, 19–328. [Google Scholar] [CrossRef]
- Chen, C.J. Morphological and Molecular Studies in the Genus Tremella; J. Cramer: Berlin, Germany, 1998; p. 225. [Google Scholar]
- Weiss, M.; Oberwinkler, F. Phylogenetic relationships in Auriculariales and related groups—Hypotheses derived from nuclear ribosomal DNA sequences. Mycol. Res. 2001, 105, 403–415. [Google Scholar] [CrossRef]
- Millanes, A.M.; Diederich, P.; Ekman, S.; Wedin, M. Phylogeny and character evolution in the jelly fungi (Tremellomycetes, Basidiomycota, Fungi). Mol. Phylogenetics Evol. 2011, 61, 12–28. [Google Scholar] [CrossRef]
- Yamada, M.; Endoh, R.; Masumoto, H.; Yoshihashi, Y.; Ohkuma, M.; Degawa, Y. Taxonomic study of polymorphic basidiomycetous fungi Sirobasidium and Sirotrema: Sirobasidium apiculatum sp. nov., Phaeotremella translucens comb. nov. and rediscovery of Sirobasidium japonicum in Japan. Antonie Van Leeuwenhoek 2022, 115, 1421–1436. [Google Scholar] [CrossRef]
- Malysheva, V.F.; Malysheva, E.F.; Bulakh, E.M. The genus Tremella (Tremellales, Basidiomycota) in Russia with description of two new species and proposal of one nomenclatural combination. Phytotaxa 2015, 238, 40. [Google Scholar] [CrossRef]
- Thomas, A.; Kumar, T.K.A. A new species of Naematelia (Tremellales, Basidiomycota) from India. Phytotaxa 2024, 646, 58–66. [Google Scholar] [CrossRef]
- Bandoni, R.J.; Zang, M. On an undescribed Tremella from China. Mycologia 1990, 82, 270–273. [Google Scholar] [CrossRef]
- Chen, C.J.; Oberwinkler, F.; Chen, Z.C. Restudy of some type specimes of Tremella (I). Mycotaxon 2001, 77, 215–224. [Google Scholar]
- Zugmaier, W.; Bauer, R.; Oberwinkler, F. Mycoparasitism of some Tremella species. Mycologia 1994, 86, 49–56. [Google Scholar] [CrossRef]
- Breitenbach, J.; Kränzlin, F. Fungi of Switzerland; Verlag Mykologia: Luzern, Switzerland, 1986; Volume 2. [Google Scholar]
- Pippola, E.; Kotiranta, H. The genus Tremella (Basidiomycota, Tremellales) in Finland. Ann. Bot. Fenn. 2008, 45, 401–434. [Google Scholar] [CrossRef]
- Liu, Z.N.; Zheng, S.F. Jiner Artificial Cultivation Techniques; Jindun Publishing House: Beijing, China, 2002. [Google Scholar]
- Zhang, J.B.; Liu, S.X.; Hua, R.; Liu, Q.M.; Li, J.Y.; Liu, C.L.; Luo, X.; Sun, D.F. Breeding of new variety Zhongjun Jin’er No. 4 of Tremella. J. Edible Fungi 2023, 30, 33–44. [Google Scholar] [CrossRef]
- Du, X.; Zhang, Y.; Mu, H.; Lv, Z.; Yang, Y.; Zhang, J. Structural elucidation and antioxidant activity of a novel polysaccharide (TAPB1) from Tremella aurantialba. Food Hydrocoll. 2015, 43, 459–464. [Google Scholar] [CrossRef]
- Du, X.; Wang, X.; Chen, Y.; Tian, S.; Lu, S. Antioxidant activity and oxidative injury rehabilitation of chemically modified polysaccharide (TAPA1) from Tremella aurantialba. Macromol. Res. 2018, 26, 479–483. [Google Scholar] [CrossRef]
- Yuan, Q.; Zhang, X.; Ma, M.; Long, T.; Xiao, C.; Zhang, J.; Liu, J.; Zhao, L. Immunoenhancing glucuronoxylomannan from Tremella aurantialba Bandoni et Zang and its low-molecular-weight fractions by radical depolymerization: Properties, structures and effects on macrophages. Carbohydr. Polym. 2020, 238, 116184. [Google Scholar] [CrossRef]
