Pharmaceutical Residues in Sediments of a Coastal Lagoon in Northwest Mexico—Occurrence and Environmental Risk Assessment
"> Figure 1
<p>Location of the sampling points distributed through the La Paz lagoon. Map of La Paz Bay and La Paz Lagoon, Baja California Sur, Mexico. Shows sediment sampling points (red circles) and a sediment core (blue triangle), agricultural fields (green), oxidation ponds (pink), and sewage treatment plants (yellow).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study Area
2.2. Chemicals
2.3. Sampling of Sediments
2.4. Analysis of Pharmaceuticals
2.4.1. Extraction and Cleanup
2.4.2. LC-MS/MS Analysis
2.4.3. Analytical Method Validation
2.5. Occurrence and Distribution of PhACs in Sediment Samples
2.6. Risk Quotient Calculations
3. Results and Discussion
3.1. Occurrence of Pharmaceutical Residues in Superficial Sediments
3.2. Distribution of PhACs in a Sediment Core
3.3. Environmental Risk Assessment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gworek, B.; Kijeńska, M.; Wrzosek, J.; Graniewska, M. Pharmaceuticals in the Soil and Plant Environment: A Review. Water Air Soil. Pollut. 2021, 232, 145. [Google Scholar] [CrossRef]
- Jameel, Y.; Valle, D.; Kay, P. Spatial Variation in the Detection Rates of Frequently Studied Pharmaceuticals in Asian, European and North American Rivers. Sci. Total Environ. 2020, 724, 137947. [Google Scholar] [CrossRef] [PubMed]
- Khan, H.K.; Rehman, M.Y.A.; Malik, R.N. Fate and Toxicity of Pharmaceuticals in Water Environment: An Insight on Their Occurrence in South Asia. J. Environ. Manag. 2020, 271, 111030. [Google Scholar] [CrossRef]
- Li, W.C. Occurrence, Sources, and Fate of Pharmaceuticals in Aquatic Environment and Soil. Environ. Pollut. 2014, 187, 193–201. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Barron, L.; Sturzenbaum, S. The Transportation, Transformation and (Bio)Accumulation of Pharmaceuticals in the Terrestrial Ecosystem. Sci. Total Environ. 2021, 781, 146684. [Google Scholar] [CrossRef]
- Świacka, K.; Maculewicz, J.; Kowalska, D.; Caban, M.; Smolarz, K.; Świeżak, J. Presence of Pharmaceuticals and Their Metabolites in Wild-Living Aquatic Organisms—Current State of Knowledge. J. Hazard. Mater. 2022, 424, 127350. [Google Scholar] [CrossRef]
- Wang, H.; Xi, H.; Xu, L.; Jin, M.; Zhao, W.; Liu, H. Ecotoxicological Effects, Environmental Fate and Risks of Pharmaceutical and Personal Care Products in the Water Environment: A Review. Sci. Total Environ. 2021, 788, 147819. [Google Scholar] [CrossRef]
- Khan, A.H.; Aziz, H.A.; Khan, N.A.; Hasan, M.A.; Ahmed, S.; Farooqi, I.H.; Dhingra, A.; Vambol, V.; Changani, F.; Yousefi, M.; et al. Impact, Disease Outbreak and the Eco-Hazards Associated with Pharmaceutical Residues: A Critical Review. Int. J. Environ. Sci. Technol. 2022, 19, 677–688. [Google Scholar] [CrossRef]
