A Comparison of the Microstructure and Mechanical Properties of RSW and RFSSW Joints in AA6061-T4 for Automotive Applications
<p>The RSW process.</p> "> Figure 2
<p>The four stages of RFSSW: (<b>A</b>) clamping, (<b>B</b>) plunging, (<b>C</b>) refilling, and (<b>D</b>) lifting.</p> "> Figure 3
<p>(<b>A</b>) Drawing of the test coupon’s width, height, and weld placement in (<b>B</b>) 2 sheet stack-ups and (<b>C</b>) 3 sheet stack-ups.</p> "> Figure 4
<p>Surface profiles of RFSSW and RSW.</p> "> Figure 5
<p>CT Scan images of 2.0 mm/2.5 mm/1.2 mm stack-up utilizing: (<b>A</b>) RFSSW, (<b>B</b>) RSW.</p> "> Figure 6
<p>(<b>A</b>) Locations of EBSD scans for RFSSW (<b>Top</b>) and RSW (<b>Bottom</b>); (<b>B</b>) Grain maps of RFSSW (<b>Left</b>) and RSW (<b>Right</b>) at 1000× magnification; (<b>C</b>) Grain size distribution of RFSSW (I. nugget center and II. Nugget edge) and RSW (III. Nugget center and IV. Nugget edge).</p> "> Figure 7
<p>Microhardness heat maps of RFFSW and RSW welds (Vickers).</p> "> Figure 8
<p>(<b>A</b>) Fracture modes (nugget pullout and interfacial fracture); (<b>B</b>) Difference in tensile strength between RFSSW and RSW.</p> "> Figure 9
<p>(<b>A</b>) Elongation at UTS for RFSSW and RSW; (<b>B</b>) SEM images at 2500× magnification of the fracture surfaces, RFSSW (ductile dimple) and RSW (brittle fraction).</p> "> Figure 10
<p>Fatigue life curves of RFSSW and RSW.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Weld Surface
3.2. Weld Consolidation
3.3. Microstructure
3.3.1. Statistical Microstructure
3.3.2. Hardness Testing
3.4. Mechanucal Properties
3.4.1. Static Tensile Testing
3.4.2. Fatigue Testing
4. Environmental Considerations
5. Conclusions
- RSW’s average surface feature depth is 270 μm while RFSSW’s average surface feature depth is 183 μm.
- RSW was able to create fully consolidated, void-free welds in 0.8 mm/1.2 mm and 2.5 mm/1.2 mm stack-ups, but created voids in the 2.0 mm/2.5 mm/1.2 mm stack-up, while RFSSW was able to create consolidated welds in all three stack-ups.
- RSW created dendritic grains with an average grain size of 64.83 μm, while RFSSW created refined equiaxed grains with an average grain size of 2.58 μm.
- RFSSW weld nuggets were consistently 5–10 Vickers harder than RSW weld nuggets.
- RFSSW outperformed RSW in quasi-static tensile strength, with RFSSW joints being between 16 and 73% stronger than RSW joints.
- RFSSW outperformed RSW in quasi-static elongation, with RFSSW joints having as much as 53% more elongation at UTS.
- RFSSW outperformed RSW in fatigue strength, with RFSSW joints achieving as much as 2600% more cycles before fracture.
- RFSSW used 2.5% the energy that RSW used to create a single spot weld.
- RFSSW tooling costs approximately USD 0.08 per spot while RSW tooling costs approximately USD 0.0008 per spot.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tisza, M.; Czinege, I. Comparative study of the application of steels and aluminium in lightweight production of automotive parts. Int. J. Lightweight Mater. Manuf. 2018, 1, 229–238. [Google Scholar] [CrossRef]
- Ungureanu, C.; Das, S.; Jawahir, I. Life-cycle cost analysis: Aluminum versus steel in passenger cars. TMS (Miner. Met. Mater. Soc.) 2007, 1, 11–24. [Google Scholar]
- Kimchi, M.; Phillips, D.H. Resistance Spot Welding Fundamentals and Applications for the Automotive Industry; Springer Nature: Berlin, Germany, 2018. [Google Scholar]
- Ambroziak, A.; Korzeniowski, M. Using resistance spot welding for joining aluminium elements in automotive industry. Arch. Civ. Mech. Eng. 2010, 10, 5–13. [Google Scholar] [CrossRef]
- Boomer, D.R.; Hunter, J.A.; Castle, D.R. A new approach for robust high-productivity resistance spot welding of aluminium. J. Mater. Manuf. 2003, 112, 280–292. [Google Scholar]
- Li, D.; Chrysanthou, A.; Patel, I.; Williams, G. Self-piercing riveting-a review. Int. J. Adv. Manuf. Technol. 2017, 92, 1777–1824. [Google Scholar] [CrossRef]
- Briskham, P.; Blundell, N.; Han, L.; Hewitt, R.; Young, K.; Boomer, D. Comparison of self-pierce riveting, resistance spot welding and spot friction joining for aluminium automotive sheet. SAE Int. J. Mater. Manuf. 2006, 2034. [Google Scholar] [CrossRef]
- Khanna, S.; Long, X.; Krishnamoorthy, S.; Agrawal, H. Fatigue properties and failure characterisation of self-piercing riveted 6111 aluminium sheet joints. Sci. Technol. Weld. Join. 2006, 11, 544–549. [Google Scholar] [CrossRef]
- Mazda develops world’s first aluminum joining technology using friction heat. Mazda Media Release. Available online: https://newsroom.mazda.com/en/publicity/release/2003/200302/0227e.html (accessed on 15 July 2024).
