Thermal and Mechanical Properties of Nano-TiC-Reinforced 18Ni300 Maraging Steel Fabricated by Selective Laser Melting
<p>SEM images of (<b>a</b>) as-received 18Ni300 maraging steel powder, (<b>b</b>) TiC-18Ni300 nanocomposite feedstock (after high-energy ball milling), (<b>c</b>) TEM image of the TiC nanoparticles, where inset shows the statistical average size of the nanoparticles, and (<b>d</b>) TEM-EDS profile of the TiC nanoparticles in the TiC-18Ni300 composite powder from (<b>b</b>). Inset (1) shows the HRTEM image of the TiC nanoparticles of the TiC-18Ni300 composite powder, while inset (2) illustrates the lattice fringes.</p> "> Figure 2
<p>Cross-sections (XY and ZZ) of specimens from experiments 5, 10 and 13 (see <a href="#jmmp-08-00268-t004" class="html-table">Table 4</a> for details of the experimental groups).</p> "> Figure 3
<p>XRD patterns of 18Ni300 powder, nano-TiC powder, and produced specimens from experiments 3 and 10, before (as-built) and after heat treatment.</p> "> Figure 4
<p>SEM images of specimens from experiment 10: (<b>a</b>) as-built and (<b>b</b>) after aging.</p> "> Figure 5
<p>SEM image (<b>a</b>) and EDS mapping (<b>b</b>–<b>f</b>) of the specimen from experiment 10, after aging.</p> "> Figure 6
<p>SEM and EDS of specimen from experiment 10 after aging, for TiC particle and steel matrix.</p> "> Figure 7
<p>Average hardness for the nanocomposite produced under different experiments, for as-built and heat-treated conditions.</p> ">
Abstract
:1. Introduction
2. Experimental Procedure
2.1. Feedstock Preparation
2.2. SLM Fabrication and Specimen Preparation
2.3. Material Characterisation
3. Results and Discussion
3.1. Feedstock Analysis
3.2. Densification Analysis
3.3. Phase and Microstructural Analysis
3.4. Mechanical Properties
3.5. Thermal Properties
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Feldhausen, T.; Paramanathan, M.; Heineman, J.; Hassen, A.; Heinrich, L.; Kurfess, R.; Fillingim, K.; Saleeby, K.; Post, B. Hybrid Manufacturing of Conformal Cooling Channels for Tooling. J. Manuf. Mater. Process. 2023, 7, 74. [Google Scholar] [CrossRef]
- Papadakis, L.; Avraam, S.; Photiou, D.; Masurtschak, S.; Falcón, J.C. Use of a holistic design and manufacturing approach to implement optimized additively manufactured mould inserts for the production of injection-moulded thermoplastics. J. Manuf. Mater. Process. 2020, 4, 100. [Google Scholar] [CrossRef]
- Holoch, J.; Lenhardt, S.; Revfi, S.; Albers, A. Design of Selective Laser Melting (SLM) Structures: Consideration of Different Material Properties in Multiple Surface Layers Resulting from the Manufacturing in a Topology Optimization. Algorithms 2022, 15, 99. [Google Scholar] [CrossRef]
- Rinaldi, M.; Caterino, M.; Manco, P.; Fera, M.; Macchiaroli, R. The impact of Additive Manufacturing on Supply Chain design: A simulation study. Procedia Comput. Sci. 2021, 180, 446–455. [Google Scholar] [CrossRef]
- Tavares, T.M.; Ganga, G.M.D.; Filho, M.G.; Rodrigues, V. The benefits and barriers of additive manufacturing for circular economy: A framework proposal. Sustain. Prod. Consum. 2023, 37, 369–388. [Google Scholar] [CrossRef]
