Sensitivity Assessment on Satellite Remote Sensing Estimates of Primary Productivity in Shelf Seas
<p>The bathymetry of the YBS. The gray dashed line is the 40-m isobath.</p> "> Figure 2
<p>Climatological monthly variation in the primary productivity of the eight experiments in the YBS from 2003 to 2020.</p> "> Figure 3
<p>(<b>a</b>) Climatological monthly variation in the average primary productivity of the eight experiments. (<b>b</b>) The monthly variation in the coefficients of variation (CV).</p> "> Figure 4
<p>Interannual variations of the primary productivity of the 8 experiments in the YBS from 2003 to 2020.</p> "> Figure 5
<p>The residuals of the EMD analysis on the monthly mean primary productivity for the 8 experiments in the YBS from 2003 to 2020 (subfigures (<b>a</b>–<b>h</b>) correspond to Experiments 1–8, respectively).</p> "> Figure 6
<p>The spatial distribution of the climatological mean primary productivity of the 8 experiments in the YBS.</p> "> Figure 7
<p>The spatial distribution of the standard deviation (<b>a</b>) and the CV (<b>b</b>) of the primary productivity for the 8 experiments in the YBS.</p> "> Figure 8
<p>(<b>a</b>–<b>c</b>) Climatological monthly means of <math display="inline"><semantics> <mrow> <msub> <mi>C</mi> <mrow> <mi>o</mi> <mi>p</mi> <mi>t</mi> </mrow> </msub> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>Z</mi> <mrow> <mi>e</mi> <mi>u</mi> </mrow> </msub> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <msubsup> <mi>P</mi> <mrow> <mi>o</mi> <mi>p</mi> <mi>t</mi> </mrow> <mi>B</mi> </msubsup> </mrow> </semantics></math> of different sources and parameterization schemes, respectively. (<b>d</b>–<b>f</b>) Interannual variations from 2003 to 2020 of <math display="inline"><semantics> <mrow> <msub> <mi>C</mi> <mrow> <mi>o</mi> <mi>p</mi> <mi>t</mi> </mrow> </msub> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>Z</mi> <mrow> <mi>e</mi> <mi>u</mi> </mrow> </msub> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <msubsup> <mi>P</mi> <mrow> <mi>o</mi> <mi>p</mi> <mi>t</mi> </mrow> <mi>B</mi> </msubsup> </mrow> </semantics></math> of different sources or parameterization schemes, respectively.</p> "> Figure 9
<p>The spatial distribution of the climatological mean <math display="inline"><semantics> <mrow> <msub> <mi>C</mi> <mrow> <mi>o</mi> <mi>p</mi> <mi>t</mi> </mrow> </msub> </mrow> </semantics></math> (<b>a</b>,<b>b</b>), <math display="inline"><semantics> <mrow> <msub> <mi>Z</mi> <mrow> <mi>e</mi> <mi>u</mi> </mrow> </msub> </mrow> </semantics></math> (<b>d</b>,<b>e</b>), and <math display="inline"><semantics> <mrow> <msubsup> <mi>P</mi> <mrow> <mi>o</mi> <mi>p</mi> <mi>t</mi> </mrow> <mi>B</mi> </msubsup> </mrow> </semantics></math> (<b>g</b>,<b>h</b>), of the different data sources or parameterization schemes and their differences (<b>c</b>,<b>f</b>,<b>i</b>), respectively.</p> "> Figure 10
<p>Mean bias between the primary productivity of the VGPM (8 Exps.) and three alternative models (CAFE, CbPM, and Eppley-VGPM) and the observed values from Choi et al. in 1992 [<a href="#B31-jmse-12-02146" class="html-bibr">31</a>].</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. VGPM
2.3. Data Sources
2.4. Experimental Design
2.5. Data Analysis
3. Results
3.1. Seasonal Variations