- Yamaguchi, J. Toyota Prius: AEI best engineered vehicle 2004. Automot. Eng. Int. 2004, 42, 58–76. [Google Scholar]
- De Castro, C.C.; Shen, J.; Plaine, A.H.; Suhuddin, U.F.H.; De Alcântara, N.G.; Dos Santos, J.F.; Klusemann, B. Tool wear mechanisms and effects on refill friction stir spot welding of AA2198-T8 sheets. J. Mater. Res. Technol. 2022, 20, 857–866. [Google Scholar] [CrossRef]
- Li, Z.; Ji, S.; Ma, Y.; Chai, P.; Yue, Y.; Gao, S. Fracture mechanism of refill friction stir spot-welded 2024-T4 aluminum alloy. Int. J. Adv. Manuf. Technol. 2016, 86, 1925–1932. [Google Scholar] [CrossRef]
- Kulekci, M.K.; Esme, U.; Er, O. Experimental comparison of resistance spot welding and friction-stir spot welding processes for the en aw 5005 aluminum alloy. Mater. Tehnol. 2011, 45, 395–399. [Google Scholar]
- Karthikeyan, R.; Balasubramaian, V. Optimization of electrical resistance spot welding and comparison with friction stir spot welding of AA2024-T3 aluminum alloy joints. Mater. Today Proc. 2017, 4, 1762–1771. [Google Scholar] [CrossRef]
- Bozkurt, Y.; Turker, A.; Soytemeiz, G.; Salman, S. The Investigation and Comparison of Friction Stir Spot Welding and Electrical Resistance Spot Welding of AA2024 Aluminium Alloy Joints. Eur. J. Eng. Nat. Sci. 2019, 3, 52–58. Available online: https://dergipark.org.tr/en/pub/ejens/issue/46392/487418 (accessed on 26 August 2024).
- Al-Zubaidy, B.M.M. Material Interactions in a Novel Refill Friction Stir Spot Welding Approach to Joining Al-Al and Al-Mg Automotive Sheets. Ph.D. Thesis, The University of Manchester, Manchester, UK, 2017. [Google Scholar]
- Larsen, B.; Hovanski, Y. Reducing Cycle Times of Refill Friction Stir Spot Welding in Automotive Aluminum Alloys; SAE: Warrendale, PA, USA, 2020. [Google Scholar]
- Hovanski, Y.; Curtis, A.; Michaelis, S.; Blackhurst, P.; Larsen, B. Advances in Refill Spot Welding Productivity; The Minerals, Metals & Materials Series; Springer International Publishing: Cham, Switzerland, 2021; pp. 189–197. [Google Scholar]
- Dudek, A.; Andres, J.; Wronska, A.; Login, W. Effect of Corrosion Protection Method on Properties of RSW and RFSSW Lap Joints Applied in Production of Thin-Walled Aerostructures. Materials 2020, 13, 1841. [Google Scholar] [CrossRef]
- Schmal, C.; Meschut, G. Refill friction stir spot and resistance spot welding of aluminium joints with large total sheet thicknesses (III-1965-19). Weld. World 2020, 64, 1471–1480. [Google Scholar] [CrossRef]
- Gale, D.; Hovanski, Y.; Coyne, J.; Namola, K. A Manufacturing Performance Comparison of RSW and RFSSW Using a Digital Twin; SAE: Warrendale, PA, USA, 2024. [Google Scholar]
- Aluminum Alloy 6061 General Description. Available online: https://unitedaluminum.com/6061-aluminum-alloy/ (accessed on 25 July 2024).