- Hosseini, A.; Hussein, H.M.; Kishawy, H.A. On the machinability of die/mold D2 steel material. Int. J. Adv. Manuf. Technol. 2016, 85, 735–740. [Google Scholar] [CrossRef]
- Cunha, Â.; Marques, A.; Silva, M.R.; Bartolomeu, F.; Silva, F.S.; Gasik, M.; Trindade, B.; Carvalho, Ó. Laser powder bed fusion of the steels used in the plastic injection mould industry: A review of the influence of processing parameters on the final properties. Int. J. Adv. Manuf. Technol. 2022, 121, 4255–4287. [Google Scholar] [CrossRef]
- Fnides, B.; Yallese, M.A.; Mabrouki, T.; Rigal, J.F. Application of response surface methodology for determining cutting force model in turning hardened AISI H11 hot work tool steel. Sadhana–Acad. Proc. Eng. Sci. 2011, 36, 109–123. [Google Scholar] [CrossRef]
- Lim, S.H.; Ryou, K.H.; Jang, K.; Choi, W.S.; Lee, H.M.; Choi, P.P. Hot cracking behavior of additively manufactured D2 steel. Mater. Charact. 2021, 178, 111217. [Google Scholar] [CrossRef]
- Savrai, R.A.; Toporova, D.V.; Bykova, T.M. Improving the quality of AISI H13 tool steel produced by selective laser melting. Opt. Laser Technol. 2022, 152, 108128. [Google Scholar] [CrossRef]
- Ferreira, D.F.S.; Miranda, G.; Oliveira, F.J.; Oliveira, J.M. Predictive models for an optimized fabrication of 18Ni300 maraging steel for moulding and tooling by Selective Laser Melting. J. Manuf. Process. 2021, 70, 46–54. [Google Scholar] [CrossRef]
- Ferreira, D.F.S.; Vieira, J.S.; Rodrigues, S.; Miranda, G.; Oliveira, F.J.; Oliveira, J.M. Dry sliding wear and mechanical behaviour of selective laser melting processed 18Ni300 and H13 steels for moulds. Wear 2022, 488–489, 204179. [Google Scholar] [CrossRef]
- Guo, L.; Zhang, L.; Andersson, J.; Ojo, O. Additive manufacturing of 18% nickel maraging steels: Defect, structure and mechanical properties: A review. J. Mater. Sci. Technol. 2022, 120, 227–252. [Google Scholar] [CrossRef]
- Sha, W.; Zhanli, G. Maraging Steels: Modelling of Microstructure, Properties and Applica-Tions. Available online: https://www.researchgate.net/publication/286106097_Maraging_steels_Modelling_of_microstructure_properties_and_applications (accessed on 11 May 2023).
- Xu, X.; Ganguly, S.; Ding, J.; Guo, S.; Williams, S.; Martina, F. Microstructural evolution and mechanical properties of maraging steel produced by wire + arc additive manufacture process. Mater. Charact. 2018, 143, 152–162. [Google Scholar] [CrossRef]
- Bai, Y.; Yang, Y.; Wang, D.; Zhang, M. Influence mechanism of parameters process and mechanical properties evolution mechanism of maraging steel 300 by selective laser melting. Mater. Sci. Eng. A 2017, 703, 116–123. [Google Scholar] [CrossRef]
- Bai, Y.; Yang, Y.; Xiao, Z.; Wang, D. Selective laser melting of maraging steel: Mechanical properties development and its application in mold. Rapid Prototyp. J. 2018, 24, 623–629. [Google Scholar] [CrossRef]
- Mooney, B.; Kourousis, K.I. A Review of Factors Affecting the Mechanical Properties of Maraging Steel 300 Fabricated via Laser Powder Bed Fusion. Metals 2020, 10, 1273. [Google Scholar] [CrossRef]
