Joint Probability Distribution of Wind–Wave Actions Based on Vine Copula Function
<p>Flowchart of multi-load design concepts.</p> "> Figure 2
<p>The tree structures of C-vine and D-vine.</p> "> Figure 3
<p>Scatter plot of wind–wave parameters and fitting of marginal distributions. (<b>a</b>) Scatter plot of (Hs, Tp, Vs). (<b>b</b>) Marginal distribution fitting of Hs. (<b>c</b>) Marginal distribution fitting of Tp. (<b>d</b>) Marginal distribution fitting of <span class="html-italic">V<sub>s</sub></span>.</p> "> Figure 4
<p>Joint density probability diagram based on trivariate symmetric copula. (<b>a</b>) Gaussian copula. (<b>b</b>) Clayton copula.</p> "> Figure 5
<p>The trivariate joint distribution of (<span class="html-italic">H<sub>s</sub></span>, <span class="html-italic">T<sub>p</sub></span>, <span class="html-italic">V<sub>s</sub></span>) responding to (<b>a</b>) bivariate joint PDF of (<span class="html-italic">H<sub>s</sub></span>, <span class="html-italic">T<sub>p</sub></span>), (<b>b</b>) bivariate PDF of (<span class="html-italic">T<sub>p</sub></span>, <span class="html-italic">V<sub>s</sub></span>), (<b>c</b>) bivariate contour plots of <span class="html-italic">c</span><sub>23|1</sub>, (<b>d</b>) bivariate contour plots of <span class="html-italic">c</span><sub>13|2</sub>, (<b>e</b>) trivariate joint PDF using C-vine model, and (<b>f</b>) trivariate joint PDF using D-vine model.</p> "> Figure 6
<p>Original metocean variables and 10-year extreme environmental surfaces responding to (<b>a</b>) Gaussian, (<b>b</b>) <span class="html-italic">t,</span> (<b>c</b>) Clayton, (<b>d</b>) Frank, (<b>e</b>) C-vine, and (<b>f</b>) D-vine models.</p> "> Figure 6 Cont.
<p>Original metocean variables and 10-year extreme environmental surfaces responding to (<b>a</b>) Gaussian, (<b>b</b>) <span class="html-italic">t,</span> (<b>c</b>) Clayton, (<b>d</b>) Frank, (<b>e</b>) C-vine, and (<b>f</b>) D-vine models.</p> "> Figure 7
<p>Environmental contours of (<span class="html-italic">H<sub>s</sub></span>, <span class="html-italic">T<sub>p</sub></span>) given <span class="html-italic">V<sub>s</sub></span> based on various copula models.</p> "> Figure 7 Cont.
<p>Environmental contours of (<span class="html-italic">H<sub>s</sub></span>, <span class="html-italic">T<sub>p</sub></span>) given <span class="html-italic">V<sub>s</sub></span> based on various copula models.</p> "> Figure 8
<p>Environmental contours of (<span class="html-italic">H<sub>s</sub></span>, <span class="html-italic">V<sub>s</sub></span>) given <span class="html-italic">T<sub>p</sub></span> based on various copula models.</p> "> Figure 9
<p>Contour plots of (<span class="html-italic">Hs</span>, <span class="html-italic">T<sub>p</sub></span>) conditional on <span class="html-italic">V<sub>s</sub></span> using various copulas.</p> "> Figure 10
<p>Distribution fitting of annual extreme wind and wave parameters. (<b>a</b>) Significant wave height. (<b>b</b>) Wind speed.</p> ">
Abstract
:1. Introduction
2. Multivariate Distribution Theory
2.1. Basic Copula Theory
2.2. Marginal Distribution Model
2.3. Trivariate Copula Model
2.4. Vine Copula Model
2.5. Parameter Estimation
3. Environmental Surfaces Using Copulas
4. Environmental Information
4.1. Marginal Probabilistic Distributions
4.2. Joint Distribution of Wind–Wave Parameters
