Underwater Image Enhancement Based on Local Contrast Correction and Multi-Scale Fusion
<p>Details of the proposed method. Input1 and Input2 represent local contrast correction (LCC) and image sharping, respectively. These two images are used as inputs of the fusion process. Then, the normalized weight maps are obtained, and multi-scale fusion is carried out on this basis.</p> "> Figure 2
<p>Color restoration: (<b>a</b>) Initial image, (<b>b</b>) He [<a href="#B9-jmse-09-00225" class="html-bibr">9</a>], (<b>c</b>) Galdran [<a href="#B32-jmse-09-00225" class="html-bibr">32</a>], (<b>d</b>) Galdran [<a href="#B6-jmse-09-00225" class="html-bibr">6</a>], (<b>e</b>) Ancuti [<a href="#B11-jmse-09-00225" class="html-bibr">11</a>], (<b>f</b>) Ancuti [<a href="#B4-jmse-09-00225" class="html-bibr">4</a>], (<b>g</b>) our result.</p> "> Figure 3
<p>(<b>a</b>) Initial image, (<b>b</b>) <span class="html-italic">γ</span> = 0.7, (<b>c</b>) <span class="html-italic">γ</span> = 1.3, and (<b>d</b>) our method.</p> "> Figure 4
<p>Gray histogram: (<b>a</b>) Initial image, (<b>b</b>) <span class="html-italic">γ</span> = 0.7, (<b>c</b>) <span class="html-italic">γ</span> = 1.3, and (<b>d</b>) our method.</p> "> Figure 5
<p>Output image using (<b>a</b>) weighted addition and (<b>b</b>) multi-scale fusion.</p> "> Figure 6
<p>(<b>a</b>) Initial image, (<b>b</b>) Gibson et al. [<a href="#B33-jmse-09-00225" class="html-bibr">33</a>], (<b>c</b>) Fattal et al. [<a href="#B29-jmse-09-00225" class="html-bibr">29</a>], (<b>d</b>) Lu et al. [<a href="#B5-jmse-09-00225" class="html-bibr">5</a>], (<b>e</b>) Ancuti et al. [<a href="#B4-jmse-09-00225" class="html-bibr">4</a>], and (<b>f</b>) our method.</p> "> Figure 7
<p>Comparison to different outdoor approaches and underwater enhancement approaches. The quantitative evaluation associated with these images is provided in <a href="#jmse-09-00225-t002" class="html-table">Table 2</a>.</p> "> Figure 8
<p>UCIQE metric.</p> "> Figure 9
<p>UIQM metric.</p> "> Figure 10
<p>Robustness of the UCIQE metric.</p> "> Figure 11
<p>Robustness of the UIQM metric.</p> "> Figure 12
<p>The first row contains the original pair of images with two SIFT features matching in the first column and one in the second column. The second row contains the enhanced pair of images using the proposed method with 16 SIFT features matching in the first and second columns.</p> ">
Abstract
:1. Introduction
2. Local Contrast Correction and Fusion Algorithm
2.1. Underwater Image White Balance Based on Red Channel Compensation
2.2. Improved Local Contrast Correction Method
2.3. Image Sharpening
2.4. Multi-Scale Fusion
2.4.1. Selection of Weights
2.4.2. Multi-Scale Fusion
2.5. Underwater Image Quality Evaluation Metric
3. Results and Discussion
3.1. Color Restoration Experiment
3.2. Contrast Correction Experiment
3.3. Comparison of Simple Weighted Fusion and Multi-Scale Fusion
3.4. Image Qulity Evaluation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, M.; Sowmya, A. An underwater color image quality evaluation metric. IEEE Trans. Image Process. 2015, 24, 6062–6071. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Zheng, H.; Zheng, B. Underwater image restoration via maximum attenuation identification. IEEE Access 2017, 5, 18941–18952. [Google Scholar] [CrossRef]
- Wang, Y.; Song, W.; Fortino, G.; Qi, L.-Z.; Zhang, W.; Liotta, A. An experimental-based review of image enhancement and image restoration methods for underwater imaging. IEEE Access 2019, 7, 140233–140251. [Google Scholar] [CrossRef]
- Ancuti, C.O.; Ancuti, C.; De Vleeschouwer, C.; Bekaert, P. Color balance and fusion for underwater image enhancement. IEEE Trans. Image Process. 2017, 27, 379–393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, H.; Li, Y.; Zhang, L.; Serikawa, S. Contrast enhancement for images in turbid water. J. Opt. Soc. Am. A 2015, 32, 886–893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galdran, A.; Pardo, D.; Picón, A.; Alvarez-Gila, A. Automatic red-channel underwater image restoration. J. Vis. Commun. Image Represent. 2015, 26, 132–145. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.; Qu, Y.; Hong, M. Underwater-GAN: Underwater Image Restoration via Conditional Generative Adversarial Network. In ICPR 2018: Pattern Recognition and Information Forensics; Springer: Cham, Switzerland, 2018; pp. 66–75. [Google Scholar]