- Casati, R.; Lemke, J.N.; Tuissi, A.; Vedani, M. Aging Behaviour and Mechanical Performance of 18-Ni 300 Steel Processed by Selective Laser Melting. Metals 2016, 6, 218. [Google Scholar] [CrossRef]
- Ansell, T.Y.; Ricks, J.; Park, C.; Tipper, C.S.; Luhrs, C.C. Mechanical Properties of 3D-Printed Maraging Steel Induced by Environmental Exposure. Metals 2020, 10, 218. [Google Scholar] [CrossRef]
- Laleh, M.; Sadeghi, E.; Revilla, R.I.; Chao, Q.; Haghdadi, N.; Hughes, A.E.; Xu, W.; De Graeve, I.; Qian, M.; Gibson, I.; et al. Heat Treatment for Metal Additive Manufacturing; Elsevier Ltd.: Amsterdam, The Netherlands, 2023; Volume 133, p. 101051. [Google Scholar] [CrossRef]
- Bodziak, S.; Al-Rubaie, K.S.; Valentina, L.D.; Lafratta, F.H.; Santos, E.C.; Zanatta, A.M.; Chen, Y. Precipitation in 300 grade maraging steel built by selective laser melting: Aging at 510 °C for 2 h. Mater. Charact. 2019, 151, 73–83. [Google Scholar] [CrossRef]
- Król, M.; Snopiński, P.; Hajnyš, J.; Pagáč, M.; Łukowiec, D. Selective Laser Melting of 18NI-300 Maraging Steel. Materials 2020, 13, 4268. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, X.; Qi, W.; Tian, J.; Gong, S. Laser nanocomposites-reinforcing/manufacturing of SLM 18Ni300 alloy under aging treatment. Mater. Charact. 2019, 153, 69–78. [Google Scholar] [CrossRef]
- Sha, W.; Malinov, S. Titanium Alloys: Modelling of Microstructure, Properties and Applications; Woodhead Publishing Limited: Cambridge, UK, 2009; Available online: https://books.google.com/books?hl=pt-PT&lr=&id=zfCiAgAAQBAJ&oi=fnd&pg=PP1&ots=cY0LYur_F3&sig=o2UzvK1zJrljcRcTs06EQvzRkqE (accessed on 28 March 2024).
- Sha, W.; Cerezo, A.; Smith, G.D.W. Phase chemistry and precipitation reactions in maraging steels: Part I. Introduction and study of Co-containing C-300 steel. Met. Trans. A 1993, 24, 1221–1232. [Google Scholar] [CrossRef]
- Mutua, J.; Nakata, S.; Onda, T.; Chen, Z.C. Optimization of selective laser melting parameters and influence of post heat treatment on microstructure and mechanical properties of maraging steel. Mater. Des. 2018, 139, 486–497. [Google Scholar] [CrossRef]
- Tekin, T.; Ischia, G.; Naclerio, F.; Ipek, R.; Molinari, A. Effect of a direct aging heat treatment on the microstructure and the tensile properties of a 18Ni-300 maraging steel produced by Laser Powder Bed Fusion. Mater. Sci. Eng. A 2023, 872, 144921. [Google Scholar] [CrossRef]
- Elangeswaran, C.; Gurung, K.; Koch, R.; Cutolo, A.; Van Hooreweder, B. Post-treatment selection for tailored fatigue performance of 18Ni300 maraging steel manufactured by laser powder bed fusion. Fatigue Fract. Eng. Mater. Struct. 2020, 43, 2359–2375. [Google Scholar] [CrossRef]
- Jägle, E.A.; Choi; Van Humbeeck, J.; Raabe, D. Precipitation and austenite reversion behavior of a maraging steel produced by selective laser melting. J. Mater. Res. 2014, 29, 2072–2079. [Google Scholar] [CrossRef]
- Tan, C.; Ma, W.; Deng, C.; Zhang, D.; Zhou, K. Additive manufacturing SiC-reinforced marag-ing steel: Parameter optimisation, microstructure and properties. Adv. Powder Mater. 2023, 2, 100076. [Google Scholar] [CrossRef]