- Deng, C.; Sun, Y.; Fu, H.; Zhang, S.; Chen, J.; Xu, X. Antioxidant and immunostimulatory activities of polysaccharides extracted from Tremella aurantialba mycelia. Mol. Med. Rep. 2016, 14, 4857–4864. [Google Scholar] [CrossRef]
- Fan, J.; Chu, Z.; Li, L.; Zhao, T.; Yin, M.; Qin, Y. Physicochemical properties and microbial quality of Tremella aurantialba packed in antimicrobial composite films. Molecules 2017, 22, 500. [Google Scholar] [CrossRef]
- Yang, Y.; Dong, C. Fruiting body heterogeneity, dimorphism and haustorium-like structure of Naematelia aurantialba (Jin Er Mushroom). J. Fungi 2024, 10, 557. [Google Scholar] [CrossRef]
- Cai, Q.; Tulloss, R.E.; Tang, L.P.; Tolgor, B.; Zhang, P.; Chen, Z.H.; Yang, Z.L. Multi-locus phylogeny of lethal amanitas: Implications for species diversity and historical biogeography. BMC Evol. Biol. 2014, 14, 143. [Google Scholar] [CrossRef] [PubMed]
- Zeng, C.X.; Hollingsworth, P.M.; Yang, J.; He, Z.S.; Zhang, Z.R.; Li, D.Z.; Yang, J.B. Genome skimming herbarium specimens for DNA barcoding and phylogenomics. Plant Methods 2018, 14, 43. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, 884–890. [Google Scholar] [CrossRef] [PubMed]
- Prjibelski, A.; Antipov, D.; Meleshko, D.; Lapidus, A.; Korobeynikov, A. Using SPAdes De Novo Assembler. Curr. Protoc. Bioinform. 2020, 70, 102. [Google Scholar] [CrossRef]
- Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef]
- Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014, 30, 1312–1313. [Google Scholar] [CrossRef]
- Zhang, D.; Gao, F.; Jakovlic, I.; Zou, H.; Zhang, J.; Li, W.X.; Wang, G.T. PhyloSuite: An integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Mol. Ecol. Resour. 2020, 20, 348–355. [Google Scholar] [CrossRef]
- Lanfear, R.; Frandsen, P.B.; Wright, A.M.; Senfeld, T.; Calcott, B. PartitionFinder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. 2017, 34, 772–773. [Google Scholar] [CrossRef]
- Ronquist, F.; Huelsenbeck, J.P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 2003, 19, 1572–1574. [Google Scholar] [CrossRef]
- Yang, Z.L. Diversity and biogeography of higher fungi in China. In Evolutionary Genetics of Fungi; Xu, J., Ed.; Horizon Bioscience: Norfolk, UK, 2005; p. 350. [Google Scholar]
- Li, Y.C.; Yang, Z.L. The Boletes of China: Tylopilus s.l.; Science Press: Beijing, China, 2021; pp. 1–418. [Google Scholar]
- Liu, X.B.; Xia, E.H.; Li, M.; Cui, Y.Y.; Wang, P.M.; Zhang, J.X.; Xie, B.G.; Xu, J.P.; Yan, J.J.; Li, J.; et al. Transcriptome data reveal conserved patterns of fruiting body development and response to heat stress in the mushroom-forming fungus Flammulina filiformis. PLoS ONE 2020, 15, e0239890. [Google Scholar] [CrossRef]
Current Name | Voucher | Country (Province) Where Material Collected | ITS | nrLSU |
---|---|---|---|---|
Dimennazyma. cisti-albidi | CBS 10049 | - | KF036589 | KY107630 |
D. cisti-albidi | WOct07D (2)-Y15 | - | NR_144841 | GQ244505 |
Naematelia aurantia | WA0000072740 | Poland | MT229987 | - |
N. aurantia | LE 253851 | Russia | KP986510 | KP986543 |
N. aurantia | CBS 6965 | Netherlands | AF444315 | AF189842 |
“N. aurantialba” | 9102 | China | DQ404321 | EF010939 |
“N. aurantialba” | 9901 | China | DQ400104 | EF010937 |