- Sathishkumar, P.; Meena, R.A.A.; Palanisami, T.; Ashokkumar, V.; Palvannan, T.; Gu, F.L. Occurrence, Interactive Effects and Ecological Risk of Diclofenac in Environmental Compartments and Biota—A Review. Sci. Total Environ. 2020, 698, 134057. [Google Scholar] [CrossRef]
- Madikizela, L.M.; Ncube, S.; Chimuka, L. Analysis, Occurrence and Removal of Pharmaceuticals in African Water Resources: A Current Status. J. Environ. Manag. 2020, 253, 109741. [Google Scholar] [CrossRef]
- Peña-Guzmán, C.; Ulloa-Sánchez, S.; Mora, K.; Helena-Bustos, R.; Lopez-Barrera, E.; Alvarez, J.; Rodriguez-Pinzón, M. Emerging Pollutants in the Urban Water Cycle in Latin America: A Review of the Current Literature. J. Environ. Manag. 2019, 237, 408–423. [Google Scholar] [CrossRef] [PubMed]
- Malisa-van der Walt, R.; Taigbenu, A. Policy, Laws, and Guidelines of Wastewater Reuse for Agricultural Purposes in Developing Countries. In The Handbook of Environmental Chemistry; Springer: Berlin/Heidelberg, Germany, 2022; pp. 1–24. [Google Scholar]
- Bunting, S.W.; Edwards, P. Global Prospects for Safe Wastewater Reuse through Aquaculture. In Wastewater Management Through Aquaculture; Jana, B., Mandal, R., Jayasankar, P., Eds.; Springer: Singapore, 2018; pp. 55–72. [Google Scholar]
- Zhang, Y.; Shen, Y. Wastewater Irrigation: Past, Present, and Future. Wiley Interdiscip. Rev. Water 2019, 6, e1234. [Google Scholar] [CrossRef]
- Drechsel, P.; Qadir, M.; Galibourg, D. The WHO Guidelines for Safe Wastewater Use in Agriculture: A Review of Implementation Challenges and Possible Solutions in the Global South. Water 2022, 14, 864. [Google Scholar] [CrossRef]
- Mahjoub, O.; Chmengui, W. Pharmaceutical Active Compounds in Marine and Coastal Environments of Arid and Semi-Arid Countries of the Arab Region. In Pharmaceuticals in Marine and Coastal Environments; Durán-Álvarez, J.C., Jiménez-Cisneros, B., Eds.; Elsevier Ltd.: Amsterdam, The Netherlands, 2021; pp. 91–119. ISBN 9780081029718. [Google Scholar]
- Lavín, M.F.; Godínez, V.M.; Alvarez, L.G. Inverse-Estuarine Features of the Upper Gulf of California. Estuar. Coast. Shelf Sci. 1998, 47, 769–795. [Google Scholar] [CrossRef]
- Sofianos, S.; Johns, W.E. The Summer Circulation in the Gulf of Suez and Its Influence in the Red Sea Thermohaline Circulation. J. Phys. Ocean. 2017, 47, 2047–2053. [Google Scholar] [CrossRef]
- Almeida, Â.; Esteves, V.I.; Figueira, E.; Freitas, R. Impacts of Climate Change-Abiotic Factors on the Effects Caused by Pharmaceutical Residues to Marine Organisms, 1st ed.; Elsevier Ltd.: Amsterdam, The Netherlands, 2021; ISBN 9780081029718. [Google Scholar]
- Sun, Q.; Li, Y.; Li, M.; Ashfaq, M.; Lv, M.; Wang, H.; Hu, A.; Yu, C.P. PPCPs in Jiulong River Estuary (China): Spatiotemporal Distributions, Fate, and Their Use as Chemical Markers of Wastewater. Chemosphere 2016, 150, 596–604. [Google Scholar] [CrossRef]