4.3. Environmental Surfaces and Load Assessment
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xie, S.; Li, Y.; Li, Y.; Kan, Y.Z. Preliminary study of the dynamics and environmental response of multiple floating offshore wind turbines on a single large-scale platform. Ocean Eng. 2025, 316, 120008. [Google Scholar] [CrossRef]
- Ju, S.H.; Huang, Y.C. Study on multiple wind turbines in a platform under extreme waves and wind loads. Energy Convers. Manag. X 2025, 25, 100877. [Google Scholar] [CrossRef]
- Safari, M.; Ghasemi, S.H.; Nowak, A.S. Performance-based target reliability analysis of offshore wind turbine mooring lines subjected to the wind and wave. Probabilistic Eng. Mech. 2024, 77, 103673. [Google Scholar] [CrossRef]
- Ahmed, S.; Li, T.; Yi, P.; Chen, R. Environmental impact assessment of green ammoinapowered very large tanker ship for decarbonized future shipping operations. Renew. Sustain. Energy Rev. 2023, 188, 113774. [Google Scholar] [CrossRef]
- Dong, S.; Fan, D.; Tao, S. Joint occurrence period of wind speed and wave height based on both service term and risk probability. J. Ocean Univ. China 2012, 11, 488–494. [Google Scholar] [CrossRef]
- Vanem, E. Analysing multivariate extreme conditions using environmental contours and accounting for serial dependence. Renew. Energy 2023, 202, 470–482. [Google Scholar] [CrossRef]
- Eckert-Gallup, A.C.; Sallaberry, C.J.; Dallman, A.R.; Neary, V.S. Application of principal component analysis (PCA) and improved joint probability distributions to the inverse first-order reliability method (I-FORM) for predicting extreme sea states. Ocean Eng. 2016, 112, 307–319. [Google Scholar] [CrossRef]
- Cheng, Z.; Svangstu, E.; Moan, T.; Gao, Z. Long-term joint distribution of environmental conditions in a Norwegian fjord for design of floating bridges. Ocean Eng. 2019, 191, 106472. [Google Scholar] [CrossRef]
- Zhao, Y.; Dong, S. A multi-load joint distribution model to estimate environmental design parameters for floating structures. Ocean Eng. 2020, 217, 107818. [Google Scholar] [CrossRef]
- Vanem, E.; Zhu, T.; Babanin, A. Statistical modelling of the ocean environment—A review of recent developments in theory and applications. Mar. Struct. 2022, 86, 103297. [Google Scholar] [CrossRef]
- Song, Y.; Chen, J.; Sørensen, J.D.; Li, J. Multi-parameter full probabilistic modeling of long-term joint wind-wave actions using multi-source data and applications to fatigue analysis of floating offshore wind turbines. Ocean Eng. 2022, 247, 110676. [Google Scholar] [CrossRef]
- James, J.P.; Panchang, V. Assessment of joint distributions of wave heights and periods. Ocean Eng. 2024, 313, 119501. [Google Scholar] [CrossRef]
- Bruserud, K.; Haver, S.; Myrhaug, D. Joint description of waves and currents applied in a simplified load case. Mar. Struct. 2018, 58, 416–433. [Google Scholar] [CrossRef]
- Haver, S. Wave climate off northern Norway. Appl. Ocean Res. 1985, 7, 85–92. [Google Scholar] [CrossRef]
- Simão, M.L.; Sagrilo, L.V.S.; Videiro, P.M. A multi-dimensional long-term joint probability model for environmental parameters. Ocean Eng. 2022, 255, 111470. [Google Scholar] [CrossRef]
- Silva-González, F.; Heredia-Zavoni, E.; Montes-Iturrizaga, R. Development of environmental contours using Nataf distribution model. Ocean Eng. 2013, 58, 27–34. [Google Scholar] [CrossRef]