3.2. Interannual Variations
3.3. Spatial Distribution
4. Discussion
4.1. Influences of , , and on the VGPM Results
4.2. Comparison with Previous Studies
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Field, C.B.; Behrenfeld, M.J.; Randerson, J.T.; Falkowski, P. Primary production of the biosphere: Integrating terrestrial and oceanic components. Science 1998, 281, 237–240. [Google Scholar] [CrossRef] [PubMed]
- Behrenfeld, M.J.; Randerson, J.T.; McClain, C.R.; Feldman, G.C.; Los, S.O.; Tucker, C.J.; Pollack, N.H. Biospheric primary production during an ENSO transition. Science 2001, 291, 2594–2597. [Google Scholar] [CrossRef] [PubMed]
- Thomas, H.; Bozec, Y.; Elkalay, K.; De Baar, H.J. Enhanced open ocean storage of CO2 from shelf sea pumping. Science 2004, 304, 1005–1008. [Google Scholar] [CrossRef] [PubMed]
- Laruelle, G.G.; Cai, W.J.; Hu, X.; Gruber, N.; Mackenzie, F.T.; Regnier, P. Continental shelves as a variable but increasing global sink for atmospheric carbon dioxide. Nat. Commun. 2018, 9, 454. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, E.S. The use of radio-active carbon (C14) for measuring organic production in the sea. ICES J. Mar. Sci. 1952, 18, 117–140. [Google Scholar] [CrossRef]
- Wang, J. Primary Productivity of Phytoplankton and Black-and-white Bottle Oxygen Measurement. Freshw. Fish. 1980, 3, 26–30, (In Chinese with English abstract). [Google Scholar]
- Fei, Z.L.; Zhu, M.Y. Determination of Marine Primary Productivity. Bohai Seas 1984, 1, 86–90, (In Chinese with English abstract). [Google Scholar]
- Smith, R.C.; Eppley, R.W.; Baker, K.S. Correlation of primary production as measured aboard ship in southern California coastal waters and as estimated from satellite chlorophyll images. Mar. Biol. 1982, 66, 281–288. [Google Scholar] [CrossRef]
- Eppley, R.W.; Stewart, E.; Abbott, M.R.; Heyman, U. Estimating ocean primary production from satellite chlorophyll. Introduction to regional differences and statistics for the Southern California Bight. J. Plankton Res. 1985, 7, 57–70. [Google Scholar] [CrossRef]
- Platt, T. Primary production of the ocean water column as a function of surface light intensity: Algorithms for remote sensing. Deep Sea Res. Part A Oceanogr. Res. Pap. 1986, 33, 149–163. [Google Scholar]
- Morel, A. Light and marine photosynthesis: A spectral model with geochemical and climatological implications. Prog. Oceanogr. 1991, 26, 263–306. [Google Scholar] [CrossRef]
- Sathyendranath, S.; Longhurst, A.; Caverhill, C.M.; Platt, T. Regionally and seasonally differentiated primary production in the North Atlantic. Deep Sea Res. Part I Oceanogr. Res. Pap. 1995, 42, 1773–1802. [Google Scholar] [CrossRef]
- Antoine, D.; André, J.M.; Morel, A. Oceanic primary production: 2. Estimation at global scale from satellite (coastal zone color scanner) chlorophyll. Glob. Biogeochem. Cycles 1996, 10, 57–69. [Google Scholar] [CrossRef]
- Behrenfeld, M.J.; Falkowski, P.G. Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnol. Oceanogr. 1997, 42, 1–20. [Google Scholar] [CrossRef]
- Lomas, M.W.; Moran, S.B.; Casey, J.R.; Bell, D.W.; Tiahlo, M.; Whitefield, J.; Cokelet, E.D. Spatial and seasonal variability of primary production on the Eastern Bering Sea shelf. Deep Sea Res. Part II Top. Stud. Oceanogr. 2012, 65, 126–140. [Google Scholar] [CrossRef]