- Cantwell, M.G.; Katz, D.R.; Sullivan, J.C.; Ho, K.; Burgess, R.M. Temporal and Spatial Behavior of Pharmaceuticals in Narragansett Bay, Rhode Island, United States. Environ. Toxicol. Chem. 2017, 36, 1846–1855. [Google Scholar] [CrossRef] [PubMed]
- Siegener, R.; Chen, R.F. Caffeine in Boston Harbor Seawater. Mar. Pollut. Bull. 2002, 44, 383–387. [Google Scholar] [CrossRef]
- Prăvălie, R.; Bandoc, G.; Patriche, C.; Sternberg, T. Recent Changes in Global Drylands: Evidences from Two Major Aridity Databases. Catena 2019, 178, 209–231. [Google Scholar] [CrossRef]
- K’oreje, K.O.; Kandie, F.J.; Vergeynst, L.; Abira, M.A.; Van Langenhove, H.; Okoth, M.; Demeestere, K. Occurrence, Fate and Removal of Pharmaceuticals, Personal Care Products and Pesticides in Wastewater Stabilization Ponds and Receiving Rivers in the Nzoia Basin, Kenya. Sci. Total Environ. 2018, 637–638, 336–348. [Google Scholar] [CrossRef]
- Sánchez-Huesca, R.; Lerma, A.; Guzmán-Saldaña, R.M.E.; Lerma, C. Prevalence of Antibiotics Prescription and Assessment of Prescribed Daily Dose in Outpatients from Mexico City. Antibiotics 2020, 9, 38. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Valdés, J.; Delgado, J.A.; Dworak, J.A. Overtides, Compound Tides, and Tidal-Residual Current in Ensenada de La Paz Lagoon, Baja California Sur, Mexico. Geofis. Int. 2003, 42, 623–634. [Google Scholar] [CrossRef]
- Pérez-Tribouillier, H.; Shumilin, E.; Rodríguez-Figueroa, G.M. Trace Elements in the Marine Sediments of the La Paz Lagoon, Baja California Peninsula, Mexico: Pollution Status in 2013. Bull. Environ. Contam. Toxicol. 2015, 95, 61–66. [Google Scholar] [CrossRef]
- Cervantes-Duarte, R.; Aguirre-Bahena, F.; Reyes-Salinas, A.; Vladez-Holguín, J. Caracterización Hidrológica de Una Laguna Costera de Baja California Sur. Oceánides 2001, 16, 93–105. [Google Scholar]
- Obeso-Nieblas, M.; Shirasago-German, B.; Gaviño-Rodríguez, J. Variabilidad Hidrográfica En Bahía de La Paz, Golfo de California, México (1995–2005). Rev. Biol. Mar. Ocean. 2008, 43, 559–567. [Google Scholar] [CrossRef]
- Sánchez, A.; Gómez-León, A.; Pérez-Tribouillier, H.; Rey-Villiers, N.; Ortiz-Hernández, M.C.; Rodríguez-Figueroa, G.; Shumilin, E. Vertical Variability of Benthic Foraminifera and Trace Elements in a Tropical Coastal Lagoon in the Gulf of California. Mar. Pollut. Bull. 2020, 158, 111417. [Google Scholar] [CrossRef]
- Kurissery, S.; Kanavillil, N.; Verenitch, S.; Mazumder, A. Caffeine as an Anthropogenic Marker of Domestic Waste: A Study from Lake Simcoe Watershed. Ecol. Indic. 2012, 23, 501–508. [Google Scholar] [CrossRef]
- Koroša, A.; Brenčič, M.; Mali, N. Estimating the Transport Parameters of Propyphenazone, Caffeine and Carbamazepine by Means of a Tracer Experiment in a Coarse-Gravel Unsaturated Zone. Water Res. 2020, 175, 115680. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Wang, Y.; Pan, C.; Li, R.; Xue, R.; Guo, J.; Bay, Q. Spatiotemporal Distributions, Source Apportionment and Potential Risks of 15 Pharmaceuticals and Personal Care Products (PPCPs) in Qinzhou Bay, South. Mar. Pollut. Bull. 2019, 141, 104–111. [Google Scholar] [CrossRef]