- Salvadori, G.; Tomasicchio, G.R.; D’alessandro, F. Practical guidelines for multivariate analysis and design in coastal and offshore engineering. Coast. Eng. 2014, 88, 1–14. [Google Scholar] [CrossRef]
- Dong, S.; Wang, N.; Lu, H.; Tang, L. Bivariate distributions of group height and length for ocean waves using Copula methods. Coast. Eng. 2015, 96, 49–61. [Google Scholar] [CrossRef]
- Marinella, M.; Lamberti, A.; Archetti, R. Coastal flooding: A copula based approach for estimating the joint probability of water levels and waves. Coast. Eng. 2015, 97, 37–52. [Google Scholar]
- Fu, J.; Khan, F. Monitoring and modeling of environmental load considering dependence and its impact on the failure probability. Ocean Eng. 2020, 199, 107008. [Google Scholar] [CrossRef]
- Aghatise, O.; Khan, F.; Ahmed, S. Reliability assessment of marine structures considering multidimensional dependency of the variables. Ocean Eng. 2021, 230, 109021. [Google Scholar] [CrossRef]
- Yang, Y.; Fang, C.; Li, Y.; Xu, C.; Liu, Z. Multivariate joint distribution of five-dimensional wind and wave parameters in the sea-crossing bridge region using Hierarchical Archimedean Copulas. J. Wind Eng. Ind. Aerodyn. 2024, 247, 105684. [Google Scholar] [CrossRef]
- Dong, S.; Tao, S.; Li, X.; Soares, C.G. Trivariate maximum entropy distribution of significant wave height, wind speed and relative direction. Renew. Energy 2015, 78, 538–549. [Google Scholar] [CrossRef]
- Shen, Y.; Wang, S.; Zhang, B.; Zhu, J. Development of a stochastic hydrological modeling system for improving ensemble streamflow prediction. J. Hydrol. 2022, 608, 127683. [Google Scholar] [CrossRef]
- She, Z.; Huang, L.; Cai, H.; Fan, M.; Yu, L.; Li, B.; Lan, X.; Chen, X.; Liu, Z. Detecting human interventions by spatial dependence of extreme water levels using a high dimensional conditional probability approach over the Pearl River Delta. J. Hydrol. 2023, 622, 129681. [Google Scholar] [CrossRef]
- Montes-Iturrizaga, R.; Heredia-Zavoni, E. Multivariate environmental contours using C-vine copulas. Ocean Eng. 2016, 118, 68–82. [Google Scholar] [CrossRef]
- Lin, Y.; Dong, S. Wave energy assessment based on trivariate distribution of significant wave height, mean period and direction. Appl. Ocean Res. 2019, 87, 47–63. [Google Scholar] [CrossRef]
- Speers, M.; Randell, D.; Tawn, J.; Jonathan, P. Estimating metocean environments associated with extreme structural response to demonstrate the dangers of environmental contour methods. Ocean Eng. 2024, 311, 118574. [Google Scholar] [CrossRef]
- Mackay, E.; Hauteclocque, G. Model-free environmental contours in higher dimensions. Ocean Eng. 2023, 273, 113959. [Google Scholar] [CrossRef]
- Coe, R.G.; Manuel, L.; Haselsteiner, A.F. On limiting the influence of serial correlation in metocean data for prediction of extreme return levels and environmental contours. Ocean Eng. 2022, 266, 113032. [Google Scholar] [CrossRef]
- Beshbichi, O.E.; Rødstøl, H.; Xing, Y.; Ong, M.C. Prediction of long-term extreme response of two-rotor floating wind turbine concept using the modified environmental contour method. Renew. Energy 2022, 189, 1133–1144. [Google Scholar] [CrossRef]
- DNVGL-RP-C205; Environmental Conditions and Environmental Loads. Det Norske Veritas (DNV): Oslo, Norway, 2017.