- Vase, V.K.; Ajay, N.; Kumar, R.; Ramanathan, S.; Jayaraman, J.; Rohit, P. Temporal dynamics of primary productivity in the north-eastern Arabian Sea: An evaluation of ocean color models. Arab. J. Geosci. 2021, 14, 1338. [Google Scholar] [CrossRef]
- Tan, S.; Shi, G. Satellite-derived primary productivity and its spatial and temporal variability in the China seas. J. Geogr. Sci. 2006, 16, 447–457. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, D.; Tang, D.L. Application of a generalized additive model (GAM) for estimating chlorophyll-a concentration from MODIS data in the Bohai and Yellow Seas, China. Int. J. Remote Sens. 2017, 38, 639–661. [Google Scholar] [CrossRef]
- Shang, S.; Lee, Z.; Wei, G. Characterization of MODIS-derived euphotic zone depth: Results for the China Sea. Remote Sens. Environ. 2011, 115, 180–186. [Google Scholar] [CrossRef]
- Carr, M.E.; Friedrichs, M.A.; Schmeltz, M.; Aita, M.N.; Antoine, D.; Arrigo, K.R.; Yamanaka, Y. A comparison of global estimates of marine primary production from ocean color. Deep Sea Res. Part II Top. Stud. Oceanogr. 2006, 53, 741–770. [Google Scholar] [CrossRef]
- Yoon, J.E.; Park, J.; Yoo, S. Comparison of primary productivity algorithms for Korean waters. Ocean Sci. J. 2012, 47, 473–487. [Google Scholar] [CrossRef]
- Jiao, N.; Liang, Y.; Zhang, Y.; Liu, J.; Zhang, Y.; Zhang, R.; Zhang, S. Carbon pools and fluxes in the China Seas and adjacent oceans. Sci. China Earth Sci. 2018, 61, 1535–1563. [Google Scholar] [CrossRef]
- Yang, X.G. Remote Sensing Estimation of Chlorophyll and Primary Productivity in the Yellow Sea. Doctoral Dissertation, Graduate School of Chinese Academy of Sciences (Institute of Oceanography), Qingdao, China, 2013. (In Chinese with English abstract). [Google Scholar]
- Cong, P.F. Remote Sensing Inversion of Marine Chlorophyll and Estimation of Marine Primary Productivity. Doctoral Dissertation, Institute of Remote Sensing Application, Chinese Academy of Sciences, Beijing, China, 2006. (In Chinese with English abstract). [Google Scholar]
- Jia, Y.H.; Sun, Y.; Niu, B.Y. Estimation of marine primary productivity in the Yellow Sea based on RS and GIS. J. Huaihai Inst. Technol. 2010, 19, 87–91, (In Chinese with English abstract). [Google Scholar]
- Ding, Q.X.; Chen, W.Z. Temporal and spatial variation of net primary productivity in China offshore based on VGPM. Ocean Dev. Manag. 2016, 8, 31–35, (In Chinese with English abstract). [Google Scholar]
- Li, X.X.; Yuan, J.G.; Liu, X.J.; Li, Z.Y. Temporal and Spatial variation of net primary productivity in Bohai Sea based on MODIS data. J. Ecol. Environ. 2017, 26, 785–793, (In Chinese with English abstract). [Google Scholar]
- Lee, Z.; Weidemann, A.; Kindle, J.; Arnone, R.; Carder, K.L.; Davis, C. Euphotic zone depth: Its derivation and implication to ocean-color remote sensing. J. Geophys. Res. Ocean. 2007, 112, C03009. [Google Scholar] [CrossRef]
- Li, G.S.; Liang, Q.; Li, B.L. Seasonal changes of the euphotic depth in the East China Sea and its dynamic mechanism. Prog. Nat. Sci. 2003, 13, 90–94, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Liu, H.H. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London. Ser. A Math. Phys. Eng. Sci. 1998, 454, 903–995. [Google Scholar] [CrossRef]