- European Commission. Technical Guidance Document in Support of Commission Directive 93//67/EEC on Risk Assessment for New Notified Substances and Commission Regulation (EC) No. 1488/94 on Risk Assessment for Existing Substance, Part. II; European Commission: Genoa, Italy, 2003. [Google Scholar]
- Beiras, R. Environmental Risk Assessment of Pharmaceutical and Personal Care Products in Estuarine and Coastal Waters. In Pharmaceuticals in Marine and Coastal Environments: Occurrence, Effects, and Challenges in a Changing World; Durán-Álvarez, J.C., Jiménez-Cisneros, B., Eds.; Elsevier B.V: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Van Vlaardingen, P.L.A.; Posthumus, R.; Traas, T.P. Environmental Risk Limits for Alkylphenols and Alkylphenol Ethoxylates RIVM Report 601501019; RIVM: Bilthoven, The Netherlands, 2003. [Google Scholar]
- Xu, W.H.; Zhang, G.; Wai, O.W.H.; Zou, S.C.; Li, X.D. Transport and Adsorption of Antibiotics by Marine Sediments in a Dynamic Environment. J. Soils Sediments 2009, 9, 364–373. [Google Scholar] [CrossRef]
- Klosterhaus, S.L.; Grace, R.; Hamilton, M.C.; Yee, D. Method Validation and Reconnaissance of Pharmaceuticals, Personal Care Products, and Alkylphenols in Surface Waters, Sediments, and Mussels in an Urban Estuary. Environ. Int. 2013, 54, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Beretta, M.; Britto, V.; Tavares, T.M.; da Silva, S.M.T.; Pletsch, A.L. Occurrence of Pharmaceutical and Personal Care Products (PPCPs) in Marine Sediments in the Todos Os Santos Bay and the North Coast of Salvador, Bahia, Brazil. J. Soils Sediments 2014, 14, 1278–1286. [Google Scholar] [CrossRef]
- Bayen, S.; Estrada, E.S.; Juhel, G.; Kit, L.W.; Kelly, B.C. Pharmaceutically Active Compounds and Endocrine Disrupting Chemicals in Water, Sediments and Mollusks in Mangrove Ecosystems from Singapore. Mar. Pollut. Bull. 2016, 109, 716–722. [Google Scholar] [CrossRef] [PubMed]
- Rigueto, C.V.T.; Nazari, M.T.; De Souza, C.F.; Cadore, J.S.; Brião, V.B.; Piccin, J.S. Alternative Techniques for Caffeine Removal from Wastewater: An Overview of Opportunities and Challenges. J. Water Process Eng. 2020, 35, 101231. [Google Scholar] [CrossRef]
- Feo, M.L.; Bagnati, R.; Passoni, A.; Riva, F.; Salvagio Manta, D.; Sprovieri, M.; Traina, A.; Zuccato, E.; Castiglioni, S. Pharmaceuticals and Other Contaminants in Waters and Sediments from Augusta Bay (Southern Italy). Sci. Total Environ. 2020, 739, 139827. [Google Scholar] [CrossRef]
- Stewart, M.; Olsen, G.; Hickey, C.W.; Ferreira, B.; Jelić, A.; Petrović, M.; Barcelo, D. A Survey of Emerging Contaminants in the Estuarine Receiving Environment around Auckland, New Zealand. Sci. Total Environ. 2014, 468–469, 202–210. [Google Scholar] [CrossRef]