- Haver, S. On the joint distribution of heights and periods of sea waves. Ocean Eng. 1987, 14, 359–376. [Google Scholar] [CrossRef]
- Winterstein, S.R.; Jha, A.K.; Kumar, S. Reliability of floating structures: Extreme response and load factor design. J. Waterw. Port Coast. Ocean Eng. 1999, 125, 163–169. [Google Scholar] [CrossRef]
- Montes-Iturrizaga, R.; Heredia-Zavoni, E. Environmental contours using copulas. Appl. Ocean Res. 2015, 52, 125–139. [Google Scholar] [CrossRef]
- Chai, W.; Leira, B.J. Environmental contours based on inverse SORM. Mar. Struct. 2018, 60, 34–51. [Google Scholar] [CrossRef]
- Haselsteiner, A.F.; Ohlendorf, J.-H.; Wosniok, W.; Thoben, K.-D. Deriving environmental contours from highest density regions. Coast. Eng. 2017, 123, 42–51. [Google Scholar] [CrossRef]
- Huseby, A.B.; Vanem, E.; Natvig, B. A new approach to environmental contours for ocean engineering applications based on direct Monte Carlo simulations. Ocean Eng. 2013, 60, 124–135. [Google Scholar] [CrossRef]
- Vanem, E. A comparison study on the estimation of extreme structural response from different environmental contour methods. Mar. Struct. 2017, 56, 137–162. [Google Scholar] [CrossRef]
- Clarindo, G.; Guedes Soares, C. Environmental contours of sea states by the I-FORM approach derived with the Burr-Lognormal statistical model. Ocean Eng. 2024, 291, 116315. [Google Scholar] [CrossRef]
- Vanem, E.; Gramstad, O.; Bitner-Gregersen, E.M. A simulation study on the uncertainty of environmental contours due to sampling variability for different estimation methods. Appl. Ocean Res. 2019, 91, 101870. [Google Scholar] [CrossRef]
- Heredia-Zavoni, E.; Montes-Iturrizaga, R. Modeling directional environmental contours using three dimensional vine copulas. Ocean Eng. 2019, 187, 106102. [Google Scholar] [CrossRef]
- Bai, X.; Jiang, H.; Huang, X.; Song, G.; Ma, X. 3-Dimensional direct sampling-based environmental contours using a semi-parametric joint probability model. Appl. Ocean Res. 2021, 112, 102710. [Google Scholar] [CrossRef]
- Fang, C.; Xu, Y.; Li, Y. Optimized C-vine copula and environmental contour of joint wind-wave environment for sea-crossing bridges. J. Wind Eng. Ind. Aerodyn. 2022, 225, 104989. [Google Scholar] [CrossRef]
- Meng, X.; Li, Z. 3-Dimensional environmental contours of winds and waves accounting for different sampling methods and seasonal effects. Ocean Eng. 2024, 304, 117724. [Google Scholar] [CrossRef]
- Wu, X.; Ma, C.; Zhang, J. Multivariate reliability method using the environment contour model based on C-vine copulas. Ocean Eng. 2024, 299, 117282. [Google Scholar] [CrossRef]
- de Hauteclocque, G.; Mackay, E.; Vanem, E. Quantitative comparison of environmental contour approaches. Ocean Eng. 2022, 245, 110374. [Google Scholar] [CrossRef]
- Mohapatra, S.C.; Amouzadrad, P.; Bisop, I.B.d.S.; Guedes Soares, C. Hydrodynamic Response to Current and Wind on a Large Floating Interconnected Structure. J. Mar. Sci. Eng. 2025, 13, 63. [Google Scholar] [CrossRef]