- Kang, N.; Ma, W.; Li, F.; Liao, H.; Liu, M.; Coddet, C. Microstructure and wear properties of selective laser melted WC reinforced 18Ni-300 steel matrix composite. Vacuum 2018, 154, 69–74. [Google Scholar] [CrossRef]
- Ferreira, D.F.S.; Miranda, G.; Oliveira, F.J.; Oliveira, J.M. Nano-TiC-reinforced 18Ni300 steel manufactured by Powder Bed Fusion-Laser Beam with improved wear resistance for mould inserts. J. Mater. Res. 2023, 39, 63–76. [Google Scholar] [CrossRef]
- Gu, D.; Wang, H.; Chang, F.; Dai, D.; Yuan, P.; Hagedorn, Y.-C.; Meiners, W. Selective Laser Melting Additive Manufacturing of TiC/AlSi10Mg Bulk-form Nanocomposites with Tailored Microstructures and Properties. Phys. Procedia 2014, 56, 108–116. [Google Scholar] [CrossRef]
- Mao, H.; Zhang, Y.; Wang, J.; Cui, K.; Liu, H.; Yang, J. Microstructure, Mechanical Properties, and Reinforcement Mechanism of Second-Phase Reinforced TiC-Based Composites: A Review. Coatings 2022, 12, 801. [Google Scholar] [CrossRef]
- Wang, Z.; Lin, T.; He, X.; Shao, H.; Tang, B.; Qu, X. Fabrication and properties of the TiC reinforced high-strength steel matrix composite. Int. J. Refract. Met. Hard Mater. 2016, 58, 14–21. [Google Scholar] [CrossRef]
- Gu, D.; Wang, H.; Zhang, G. Selective laser melting additive manufacturing of Ti-based nanocomposites: The role of nanopowder. Met. Mater. Trans. A Phys. Met. Mater. Sci. 2014, 45, 464–476. [Google Scholar] [CrossRef]
- Jia, Q.; Gu, D. Selective laser melting additive manufacturing of TiC/Inconel 718 bulk-form nanocomposites: Densification, microstructure, and performance. J. Mater. Res. 2014, 29, 1960–1969. [Google Scholar] [CrossRef]
- Cao, S.; Gu, D. Laser metal deposition additive manufacturing of TiC/Inconel 625 nanocomposites: Relation of densification, microstructures and performance. J. Mater. Res. 2015, 30, 3616–3628. [Google Scholar] [CrossRef]
- Hu, J.; Zhu, H.; Zhang, J.; Ouyang, M.; Qiu, C.; Duan, J. Effects of TiC addition on microstructure, microhardness and wear resistance of 18Ni300 maraging steel by direct laser deposition. J. Mater. Process. Technol. 2021, 296, 117213. [Google Scholar] [CrossRef]
- ASTM International. Test Methods for Flow Rate of Metal Powders Using the Hall Flowmeter Funnel. Available online: https://www.astm.org/b0213-20.html (accessed on 21 November 2024).
- ASTM International. Test Method for Tap Density of Metal Powders and Compounds. Available online: https://www.astm.org/b0527-22.html (accessed on 21 November 2024).
- ASTM International. Test Method for Apparent Density of Free-Flowing Metal Powders Using the Hall Flowmeter Funnel. Available online: https://www.astm.org/b0212-21.html (accessed on 21 November 2024).
- ASTM International. Test Methods for Vickers Hardness and Knoop Hardness of Metallic Materials. Available online: https://www.astm.org/e0092-17.html (accessed on 21 November 2024).
- AlMangour, B.; Grzesiak, D.; Yang, J.M. Nanocrystalline TiC-reinforced H13 steel matrix nanocomposites fabricated by selective laser melting. Mater. Des. 2016, 96, 150–161. [Google Scholar] [CrossRef]
- Zhai, W.; Zhou, W.; Nai, S.M.L. In-situ formation of TiC nanoparticles in selective laser melting of 316L with addition of micronsized TiC particles. Mater. Sci. Eng. A 2022, 829, 142179. [Google Scholar] [CrossRef]