“N. aurantialba” | NX-20 | China | OQ629799 | - |
“N. aurantialba” | Dai 23432 | China | OL614834 | OL616185 |
“N. aurantialba” | WJ-2 | China | PP917728 | - |
“N. aurantialba” | NA | China | PQ084746 | - |
“N. aurantialba” | WJ-1 | China | PP917727 | - |
“N. aurantialba” | down1 | China | PQ084585 | - |
“N. aurantialba” | Dong1651b | China | PQ097671 | -- |
“N. aurantialba” | Dong1633 | China | PQ097670 | - |
“N. aurantialba” | 1554 | China | PP859876 | - |
“N. aurantialba” | Dai20202 | China | OL655278 | - |
“N. aurantialba” | ACCC 50219 | China | AY866425 | - |
N. aurantialba | HKAS19954 * | China | PQ650944 | PQ654928 |
N. aurantialba | HKAS18922 | China | PQ650943 | PQ654927 |
N. aurantialba | HKAS45544 | China | PQ650946 | PQ654930 |
N. aurantialba | HKAS53591 | China | PQ650945 | PQ654929 |
N. aurantialba | HKAS89568 | China | PQ650948 | PQ654932 |
N. aurantialba | HKAS90938 | China | PQ650947 | PQ654931 |
N. encephala | yHKS553 | USA | OK051297 | - |
N. encephala | FBCC1144 | Finland | EU673082 | - |
N. encephala | FBCC1145 | Finland | EU673083 | - |
N. encephala | LE 253857 | Russia | KP986506 | KP986540 |
N. encephala | LE 253860 | Russia | - | KP986564 |
N. encephala | CBS 8220 | - | KY104315 | |
N. encephala | CBS 8218 | - | KY104314 | |
“N. encephaloidea” | ZGCAT325 | India | OQ621803 | - |
“N. encephaloidea” | ZGCAT329 | India | OQ621704 | - |
N. encephaloidea | ZGCAT326 * | India | OQ621795 | OQ621978 |
N. encephaloidea | ZGCAT327 | India | OQ621748 | - |
N. microspora | BPI702328 * | South Africa | AF042435 | AF042253 |
N. nodulosa | HKAS141719 * | China | PQ650958 | PQ654942 |
N. nodulosa | HKAS141591 | China | PQ650959 | PQ654943 |
N. nodulosa | HKAS141353 | China | PQ650957 | PQ654941 |
N. nodulosa | HKAS141704 | China | PQ650956 | PQ654940 |
N. pedicellata | HKAS112730 (a) * | China | PQ650960 | PQ654944 |
N. pedicellata | HKAS112730 (b) | China | PQ650961 | PQ654945 |
N. pedicellata | HKAS112730 (c) | China | PQ650962 | PQ654946 |
N. sinensis | HKAS144465 * | China | PQ650952 | PQ654936 |
N. sinensis | HKAS144459 | China | PQ650955 | PQ654939 |
N. sinensis | HKAS144460 | China | PQ650953 | PQ654937 |
N. sinensis | HKAS144461 | China | PQ650951 | PQ654935 |
N. sinensis | HKAS144462 | China | PQ650954 | PQ654938 |
N. sinensis | HKAS144463 | China | PQ650949 | PQ654933 |
N. sinensis | HKAS144464 | China | PQ650950 | PQ654934 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, J.-Y.; Yang, Z.-L. Phylogeny and Taxonomy of the Naematelia aurantialba Complex in Southwestern China. J. Fungi 2024, 10, 845. https://doi.org/10.3390/jof10120845
Tang J-Y, Yang Z-L. Phylogeny and Taxonomy of the Naematelia aurantialba Complex in Southwestern China. Journal of Fungi. 2024; 10(12):845. https://doi.org/10.3390/jof10120845
Chicago/Turabian StyleTang, Jin-Yan, and Zhu-Liang Yang. 2024. "Phylogeny and Taxonomy of the Naematelia aurantialba Complex in Southwestern China" Journal of Fungi 10, no. 12: 845. https://doi.org/10.3390/jof10120845
APA StyleTang, J.-Y., & Yang, Z.-L. (2024). Phylogeny and Taxonomy of the Naematelia aurantialba Complex in Southwestern China. Journal of Fungi, 10(12), 845. https://doi.org/10.3390/jof10120845