- Sklar, A. Fonctions de Répartition à N Dimensions Et Leurs Marges; L’Institut de Statistique de l’Université: Paris, France, 1959. [Google Scholar]
- Djaloud, T.S.; Seck, C.T. Nonparametric kernel estimation of conditional copula density. Stat. Probab. Lett. 2024, 212, 110154. [Google Scholar] [CrossRef]
- Wang, W.; Yang, H.; Huang, S.; Wang, Z.; Liang, Q.; Chen, S. Trivariate copula functions for constructing a comprehensive atmosphere-land surface-hydrology drought index: A case study in the Yellow River basin. J. Hydrol. 2024, 642, 131784. [Google Scholar] [CrossRef]
- Li, J.; Pan, S.; Chen, Y.; Gan, M. The performance of the copulas in estimating the joint probability of extreme waves and surges along east coasts of the mainland China. Ocean Eng. 2021, 237, 109581. [Google Scholar] [CrossRef]
- Yuan, X.; Huang, Q.; Song, D.; Xia, E.; Xiao, Z.; Yang, J.; Dong, M.; Wei, R.; Evgeny, S.; Joo, Y.-H. Fatigue Load Modeling of Floating Wind Turbines Based on Vine Copula Theory and Machine Learning. J. Mar. Sci. Eng. 2024, 12, 1275. [Google Scholar] [CrossRef]
Copula | Function | Parameter |
---|---|---|
Gaussian | ||
t | ||
Clayton | ||
Gumbel | ||
Frank | ||
Plackett | ||
Clayton |
Model | Parameter | RMSE | AIC | |
---|---|---|---|---|
Metaelliptical | Gaussian | ρ12 = 0.86; ρ13 = 0.90; ρ23 = 0.62 | 0.0168 | 3.97 × 105 |
t | ρ12 = 0.85; ρ13 = 0.93; ρ23 = 0.64; v = 5.79 | 0.0155 | 3.84 × 105 | |
Archimedean | Clayton | θ = 1.46 | 0.0652 | 4.25 × 105 |
Frank | θ = 0.19 | 0.1490 | 6.05 × 105 | |
Gumbel | θ = 1.12 | 0.1300 | 5.66 × 105 |
Model | Variable | Pair Copula | Parameter | RMSE | AIC |
---|---|---|---|---|---|
C-vine | Hs, Tp | t | ρ = 0.86; v = 52.85 | 0.0121 | 3.63 × 105 |
Hs, Vs | Gumbel | θ = 4.09 | 0.0121 | 5.41 × 105 | |
Tp, Vs; Hs | Plackett | θ = 0.05 | 0.0121 | 4.68 × 105 | |
D-vine | Hs, Tp | t | ρ = 0.86; v = 52.85 | 0.0148 | 3.95 × 105 |
Tp, Vs | Gumbel | θ = 1.77 | 0.0148 | 6.72 × 105 | |
Hs, Vs; Tp | Frank | θ = 19.15 | 0.0148 | 5.98 × 105 |
Model | Hs (m) | Vs (m/s) |
---|---|---|
Annual extreme value method | 7.78 | 29.95 |
Environmental contour method | 7.40 | 29.61 |
7.31 | 29.71 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Feng, Y.; Zhao, Y.; Yu, S. Joint Probability Distribution of Wind–Wave Actions Based on Vine Copula Function. J. Mar. Sci. Eng. 2025, 13, 396. https://doi.org/10.3390/jmse13030396
Wu Y, Feng Y, Zhao Y, Yu S. Joint Probability Distribution of Wind–Wave Actions Based on Vine Copula Function. Journal of Marine Science and Engineering. 2025; 13(3):396. https://doi.org/10.3390/jmse13030396
Chicago/Turabian StyleWu, Yongtuo, Yudong Feng, Yuliang Zhao, and Saiyu Yu. 2025. "Joint Probability Distribution of Wind–Wave Actions Based on Vine Copula Function" Journal of Marine Science and Engineering 13, no. 3: 396. https://doi.org/10.3390/jmse13030396
APA StyleWu, Y., Feng, Y., Zhao, Y., & Yu, S. (2025). Joint Probability Distribution of Wind–Wave Actions Based on Vine Copula Function. Journal of Marine Science and Engineering, 13(3), 396. https://doi.org/10.3390/jmse13030396