- Song, J.; Tang, Q.; Feng, Q.; Ma, S.; Setchi, R.; Liu, Y.; Han, Q.; Fan, X.; Zhang, M. Effect of heat treatment on microstructure and mechanical behaviours of 18Ni-300 maraging steel manufactured by selective laser melting. Opt. Laser Technol. 2019, 120, 105725. [Google Scholar] [CrossRef]
- Bai, Y.; Zhao, C.; Wang, D.; Wang, H. Evolution mechanism of surface morphology and internal hole defect of 18Ni300 maraging steel fabricated by selective laser melting. J. Mater. Process Technol. 2022, 299, 117328. [Google Scholar] [CrossRef]
- Miranda, G.; Faria, S.; Bartolomeu, F.; Pinto, E.; Madeira, S.; Mateus, A.; Carreira, P.; Alves, N.; Silva, F.S.; Carvalho, O. Predictive models for physical and mechanical properties of 316L stainless steel produced by selective laser melting. Mater. Sci. Eng. A 2016, 657, 43–56. [Google Scholar] [CrossRef]
- Rohit, B.; Muktinutalapati, N.R. Austenite reversion in 18% Ni maraging steel and its weldments. Mater. Sci. Technol. 2017, 34, 253–260. [Google Scholar] [CrossRef]
- Bai, Y.; Wang, D.; Yang, Y.; Wang, H. Effect of heat treatment on the microstructure and mechanical properties of maraging steel by selective laser melting. Mater. Sci. Eng. A 2019, 760, 105–117. [Google Scholar] [CrossRef]
- Yin, S.; Chen, C.; Yan, X.; Feng, X.; Jenkins, R.; O’Reilly, P.; Liu, M.; Li, H.; Lupoi, R. The influence of aging temperature and aging time on the mechanical and tribological properties of selective laser melted maraging 18Ni-300 steel. Addit. Manuf. 2018, 22, 592–600. [Google Scholar] [CrossRef]
- Mooney, B.; Kourousis, K.I.; Raghavendra, R. Plastic anisotropy of additively manufactured maraging steel: Influence of the build orientation and heat treatments. Addit. Manuf. 2019, 25, 19–31. [Google Scholar] [CrossRef]
- Renishaw. Data Sheet: Maraging Steel M300 for 400 W Powder for Additive Manufacturing. Available online: https://www.renishaw.com/resourcecentre/en/details/Data-sheet-Maraging-steel-M300-for-400-W-powder-for-additive-manufacturing--96326?lang=en (accessed on 7 May 2024).
- Committee, A.H. Properties and Selection: Irons, Steels, and High-Performance Alloys; ASM International: Detroit, MI, USA, 1990; Volume 1. [Google Scholar] [CrossRef]
- Society of Automotive Engineers. SAE AMS 6514H-2012 (SAE AMS6514H-2012)—Steel, Maraging, Bars, Forgings, Tubing, and Rings 18.5Ni 9.0Co 4.9Mo 0.65Ti 0.10Al Consumable Electrode Vacuum Melted, Annealed. Available online: https://webstore.ansi.org/standards/sae/saeams6514h2012ams6514h (accessed on 29 March 2024).
- Li, Z.; Teng, B.; Yao, B.; Liu, J. Microstructure and mechanical properties of WC reinforced 18Ni300 composites produced by selective laser melting. Mater. Charact. 2021, 180, 111406. [Google Scholar] [CrossRef]
- Wei, Y.; Chen, G.; Li, M.; Li, W.; Zhou, Y.; Xu, J.; Zhou, W. High-precision laser powder bed fusion of 18Ni300 maraging steel and its SiC reinforcement composite materials. J. Manuf. Process 2022, 84, 750–763. [Google Scholar] [CrossRef]
- Wilzer, J.; Windmann, M.; Weber, S.; Hill, H.; Van Bennekom, A.; Theisen, W. Thermal conductivity of advanced TiC reinforced metal matrix composites for polymer processing applications. J. Compos. Mater. 2015, 49, 243–250. [Google Scholar] [CrossRef]