- Lara-Martín, P.A.; Renfro, A.A.; Cochran, J.K.; Brownawell, B.J. Geochronologies of Pharmaceuticals in a Sewage-Impacted Estuarine Urban Setting (Jamaica Bay, New York). Environ. Sci. Technol. 2015, 49, 5948–5955. [Google Scholar] [CrossRef]
- Kucharski, D.; Nałęcz-Jawecki, G.; Drzewicz, P.; Skowronek, A.; Mianowicz, K.; Strzelecka, A.; Giebułtowicz, J. The Assessment of Environmental Risk Related to the Occurrence of Pharmaceuticals in Bottom Sediments of the Odra River Estuary (SW Baltic Sea). Sci. Total Environ. 2022, 828, 154446. [Google Scholar] [CrossRef]
- Chen, Y.; Zhou, J.L.; Cheng, L.; Zheng, Y.Y.; Xu, J. Sediment and Salinity Effects on the Bioaccumulation of Sulfamethoxazole in Zebrafish (Danio Rerio). Chemosphere 2017, 180, 467–475. [Google Scholar] [CrossRef]
- Nakada, N.; Kiri, K.; Shinohara, H.; Harada, A.; Kuroda, K.; Takizawa, S.; Takada, H. Evaluation of Pharmaceuticals and Personal Care Products as Water-Soluble Molecular Markers of Sewage. Environ. Sci. Technol. 2008, 42, 6347–6353. [Google Scholar] [CrossRef]
- Montesdeoca-Esponda, S.; Sosa-Ferrera, Z.; Rodríguez-Santana, J.J. Combination of Microwave-Assisted Micellar Extraction with Liquid Chromatography Tandem Mass Spectrometry for the Determination of Fluoroquinolone Antibiotics in Coastal Marine Sediments and Sewage Sludges Samples. Biomed. Chromatogr. 2011, 26, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Yang, Y.; Liu, M.; Yan, C.; Yue, H.; Zhou, J. Occurrence and Distribution of Antibiotics in the Surface Sediments of the Yangtze Estuary and Nearby Coastal Areas. Mar. Pollut. Bull. 2014, 83, 317–323. [Google Scholar] [CrossRef] [PubMed]
- Siedlewicz, G.; Białk-Bielińska, A.; Borecka, M.; Winogradow, A.; Stepnowski, P.; Pazdro, K. Presence, Concentrations and Risk Assessment of Selected Antibiotic Residues in Sediments and near-Bottom Waters Collected from the Polish Coastal Zone in the Southern Baltic Sea—Summary of 3 Years of Studies. Mar. Pollut. Bull. 2018, 129, 787–801. [Google Scholar] [CrossRef]
- Wirtz, V.J.; Dreser, A.; Gonzales, R. Trends in Antibiotic Utilization in Eight Latin American Countries, 1997-2007. Rev. Panam. De Salud Publica/Pan Am. J. Public Health 2010, 27, 219–225. [Google Scholar] [CrossRef]
- Igwegbe, C.A.; Oba, S.N.; Aniagor, C.O.; Adeniyi, A.G.; Ighalo, J.O. Adsorption of Ciprofloxacin from Water: A Comprehensive Review. J. Ind. Eng. Chem. 2021, 93, 57–77. [Google Scholar] [CrossRef]
- Dalkmann, P.; Willaschek, E.; Schiedung, H.; Bornemann, L.; Siebe, C.; Siemens, J. Long-Term Wastewater Irrigation Reduces Sulfamethoxazole Sorption, but Not Ciprofloxacin Binding, in Mexican Soils. J. Environ. Qual. 2014, 43, 964–970. [Google Scholar] [CrossRef]
- Schwarz, A.; Strakos, C.; Weihrich, R. A Brief Review on Carbamazepine—History, Pharmacological Properties and Environmental Impact. Insights Chem. Biochem. 2021, 1, 1–4. [Google Scholar] [CrossRef]