- Hou, G.; Pan, Z.; Wang, G.; Yang, H.; Duan, J. An efficient nonlocal variational method with application to underwater image restoration. Neurocomputing 2019, 369, 106–121. [Google Scholar] [CrossRef]
- He, K.; Sun, J.; Tang, X. Single image haze removal using dark channel prior. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 33, 2341–2353. [Google Scholar]
- Chiang, J.Y.; Chen, Y.-C. Underwater image enhancement by wavelength compensation and dehazing. IEEE Trans. Image Process. 2011, 21, 1756–1769. [Google Scholar] [CrossRef]
- Ancuti, C.; Ancuti, C.O.; Haber, T.; Bekaert, P. Enhancing underwater images and videos by fusion. In Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012; pp. 81–88. [Google Scholar]
- Li, C.; Guo, J.; Guo, C. Emerging from water: Underwater image color correction based on weakly supervised color transfer. IEEE Signal Process. Lett. 2018, 25, 323–327. [Google Scholar] [CrossRef] [Green Version]
- Buchsbaum, G. A spatial processor model for object colour perception. J. Frankl. Inst. 1980, 310, 1–26. [Google Scholar] [CrossRef]
- Land, E.H. The retinex theory of color vision. Sci. Am. 1977, 237, 108–129. [Google Scholar] [CrossRef]
- Ebner, M. Color Constancy; John Wiley & Sons: Hoboken, NJ, USA, 2007; Volume 7. [Google Scholar]
- Finlayson, G.D.; Trezzi, E. Shades of gray and colour constancy. In Proceedings of the Twelfth Color Imaging Conference: Color Science and Engineering Systems, Technologies, Applications, Scottsdale, AZ, USA, 9–12 November 2004; pp. 37–41. [Google Scholar]
- Van De Weijer, J.; Gevers, T.; Gijsenij, A. Edge-based color constancy. IEEE Trans. Image Process. 2007, 16, 2207–2214. [Google Scholar] [CrossRef] [Green Version]
- Gijsenij, A.; Gevers, T. Color constancy using natural image statistics and scene semantics. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 33, 687–698. [Google Scholar] [CrossRef]
- Sethi, R.; Indu, S. Fusion of underwater image enhancement and restoration. Int. J. Pattern Recognit. Artif. Intell. 2020, 34, 2054007. [Google Scholar] [CrossRef]
- Ju, M.; Ding, C.; Guo, Y.J.; Zhang, D. Idgcp: Image dehazing based on gamma correction prior. IEEE Trans. Image Process. 2019, 29, 3104–3118. [Google Scholar] [CrossRef]
- Schettini, R.; Gasparini, F.; Corchs, S.; Marini, F.; Capra, A.; Castorina, A. Contrast image correction method. J. Electron Imaging 2010, 19, 023005. [Google Scholar] [CrossRef]
- He, K.; Sun, J.; Tang, X. Guided image filtering. In Computer Vision—ECCV 2010; Springer: Berlin/Heidelberg, Germany, 2012; pp. 1–14. [Google Scholar]
- Moroney, N. Local color correction using non-linear masking. In 8th Color and Imaging Conference Final Program and Proceedings, Proceedings of the 8th Color and Imaging Conference, Scottsdale, AZ, USA, 7–10 November 2000; Society for Imaging Science and Technology: Springfield, VA, USA, 2000; pp. 108–111. [Google Scholar]
- Nandhini, R.; Sivasakthi, T. Underwater image detection using laplacian and gaussian technique. In Proceedings of the 2020 7th International Conference on Smart Structures and Systems (ICSSS), Chennai, India, 23–24 July 2020; pp. 1–5. [Google Scholar]
- Cheng, M.-M.; Mitra, N.J.; Huang, X.; Torr, P.H.; Hu, S.-M. Global contrast based salient region detection. IEEE Trans. Pattern Anal. Mach. Intell. 2014, 37, 569–582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhai, Y.; Shah, M. Visual attention detection in video sequences using spatiotemporal cues. In Proceedings of the 14th ACM International Conference on Multimedia, Santa Barbara, CA, USA, 23–27 October 2006; pp. 815–824. [Google Scholar]