- Lin, F.; Jia, F.; Ren, M.; Wang, J.; Yang, M.; Chen, Z.; Jiang, Z. Microstructure, mechanical and thermal properties of ultrafine-grained Al2024–TiC-GNPs nanocomposite. Mater. Sci. Eng. A 2022, 841, 142855. [Google Scholar] [CrossRef]
- Cho, S.; Lee, J.; Shin, S.; Lee, D.; Kim, M.; Kwon, H.; Choi, M.; Lee, Y.-S.; Jo, I.; Hong, H.-U.; et al. Enhancing high-temperature properties of stainless steel composite with titanium carbide reinforcement: A study on coefficient of thermal expansion, thermal conductivity, and strength. J. Mater. Res. Technol. 2023, 25, 7241–7253. [Google Scholar] [CrossRef]
- Gu, D.; Zhang, H.; Dai, D.; Xia, M.; Hong, C.; Poprawe, R. Laser additive manufacturing of nano-TiC reinforced Ni-based nanocomposites with tailored microstructure and performance. Compos. B Eng. 2019, 163, 585–597. [Google Scholar] [CrossRef]
- Mirzababaei, S.; Doddapaneni, V.V.; Lee, K.; Paul, G.E.; Pirgazi, H.; Tan, K.-S.; Ertorer, O.; Chang, C.-H.; Paul, B.K.; Pasebani, S. Remarkable enhancement in thermal conductivity of stainless-steel leveraging metal composite via laser powder bed fusion: 316L-Cu composite. Addit. Manuf. 2023, 70, 103576. [Google Scholar] [CrossRef]
- Hasselman, D.H.; Johnson, L.F. Effective Thermal Conductivity of Composites with Interfacial Thermal Barrier Resistance. J. Compos. Mater. 1987, 21, 508–515. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, H.; Cai, J.; Ji, S.; Li, D. A Prediction Model of Effective Thermal Conductivity for Metal Powder Bed in Additive Manufacturing. Chin. J. Mech. Eng. (Engl. Ed.) 2023, 36, 41. [Google Scholar] [CrossRef]
- Nan, C.W.; Birringer, R.; Clarke, D.R.; Gleiter, H. Effective thermal conductivity of particulate composites with interfacial thermal resistance. J. Appl. Phys. 1997, 81, 6692–6699. [Google Scholar] [CrossRef]
- Wei, X.; Chen, G.; Wang, B.; Yang, L.; Tang, W. Characteristics and grinding performance evaluation of the high-fraction GNFs/SiCp/6061Al matrix hybrid composites. J. Alloys Compd. 2021, 867, 159049. [Google Scholar] [CrossRef]
- Yuan, M.; Tan, Z.; Fan, G.; Xiong, D.-B.; Guo, Q.; Guo, C.; Li, Z.; Zhang, D. Theoretical modelling for interface design and thermal conductivity prediction in diamond/Cu composites. Diam. Relat. Mater. 2018, 81, 38–44. [Google Scholar] [CrossRef]
- Han, Q.; Gu, Y.; Wang, L.; Feng, Q.; Gu, H.; Johnston, R.; Setchi, R. Effects of TiC content on microstructure and mechanical properties of nickel-based hastelloy X nanocomposites manufactured by selective laser melting. Mater. Sci. Eng. A 2020, 796, 140008. [Google Scholar] [CrossRef]
- Ordonez-Miranda, J.; Yang, R.; Alvarado-Gil, J.J. Thermal Conductivity of Particulate Nanocomposites; Springer: Berlin, Germany, 2014; pp. 93–139. [Google Scholar] [CrossRef]
Level 1 | Level 2 | Level 3 | Level 4 | Level 5 | |
---|---|---|---|---|---|
Laser Power (W) | 150 | 200 | 250 | 300 | 350 |
Scanning Speed (mm/s) | 500 | 750 | 1000 | 1250 | 1500 |
Hatch Distance (µm) | 65 | 80 | 95 | 110 | 125 |
Exp. N° | Laser Power (W) | Scanning Speed (mm/s) | Hatch Distance (µm) | Exposure Time (µs) | VED (J/mm3) |