- Hebig, K.H.; Groza, L.G.; Sabourin, M.J.; Scheytt, T.J.; Ptacek, C.J. Transport Behavior of the Pharmaceutical Compounds Carbamazepine, Sulfamethoxazole, Gemfibrozil, Ibuprofen, and Naproxen, and the Lifestyle Drug Caffeine, in Saturated Laboratory Columns. Sci. Total Environ. 2017, 590–591, 708–719. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Laverman, A.M.; Roose-Amsaleg, C.; Regimbeau, G.; Hanna, K. Fate and Transport of Tetracycline and Ciprofloxacin and Impact on Nitrate Reduction Activity in Coastal Sediments from the Seine Estuary, France. Environ. Sci. Pollut. Res. 2022, 30, 5749–5757. [Google Scholar] [CrossRef]
- Chang, B.V.; Chao, W.L.; Yeh, S.L.; Kuo, D.L.; Yang, C.W. Biodegradation of Sulfamethoxazole in Milkfish (Chanos Chanos) Pond Sediments. Appl. Sci. 2019, 9, 4000. [Google Scholar] [CrossRef]
- Sendra, M.; Moreno-Garrido, I. Pharmaceuticals and Aquatic Benthic Organisms: Toxicity and Accumulation. In Pharmaceuticals in Marine and Coastal Environments: Occurrence, Effects, and Challenges in a Changing World; Elsevier Ltd.: Amsterdam, The Netherlands, 2021; pp. 501–519. ISBN 9780081029718. [Google Scholar]
- Maranho, L.A.; André, C.; DelValls, T.A.; Gagné, F.; Martín-Díaz, M.L. Toxicological Evaluation of Sediment Samples Spiked with Human Pharmaceutical Products: Energy Status and Neuroendocrine Effects in Marine Polychaetes Hediste Diversicolor. Ecotoxicol. Environ. Saf. 2015, 118, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Freitas, R.; Almeida, Â.; Pires, A.; Velez, C.; Calisto, V.; Schneider, R.J.; Esteves, V.I.; Wrona, F.J.; Figueira, E.; Soares, A.M.V.M. The Effects of Carbamazepine on Macroinvertebrate Species: Comparing Bivalves and Polychaetes Biochemical Responses. Water Res. 2015, 85, 137–147. [Google Scholar] [CrossRef] [PubMed]
- Nardi, A.; Mezzelani, M.; Costa, S.; D’Errico, G.; Benedetti, M.; Gorbi, S.; Freitas, R.; Regoli, F. Marine Heatwaves Hamper Neuro-Immune and Oxidative Tolerance toward Carbamazepine in Mytilus Galloprovincialis. Environ. Pollut. 2022, 300, 118970. [Google Scholar] [CrossRef] [PubMed]
- Näslund, J.; Hedman, J.E.; Agestrand, C. Effects of the Antibiotic Ciprofloxacin on the Bacterial Community Structure and Degradation of Pyrene in Marine Sediment. Aquat. Toxicol. 2008, 90, 223–227. [Google Scholar] [CrossRef] [PubMed]
- Morales-García, S.S.; de Acacia Pérez-Escamilla, P.; Sujitha, S.B.; Godwyn-Paulson, P.; Zúñiga-Cabezas, A.F.; Jonathan, M.P. Geochemical Elements in Suspended Particulate Matter of Ensenada de La Paz Lagoon, Baja California Peninsula, Mexico: Sources, Distribution, Mass Balance and Ecotoxicological Risks. J. Environ. Sci. 2024, 136, 422–436. [Google Scholar] [CrossRef]