- ASTM E8/E8m-22; Standard Test Methods for Tension Testing of Metallic Materials. ASTM International: West Conshohocken, PA, USA, 2022. [CrossRef]
- Lauterbach, D.; Keil, D.; Harms, A.; Leupold, C.; Dilger, K. Tool wear behaviour and the influence of wear-resistant coatings during refill friction stir spot welding of aluminium alloys. Weld. World 2021, 65, 243–250. [Google Scholar] [CrossRef]
- Lauterbach, D.; Keil, D.; Harms, A.; Schulze, M.; Dilger, K. Influence of Tool Wear on Weld Quality in Refill Friction Stir Spot Welding of Aluminium. In Proceedings of the 2nd International Conference on Advanced Joining Processes (AJP 2021), Sintra, Portugal, 21–22 October 2021; Springer International Publishing: Cham, Switzerland, 2022; pp. 57–69. [Google Scholar]
- Jian, H.; Wang, Y.; Yang, X.; Xiao, K. Microstructure and fatigue crack growth behavior in welding joint of Al-Mg alloy. Eng. Fail. Anal. 2021, 120, 105034. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, H.; Li, Z.; Mariusz, B.; Senkara, J. Quantitative analysis of the solute redistribution and precipitate of Al–Mg–Si series alloys resistance spot welds after post-weld heat treatment. J. Mater. Res. Technol. 2021, 15, 5906–5919. [Google Scholar] [CrossRef]
- Cao, J.Y.; Wang, M.; Kong, L.; Zhao, H.X.; Chai, P. Microstructure, texture and mechanical properties during refill friction stir spot welding of 6061-T6 alloy. Mater. Charact. 2017, 128, 54–62. [Google Scholar] [CrossRef]
- Liu, Y.; Bi, J.; Yang, D. Microstructure and Mechanical Properties of Refill Friction Stir Spot Welded 6005 Al Alloy Butt Joints. JOM 2022, 74, 2838–2845. [Google Scholar] [CrossRef]
- Belnap, R.; Smith, T.; Blackhurst, P.; Cobb, J.; Misak, H.; Bosker, J.; Hovanski, Y. Evaluating the Influence of Tool Material on the Performance of Refill Friction Stir Spot Welds in AA2029. J. Manuf. Mater. Process. 2024, 8, 88. [Google Scholar] [CrossRef]
- Belnap, R.; Smith, T.; Wright, A.; Hovanski, Y. Considerations for Tungsten Carbide as Tooling in RFSSW. Materials 2024, 17, 3799. [Google Scholar] [CrossRef] [PubMed]
- Miyake, M.; Yoshikawa, S.; Takeoka, N.; Ohashi, R.; Edagawa, T. Development of robot system for Refill Friction Stir Spot Welding. In Proceedings of the International Symposium on Friction Stir Welding, Kyoto, Japan, 23 May 2024. [Google Scholar]
Joint Stack-Ups: | 0.8 mm/1.2 mm | 2.5 mm/1.2 mm | 2.0 mm/2.5 mm/1.2 mm |
Al | Mg | Si | Fe | Cu | Cr | Zn | Mn | Ti |
---|---|---|---|---|---|---|---|---|
Bal. | 0.8–1.2 | 0.4–0.8 | 0.7 | 0.15–0.4 | 0.04–0.35 | 0.25 | 0.15 | 0.15 |
Sheet Thickness | Yield Strength (0.2% Strain) | Tensile Strength | Elongation % |
---|---|---|---|
0.8 mm | 100 MPa | 279 MPa | 23.4% |
1.2 mm | 94 MPa | 271 MPa | 25.8% |
2.0 mm | 102 MPa | 256 MPa | 29.2% |
2.5 mm | 109 MPa | 251 MPa | 29.5% |
Current | Pressure | Time | |
---|---|---|---|
Pre-Weld | 12 kA (2 Sheet Stack-Ups) 20 kA (3 Sheet Stack-Ups) | 5 kN | 162 ms |
Weld | 35 kA | 5 kN | 292 ms |
Total | Na | NA | 454 ms |
Spindle RPM | Shoulder Plunge | Time | |
---|---|---|---|
0.8 mm/1.2 mm | 2200 RPM | 1.2 mm | 250 ms |
2.5 mm/1.2 mm | 2500 RPM | 3.0 mm | 1000 ms |
2.0 mm/2.5 mm/1.2 mm | 2500 RPM | 5.0 mm | 1750 ms |
Distilled Water | Nitric Acid | Hydrochloric Acid | Hydrofluoric Acid |