---|---|---|---|---|---|
1 | 150 | 500 | 65 | 140.00 | 92.31 |
2 | 150 | 750 | 80 | 93.33 | 50.00 |
3 | 150 | 1000 | 95 | 70.00 | 31.58 |
4 | 150 | 1250 | 110 | 56.00 | 21.82 |
5 | 150 | 1500 | 125 | 46.67 | 16.00 |
6 | 200 | 500 | 80 | 140.00 | 100.00 |
7 | 200 | 750 | 95 | 93.33 | 56.14 |
8 | 200 | 1000 | 110 | 70.00 | 36.36 |
9 | 200 | 1250 | 125 | 56.00 | 25.60 |
10 | 200 | 1500 | 65 | 46.67 | 41.03 |
11 | 250 | 500 | 95 | 140.00 | 105.26 |
12 | 250 | 750 | 110 | 93.33 | 60.61 |
13 | 250 | 1000 | 125 | 70.00 | 40.00 |
14 | 250 | 1250 | 65 | 56.00 | 61.54 |
15 | 250 | 1500 | 80 | 46.67 | 41.67 |
16 | 300 | 500 | 110 | 140.00 | 109.09 |
17 | 300 | 750 | 125 | 93.33 | 64.00 |
18 | 300 | 1000 | 65 | 70.00 | 92.31 |
19 | 300 | 1250 | 80 | 56.00 | 60.00 |
20 | 300 | 1500 | 95 | 46.67 | 42.11 |
21 | 350 | 500 | 125 | 140.00 | 112.00 |
22 | 350 | 750 | 65 | 93.33 | 143.59 |
23 | 350 | 1000 | 80 | 70.00 | 87.50 |
24 | 350 | 1250 | 95 | 56.00 | 58.95 |
25 | 350 | 1500 | 110 | 46.67 | 42.42 |
ρbulk (g/cm3) | ρtapped (g/cm3) | C (%) | H |
---|---|---|---|
4.23 | 4.54 | 6.82 | 1.07 |
Exp. N° | Relative Density (%) | VED (J/mm3) |
---|---|---|
1 | 93.45 | 92.31 |
2 | 93.93 | 50.00 |
3 | 96.81 | 31.58 |
4 | 92.84 | 21.82 |
5 | 95.27 | 16.00 |
6 | 99.73 | 100.00 |
7 | 99.60 | 56.14 |
8 | 98.81 | 36.36 |
9 | 99.63 | 25.60 |
10 | 99.59 | 41.03 |
11 | 98.61 | 105.26 |
12 | 99.65 | 60.61 |
13 | 99.38 | 40.00 |
14 | 97.88 | 61.54 |
15 | 99.40 | 41.67 |
16 | 99.42 | 109.09 |
17 | 98.56 | 64.00 |
18 | 98.88 | 92.31 |
19 | 98.59 | 60.00 |
20 | 98.32 | 42.11 |
21 | 98.95 | 112.00 |
22 | 99.03 | 143.59 |
23 | 99.23 | 87.50 |
24 | 99.71 | 58.95 |
25 | 98.50 | 42.42 |
Thermal Conductivity (W/m·K) | |||
---|---|---|---|
As-Built | Heat-Treated | ||
18Ni300 | 18Ni300 + Nano-TiC | 18Ni300 | 18Ni300 + Nano-TiC |
16.30 ± 0.42 | 12.31 ± 1.10 | 20.80 ± 0.37 | 18.94 ± 0.48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leite, F.F.; Coondoo, I.; Vieira, J.S.; Oliveira, J.M.; Miranda, G. Thermal and Mechanical Properties of Nano-TiC-Reinforced 18Ni300 Maraging Steel Fabricated by Selective Laser Melting. J. Manuf. Mater. Process. 2024, 8, 268. https://doi.org/10.3390/jmmp8060268
Leite FF, Coondoo I, Vieira JS, Oliveira JM, Miranda G. Thermal and Mechanical Properties of Nano-TiC-Reinforced 18Ni300 Maraging Steel Fabricated by Selective Laser Melting. Journal of Manufacturing and Materials Processing. 2024; 8(6):268. https://doi.org/10.3390/jmmp8060268
Chicago/Turabian StyleLeite, Francisco F., Indrani Coondoo, João S. Vieira, José M. Oliveira, and Georgina Miranda. 2024. "Thermal and Mechanical Properties of Nano-TiC-Reinforced 18Ni300 Maraging Steel Fabricated by Selective Laser Melting" Journal of Manufacturing and Materials Processing 8, no. 6: 268. https://doi.org/10.3390/jmmp8060268
APA StyleLeite, F. F., Coondoo, I., Vieira, J. S., Oliveira, J. M., & Miranda, G. (2024). Thermal and Mechanical Properties of Nano-TiC-Reinforced 18Ni300 Maraging Steel Fabricated by Selective Laser Melting. Journal of Manufacturing and Materials Processing, 8(6), 268. https://doi.org/10.3390/jmmp8060268