- Vignaroli, C.; Pasquaroli, S.; Citterio, B.; Di Cesare, A.; Mangiaterra, G.; Fattorini, D.; Biavasco, F. Antibiotic and Heavy Metal Resistance in Enterococci from Coastal Marine Sediment. Environ. Pollut. 2018, 237, 406–413. [Google Scholar] [CrossRef]
- Azuma, T.; Arima, N.; Tsukada, A.; Hirami, S.; Matsuoka, R.; Moriwake, R.; Ishiuchi, H.; Inoyama, T.; Teranishi, Y.; Yamaoka, M.; et al. Distribution of six anticancer drugs and a variety of other pharmaceuticals, and their sorption onto sediments, in an urban Japanese river. Environ. Sci. Pollut. Res. 2017, 24, 19021–19030. [Google Scholar] [CrossRef]
- Da Costa Filho, B.M.; Duarte, A.C.; Santos, T.A.P.R. Environmental monitoring approaches for the detection of organic contaminants in marine environments: A critical review. Trends Environ. Anal. Chem. 2022, 33, e00154. [Google Scholar] [CrossRef]
- Gibs, J.; Heckathorn, H.A.; Meyer, M.T.; Klapinski, F.R.; Alebus, M.; Lippincott, R.L. Occurrence and partitioning of antibiotic compounds found in the water column and bottom sediments from a stream receiving two wastewater treatment plant effluents in Northern New Jersey, 2008. Sci. Total Environ. 2013, 458–460, 107–116. [Google Scholar] [CrossRef]
Sample | pH | TDS (×103 mg L−1) | Salinity (%) | D.O. (%) | TOC (%) | Sand (%) | Mud (%) |
---|---|---|---|---|---|---|---|
LP 1 | 8.4 | 28.3 | 37.8 | 98.3 | 0.13 | 95 | 5 |
LP 2 | 8.9 | 28.1 | 37.4 | 95.1 | 0.22 | 92 | 8 |
LP 3 | 8.2 | 28.5 | 38.0 | 96.1 | 0.09 | 93 | 7 |
LP 4 | 8.9 | 28.1 | 37.5 | 96.9 | 0.46 | 86 | 14 |
LP 5 | 9.2 | 28.1 | 37.5 | 98.9 | 0.58 | 87 | 13 |
LP 6 | 8.8 | 28.1 | 37.5 | 94.9 | 0.37 | 77 | 23 |
LP 7 | 8.2 | 28.3 | 37.6 | 91.4 | 0.33 | 95 | 5 |
LP 8 | 8.0 | 28.7 | 38.3 | 83.2 | 0.40 | 96 | 4 |
LP 9 | 8.4 | 28.4 | 37.9 | 87.0 | 0.86 | 83 | 17 |
LP 10 | 8.5 | 28.7 | 38.2 | 81.5 | 0.53 | 85 | 15 |
LP 11 | 8.6 | 28.6 | 38.1 | 84.6 | 0.77 | 83 | 17 |
LP 12 | 8.3 | 28.4 | 37.8 | 85.7 | 0.61 | 82 | 18 |
LP 13 | 8.8 | 28.5 | 38.0 | 95.8 | 0.84 | 81 | 19 |
LP 14 | 8.5 | 28.5 | 38.0 | 98.8 | 0.55 | 92 | 8 |
LP 15 | 8.4 | 28.8 | 38.5 | 87.9 | 0.43 | 95 | 5 |
LP 16 | 8.6 | 28.3 | 37.7 | 59.3 | 0.88 | 94 | 6 |
LP 17 | 8.2 | 28.4 | 37.8 | 54.8 | 1.23 | 85 | 15 |
LP 18 | 8.8 | 28.5 | 38.0 | 64.5 | 1.83 | 84 | 16 |
Molecule | Precursor Ion (m/z) | Product Ion (m/z) | Fragmentation Voltage (V) | Collision Energy (eV) |
---|---|---|---|---|
Caffeine | 195.1 | 138.1 110.1 | 100 80 | 16 18 |
Ciprofloxacin | 332.2 | 314.2 288.2 | 135 110 | 17 20 |
Sulfamethoxazole | 254 | 156 98 | 100 70 | 15 23 |
Carbamazepine | 237.1 | 194.1 114.1 | 110 65 | 15 20 |
Sample | Mass Fraction (ng g−1 d.w.) | CAF/CBZ | |||
---|---|---|---|---|---|
Caffeine | Carbamazepine | Ciprofloxacin | Sulfamethoxazole | ||
LP 1 | 7.33 | <LOQ | 4.09 | 5.69 | - |
LP 2 | 10.98 | <LOQ | 5.33 | 12.68 | - |
LP 3 | 9.61 | <LOQ | 4.79 | 12.1 | - |
LP 4 | 29.70 | 1.6 | 28.08 | 38.85 | 7.22 |
LP 5 | 32.14 | 1.81 | 26.21 | 31.13 | 6.91 |
LP 6 | 24.97 | 1.61 | 22.44 | 40.02 | 6.03 |