---|---|---|---|
Balance | 15% | 10% | 5% |
0.8 mm/1.2 mm | 2.5 mm/1.2 mm | 2.0 mm/2.5 mm/1.2 mm | |
---|---|---|---|
RSW Depth | 280 μm | 240 μm | 290 μm |
RFSSW Depth | 140 μm | 160 μm | 250 μm |
0.8 mm/1.2 mm | 2.5 mm/1.2 mm | 2.0 mm/2.5 mm/1.2 mm | |
---|---|---|---|
RSW UTS | 2481 N | 3662 N | 7102 N |
RSW STD | 129 N | 92 N | 405 N |
RFSSW UTS | 2878 N | 5308 N | 12297 N |
RFSSW STD | 169 N | 34 N | 429 N |
0.8 mm/1.2 mm | 2.5 mm/1.2 mm | 2.0 mm/2.5 mm/1.2 mm | |
---|---|---|---|
RSW Elongation | 1.22 mm | 1.38 mm | 1.93 mm |
RSW STD | 0.06 mm | 0.10 mm | 0.17 mm |
RFSSW Elongation | 1.27 mm | 2.94 mm | 3.59 mm |
RFSSW STD | 0.14 mm | 0.14 mm | 0.57 mm |
0.8 mm/1.2 mm | 2.5 mm/1.2 mm | 2.0 mm/2.5 mm/1.2 mm | |
---|---|---|---|
80% UTS | 1985 N–248 N | 2930 N–366 N | 5681 N–710 N |
60% UTS | 1489 N–248 N | 2197 N–366 N | 4261 N–710 N |
30% UTS | 744 N–248 N | 1099 N–366 N | 2130 N–710 N |
0.8 mm/1.2 mm | 80% UTS | 60% UTS | 30% UTS |
---|---|---|---|
RSW Average Cycles | 325 | 4838 | 1,000,000 |
RSW STD | 289 | 3717 | NA |
RFSSW Average Cycles | 3716 | 5920 | 1,000,000 |
RFSSW STD | 166 | 309 | NA |
2.5 mm/1.2 mm | 80% UTS | 60% UTS | 30% UTS |
---|---|---|---|
RSW Average Cycles | 1111 | 8918 | 1,000,000 |
RSW STD | 122 | 2783 | NA |
RFSSW Average Cycles | 6030 | 93,463 | 1,000,000 |
RFSSW STD | 119 | 7319 | NA |
2.0 mm/2.5 mm/1.2 mm | 80% UTS | 60% UTS | 30% UTS |
---|---|---|---|
RSW Average Cycles | 3586 | 140,303 | 1,000,000 |
RSW STD | 3501 | 14,118 | NA |
RFSSW Average Cycles | 99,202 | 324,911 | 1,000,000 |
RFSSW STD | 21,190 | 98,688 | NA |
0.8 mm/1.2 mm | 2.5 mm/1.2 mm | 2.0 mm/2.5 mm/1.2 mm | |
---|---|---|---|
80% UTS | 2302 N–288 N | 4240 N–530 N | 9837 N–1230 N |
60% UTS | 1727 N–288 N | 3180 N–530 N | 7378 N–1230 N |
30% UTS | 863 N–288 N | 1590 N–530 N | 3689 N–1230 N |
RFSSW | 80% UTS | 60% UTS | 30% UTS |
---|---|---|---|
0.8 mm/1.2 mm Average | 578 | 2560 | 463,565 |
0.8 mm/1.2 mm STD | 147 | 738 | NA |
2.5 mm/1.2 mm Average | 620 | 2586 | 829,266 |
2.5 mm/1.2 mm STD | 122 | 352 | NA |
2.0 mm/2.5 mm/1.2 mm Average | 2821 | 30,254 | 1,000,000 |
2.0 mm/2.5 mm/1.2 mm STD | 377 | 7979 | NA |
RSW | RFSSW | |
---|---|---|
Energy per Spot | 40 watt hours | 1 watt hours |
Energy per Vehicle (5000 Spots) | 200 Kilowatt hours | 5 Kilowatt hours |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gale, D.; Smith, T.; Hovanski, Y.; Namola, K.; Coyne, J. A Comparison of the Microstructure and Mechanical Properties of RSW and RFSSW Joints in AA6061-T4 for Automotive Applications. J. Manuf. Mater. Process. 2024, 8, 260. https://doi.org/10.3390/jmmp8060260
Gale D, Smith T, Hovanski Y, Namola K, Coyne J. A Comparison of the Microstructure and Mechanical Properties of RSW and RFSSW Joints in AA6061-T4 for Automotive Applications. Journal of Manufacturing and Materials Processing. 2024; 8(6):260. https://doi.org/10.3390/jmmp8060260
Chicago/Turabian StyleGale, Damon, Taylor Smith, Yuri Hovanski, Kate Namola, and Jeremy Coyne. 2024. "A Comparison of the Microstructure and Mechanical Properties of RSW and RFSSW Joints in AA6061-T4 for Automotive Applications" Journal of Manufacturing and Materials Processing 8, no. 6: 260. https://doi.org/10.3390/jmmp8060260