- Choi, J.K.; Noh, J.H.; Shin, K.S.; Hong, K.H. The early autumn distribution of chlorophyll-a and primary productivity in the Yellow Sea, 1992. Yellow Sea 1995, 1, 68–80. [Google Scholar]
- Silsbe, G.M.; Behrenfeld, M.J.; Halsey, K.H.; Milligan, A.J.; Westberry, T.K. The CAFE model: A net production model for global ocean phytoplankton. Glob. Biogeochem. Cycles 2016, 30, 1756–1777. [Google Scholar] [CrossRef]
- Behrenfeld, M.J.; Boss, E.; Siegel, D.A.; Shea, D.M. Carbon-based ocean productivity and phytoplankton physiology from space. Glob. Biogeochem. Cycles 2005, 19, GB1006. [Google Scholar] [CrossRef]
- Morel, A.; Berthon, J.F. Surface pigments, algal biomass profiles, and potential production of the euphotic layer: Relationships reinvestigated in view of remote-sensing applications. Limnol. Oceanogr. 1989, 34, 1545–1562. [Google Scholar] [CrossRef]
- Wang, Y.; Tian, X.; Gao, Z. Evolution of satellite derived chlorophyll-a trends in the Bohai and Yellow Seas during 2002–2018: Comparison between linear and nonlinear trends. Estuar. Coast. Shelf Sci. 2021, 259, 107449. [Google Scholar] [CrossRef]
- Liu, H.; Lin, L.; Wang, Y.; Du, L.; Wang, S.; Zhou, P.; Yu, Y.; Gong, X.; Lu, X. Reconstruction of Monthly Surface Nutrient Concentrations in the Yellow and Bohai Seas from 2003–2019 Using Machine Learning. Remote Sens. 2022, 14, 5021. [Google Scholar] [CrossRef]
- Hadjal, M.; Medina-Lopez, E.; Ren, J.; Gallego, A.; McKee, D. An Artificial Neural Network Algorithm to Retrieve Chlorophyll a for Northwest European Shelf Seas from Top of Atmosphere Ocean Colour Reflectance. Remote Sens. 2022, 14, 3353. [Google Scholar] [CrossRef]
Exp. | Maximum Photosynthetic Rate | Euphotic Depth | Chlorophyll Concentration |
---|---|---|---|
1 | |||
2 | |||
3 | |||
4 | |||
5 | |||
6 | |||
7 | |||
8 |
Experiments | Annual Mean (mgC/(m2∙d)) | Monthly Max (mgC/(m2∙d)) | Monthly Min (mgC/(m2∙d)) |
---|---|---|---|
1 | 505.7 | 840.2 | 222.1 |
2 | 652.9 | 993.4 | 420.2 |
3 | 740.4 | 1297.7 | 471.9 |
4 | 1272.4 | 1748.4 | 528.4 |
5 | 903.2 | 1854.7 | 187.1 |
6 | 1103.0 | 1968.3 | 369.6 |
7 | 1167.3 | 2042.4 | 433.3 |
8 | 1778.3 | 2389.0 | 1079.3 |
Mean | 1015.4 ± 308.5 | 1641.8 ± 507.9 | 464.0 ± 257.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, X.; Sun, J.; Fu, Q.; Yan, X.; Lin, L. Sensitivity Assessment on Satellite Remote Sensing Estimates of Primary Productivity in Shelf Seas. J. Mar. Sci. Eng. 2024, 12, 2146. https://doi.org/10.3390/jmse12122146
Zhao X, Sun J, Fu Q, Yan X, Lin L. Sensitivity Assessment on Satellite Remote Sensing Estimates of Primary Productivity in Shelf Seas. Journal of Marine Science and Engineering. 2024; 12(12):2146. https://doi.org/10.3390/jmse12122146
Chicago/Turabian StyleZhao, Xiaolong, Jianan Sun, Qingjun Fu, Xiao Yan, and Lei Lin. 2024. "Sensitivity Assessment on Satellite Remote Sensing Estimates of Primary Productivity in Shelf Seas" Journal of Marine Science and Engineering 12, no. 12: 2146. https://doi.org/10.3390/jmse12122146
APA StyleZhao, X., Sun, J., Fu, Q., Yan, X., & Lin, L. (2024). Sensitivity Assessment on Satellite Remote Sensing Estimates of Primary Productivity in Shelf Seas. Journal of Marine Science and Engineering, 12(12), 2146. https://doi.org/10.3390/jmse12122146