- Burt, P.; Adelson, E. The Laplacian pyramid as a compact image code. IEEE Trans. Commun. 1983, 31, 532–540. [Google Scholar] [CrossRef]
- Panetta, K.; Gao, C.; Agaian, S. Human-Visual-System-Inspired Underwater Image Quality Measures. IEEE J. Ocean. Eng. 2016, 41, 541–551. [Google Scholar] [CrossRef]
- Fattal, R. Dehazing using color-lines. ACM Trans. Graph. 2014, 34, 1–14. [Google Scholar] [CrossRef]
- Carlevaris-Bianco, N.; Mohan, A.; Eustice, R.M. Initial results in underwater single image dehazing. In Proceedings of the Oceans 2010 Mts/IEEE Seattle, Seattle, WA, USA, 20–23 September 2010; pp. 1–8. [Google Scholar]
- Anwar, S.; Li, C. Diving deeper into underwater image enhancement: A survey. Signal Process. Image Commun. 2020, 89, 115978. [Google Scholar] [CrossRef]
- Galdran, A. Image dehazing by artificial multiple-exposure image fusion. Signal Process. 2018, 149, 135–147. [Google Scholar] [CrossRef]
- Gibson, K.B.; Vo, D.T.; Nguyen, T.Q. An investigation of dehazing effects on image and video coding. IEEE Trans. Image Process. 2011, 21, 662–673. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Guo, C.; Ren, W.; Cong, R.; Hou, J.; Kwong, S.; Tao, D. An underwater image enhancement benchmark dataset and beyond. IEEE Trans. Image Process. 2019, 29, 4376–4389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
UICM | ||||||
---|---|---|---|---|---|---|
(a) Initial image | (b) He [9] | (c) Galdran [32] | (d) Galdran [6] | (e) Ancuti [11] | (f) Ancuti [4] | (g) Our result |
0.0122 | 0.0121 | 0.0143 | 0.0149 | 0.0163 | 0.0151 | 0.0156 |
He [9] | Galdran [32] | Galdran [6] | Ancuti [11] | Ancuti [4] | Our Result | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
UCIQE | UIQM | UCIQE | UIQM | UCIQE | UIQM | UCIQE | UIQM | UCIQE | UIQM | UCIQE | UIQM | |
Ship | 0.565 | 2.171 | 0.611 | 2.499 | 0.646 | 4.309 | 0.634 | 4.616 | 0.632 | 4.738 | 0.763 | 4.714 |
Fish | 0.602 | 0.453 | 0.592 | 1.690 | 0.527 | 3.301 | 0.669 | 3.802 | 0.667 | 3.916 | 0.977 | 4.119 |
Reef1 | 0.612 | 1.240 | 0.620 | 2.732 | 0.572 | 3.155 | 0.655 | 3.845 | 0.658 | 3.685 | 0.852 | 5.145 |
Reef2 | 0.702 | 1.508 | 0.616 | 2.396 | 0.633 | 3.868 | 0.718 | 3.630 | 0.711 | 3.496 | 0.895 | 4.099 |
Reef3 | 0.606 | 3.169 | 0.597 | 3.946 | 0.533 | 4.811 | 0.705 | 4.798 | 0.697 | 4.948 | 0.875 | 5.095 |
Galdran1 | 0.593 | 2.785 | 0.613 | 3.499 | 0.529 | 5.120 | 0.643 | 4.356 | 0.659 | 4.401 | 0.734 | 4.599 |
Galdran2 | 0.426 | 0.412 | 0.562 | 0.344 | 0.596 | 3.558 | 0.667 | 3.679 | 0.633 | 3.788 | 0.876 | 3.828 |
Ancuti1 | 0.485 | 1.927 | 0.531 | 1.853 | 0.641 | 4.082 | 0.588 | 3.971 | 0.594 | 4.215 | 0.706 | 3.853 |
Ancuti2 | 0.456 | 1.081 | 0.523 | 1.672 | 0.529 | 3.871 | 0.590 | 4.003 | 0.592 | 4.223 | 0.815 | 5.289 |
Ancuti3 | 0.577 | 2.954 | 0.602 | 2.704 | 0.614 | 3.534 | 0.652 | 4.347 | 0.664 | 4.727 | 0.792 | 4.470 |
Average | 0.562 | 1.770 | 0.587 | 2.333 | 0.582 | 3.961 | 0.652 | 4.105 | 0.651 | 4.213 | 0.829 | 4.521 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, F.; Wang, K.; Yang, Z.; Wang, Y.; Zhang, Q. Underwater Image Enhancement Based on Local Contrast Correction and Multi-Scale Fusion. J. Mar. Sci. Eng. 2021, 9, 225. https://doi.org/10.3390/jmse9020225
Gao F, Wang K, Yang Z, Wang Y, Zhang Q. Underwater Image Enhancement Based on Local Contrast Correction and Multi-Scale Fusion. Journal of Marine Science and Engineering. 2021; 9(2):225. https://doi.org/10.3390/jmse9020225
Chicago/Turabian StyleGao, Farong, Kai Wang, Zhangyi Yang, Yejian Wang, and Qizhong Zhang. 2021. "Underwater Image Enhancement Based on Local Contrast Correction and Multi-Scale Fusion" Journal of Marine Science and Engineering 9, no. 2: 225. https://doi.org/10.3390/jmse9020225
APA StyleGao, F., Wang, K., Yang, Z., Wang, Y., & Zhang, Q. (2021). Underwater Image Enhancement Based on Local Contrast Correction and Multi-Scale Fusion. Journal of Marine Science and Engineering, 9(2), 225. https://doi.org/10.3390/jmse9020225