LP 7 | 19.31 | 1.46 | 23.31 | 36.93 | 5.14 |
LP 8 | 22.33 | 1.13 | 19.97 | 32.96 | 7.68 |
LP 9 | 30.38 | 1.55 | 28.84 | 42.95 | 7.62 |
LP 10 | 21.31 | 1.7 | 25.21 | 40.7 | 4.87 |
LP 11 | 20.60 | 1.56 | 25.7 | 30.79 | 5.14 |
LP 12 | 19.53 | 1.49 | 25.51 | 36.13 | 5.10 |
LP 13 | 17.62 | 1.63 | 26.06 | 41.79 | 4.20 |
LP 14 | 16.02 | <LOQ | 23.57 | 33.28 | - |
LP 15 | 18.80 | <LOQ | 26.52 | 39.95 | - |
LP 16 | 27.12 | 1.54 | 27.01 | 36.82 | 6.89 |
LP 17 | 34.83 | 1.86 | 28.29 | 43.71 | 7.38 |
LP 18 | 37.68 | 1.61 | 31.04 | 44.77 | 9.12 |
Depth (cm) | Mass Fraction (ng g−1 d.w.) | TOC (%) | |||
---|---|---|---|---|---|
Caffeine | Carbamazepine | Ciprofloxacin | Sulfamethoxazole | ||
<5 | 13.17 | 4.14 | 7.51 | 14.56 | 0.68 |
6 | 13.11 | 3.72 | 8.17 | 14.69 | 0.34 |
9 | 10.30 | 2.89 | 5.83 | 8.82 | 0.22 |
15 | 9.18 | 1.21 | 4.59 | 7.17 | 0.15 |
17 | 7.83 | <LOQ | 3.04 | 6.14 | 0.08 |
18 | 5.36 | <LOD | 4.22 | 5.14 | 0.05 |
20 | 6.75 | <LOD | 2.73 | 3.78 | 0.05 |
21 | 7.16 | <LOD | <LOQ | 2.86 | 0.01 |
24 | 6.76 | <LOD | <LOD | 2.11 | 0.01 |
25 | 3.32 | <LOD | <LOD | 2.25 | 0.03 |
Site | Risk Quotient Values | |||
---|---|---|---|---|
Caffeine | Carbamazepine | Ciprofloxacin | Sulfamethoxazole | |
LP 1 | <0.01 | 0.01 | 0.01 | 1.18 |
LP 2 | <0.01 | 0.01 | 0.01 | 2.40 |
LP 3 | <0.01 | 0.01 | 0.01 | 2.29 |
LP 4 | 0.01 | 0.03 | 0.06 | 7.34 |
LP 5 | 0.01 | 0.04 | 0.05 | 5.88 |
LP 6 | 0.01 | 0.03 | 0.04 | 7.57 |
LP 7 | <0.01 | 0.03 | 0.05 | 6.98 |
LP 8 | <0.01 | 0.02 | 0.04 | 6.23 |
LP 9 | 0.01 | 0.03 | 0.06 | 8.12 |
LP 10 | 0.01 | 0.03 | 0.05 | 7.69 |
LP 11 | 0.01 | 0.03 | 0.05 | 5.82 |
LP 12 | <0.01 | 0.03 | 0.05 | 6.83 |
LP 13 | <0.01 | 0.03 | 0.05 | 7.90 |
LP 14 | <0.01 | 0.02 | 0.05 | 6.29 |
LP 15 | 0.01 | 0.02 | 0.05 | 7.55 |
LP 16 | 0.01 | 0.03 | 0.05 | 6.96 |
LP 17 | 0.01 | 0.04 | 0.06 | 8.26 |
LP 18 | 0.01 | 0.03 | 0.06 | 8.46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Becerra-Rueda, O.F.; Rodríguez-Figueroa, G.M.; Marmolejo-Rodríguez, A.J.; Aguíñiga-García, S.; Durán-Álvarez, J.C. Pharmaceutical Residues in Sediments of a Coastal Lagoon in Northwest Mexico—Occurrence and Environmental Risk Assessment. J. Xenobiot. 2024, 14, 1757-1770. https://doi.org/10.3390/jox14040093
Becerra-Rueda OF, Rodríguez-Figueroa GM, Marmolejo-Rodríguez AJ, Aguíñiga-García S, Durán-Álvarez JC. Pharmaceutical Residues in Sediments of a Coastal Lagoon in Northwest Mexico—Occurrence and Environmental Risk Assessment. Journal of Xenobiotics. 2024; 14(4):1757-1770. https://doi.org/10.3390/jox14040093
Chicago/Turabian StyleBecerra-Rueda, Oscar Fernando, Griselda Margarita Rodríguez-Figueroa, Ana Judith Marmolejo-Rodríguez, Sergio Aguíñiga-García, and Juan Carlos Durán-Álvarez. 2024. "Pharmaceutical Residues in Sediments of a Coastal Lagoon in Northwest Mexico—Occurrence and Environmental Risk Assessment" Journal of Xenobiotics 14, no. 4: 1757-1770. https://doi.org/10.3390/jox14040093