Identification and Expression Analysis of the Soybean Serine Acetyltransferase (SAT) Gene Family Under Salt Stress
<p>Phylogenetic tree depicting the evolutionary relationships of <span class="html-italic">SAT</span> genes across dicot and monocot species. The phylogenetic tree was constructed by aligning SAT protein sequences from a diverse range of plant species, and the tree topology was inferred using the Neighbor-Joining (NJ) method for clustering. SAT family proteins from different species are represented by distinct symbols: red pentagrams for <span class="html-italic">Glycine max</span> (<span class="html-italic">Gm</span>), green triangles for <span class="html-italic">Arabidopsis thaliana</span> (<span class="html-italic">At</span>), black circles for <span class="html-italic">Lotus japonicus</span> (<span class="html-italic">Lj</span>), orange squares for <span class="html-italic">Medicago truncatula</span> (<span class="html-italic">Mt</span>), yellow circles for <span class="html-italic">Solanum lycopersicum</span> (<span class="html-italic">Sl</span>), blue squares for <span class="html-italic">Oryza sativa</span> (<span class="html-italic">Os</span>), and brown triangles for <span class="html-italic">Zea mays</span> (<span class="html-italic">Zm</span>). Clades I–III are color-coded to indicate the evolutionary groupings of the SAT proteins.</p> "> Figure 2
<p>Chromosomal localization of the soybean <span class="html-italic">SAT</span> gene family. The scale on the left represents the length of soybean chromosomes in megabases (Mb). Gene density is depicted in a color gradient, with red indicating regions of higher gene density and blue indicating regions of lower gene density.</p> "> Figure 3
<p>Intraspecies collinearity analysis of the <span class="html-italic">GmSAT</span> gene family. The 20 soybean chromosomes are depicted as orange rectangles, with the corresponding chromosome numbers indicated at the top of each rectangle. The GC content and gene density across the chromosomes are visualized using different colored lines and heatmaps, respectively. Gray lines represent the connections between all duplicated sequences within the soybean genome, while red lines specifically highlight the segmental duplication pairs of <span class="html-italic">GmSAT</span> genes.</p> "> Figure 4
<p>Structural features of <span class="html-italic">SAT</span> gene family members. (<b>A</b>) Phylogenetic relationships and distribution of conserved motifs within the <span class="html-italic">GmSAT</span> gene family. The conserved motifs in the 10 GmSAT proteins were determined using the MEME tool. Non-conserved regions are represented by black lines, while each conserved motif is indicated by a colored box as shown on the right. The scale at the bottom illustrates the relative lengths of each motif within the protein sequences. (<b>B</b>) Conserved protein domains within the SAT proteins. The full-length protein sequences are represented, with conserved regions highlighted by green boxes. (<b>C</b>) Exon–intron organization of the <span class="html-italic">SAT</span> genes. Untranslated regions (UTRs) are marked with green boxes, coding sequences (CDS) are indicated by yellow boxes, and introns are represented by black lines. The scale at the bottom shows the proportional lengths of exons and introns.</p> "> Figure 5
<p>Analysis of Cis-acting Elements in the Promoters of the Soybean <span class="html-italic">SAT</span> Gene Family. Different categories of cis-acting elements are depicted using color-coded boxes. The promoter sequence lengths are represented by the scale at the bottom, providing a reference for the relative sizes.</p> "> Figure 6
<p>Expression analysis of <span class="html-italic">SAT</span> genes in different tissues. The FPKM values of <span class="html-italic">GmSAT</span> genes were transformed using a log2 scale. The expression levels across different tissues are represented by a color gradient, with low expression depicted in blue and high expression in red, as indicated by the bar chart on the right.</p> "> Figure 7
<p>RT-qPCR analysis of the expression of eight <span class="html-italic">GmSAT</span> genes under salt stress. The baseline measurement at 0 h was designated as the control, with <span class="html-italic">Gmactin11</span> serving as the internal reference gene for normalization. Error bars represent the standard deviation calculated from three independent biological replicates. Statistical significance was determined through one-way analysis of variance (ANOVA), followed by Duncan’s multiple range test (<span class="html-italic">p</span> < 0.05, n = 3). Different letters denote statistically significant differences between groups. The pink color in the figure represents soybean leaves, while blue indicates soybean roots.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Characterization and Physicochemical Analysis of Soybean SAT Gene Family Members
2.2. Phylogenetic Tree Construction of the Soybean SAT Gene Family
2.3. Chromosomal Localization of the Soybean SAT Gene Family
2.4. Intraspecies Collinearity Analysis of GmSAT Genes
2.5. Structure, Conserved Motifs, and Conserved Protein Domains of GmSAT Genes
2.6. Cis-Acting Element Analysis of Promoters
2.7. Expression Patterns of GmSAT Genes in Different Tissues
2.8. Expression of SAT Genes Under Salt Stress
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Identification of GmSAT Gene Family and Prediction of Protein Physicochemical Properties
4.3. Phylogenetic Analysis of the SAT Gene in Soybean
4.4. Chromosomal Localization of Soybean SAT Gene Family Members
4.5. Intraspecies Collinearity Analysis
4.6. Gene Structure and Conserved Motifs
4.7. Promoter Cis-Acting Element Analysis
4.8. Expression Pattern Analysis of GmSAT Gene Family
4.9. Expression Analysis of Soybean SAT Gene Family Members Under Salt Stress
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nazar, R.; Iqbal, N.; Masood, A.; Syeed, S.; Khan, N.A. Understanding the significance of sulfur in improving salinity tolerance in plants. Environ. Exp. Bot. 2011, 70, 80–87. [Google Scholar] [CrossRef]
- Shewry, P.R. Biochemistry & molecular biology of plants. B.B. Buchanan, W. Gruissem and R.L. Jones (eds), 2000. Plant Growth Regul. 2001, 35, 105–106. [Google Scholar]
- Wirtz, M.; Hell, R. Functional analysis of the cysteine synthase protein complex from plants: Structural, biochemical and regulatory properties. J. Plant Physiol. 2006, 163, 273–286. [Google Scholar] [CrossRef]
- Droux, M.; Ruffet, M.L.; Douce, R.; Job, D. Interactions between serine acetyltransferase and O-acetylserine (thiol) lyase in higher plants--structural and kinetic properties of the free and bound enzymes. Eur. J. Biochem. 1998, 255, 235–245. [Google Scholar] [CrossRef] [PubMed]
- Romero, L.C.; Aroca, M.; Laureano-Marín, A.M.; Moreno, I.; García, I.; Gotor, C. Cysteine and cysteine-related signaling pathways in Arabidopsis thaliana. Mol. Plant 2014, 7, 264–276. [Google Scholar] [CrossRef] [PubMed]
- Saito, K. Sulfur assimilatory metabolism. The long and smelling road. Plant Physiol. 2004, 136, 2443–2450. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, N.; Alam, N.; Gourinath, S. Crystal structure of serine acetyl transferase from Brucella abortus and its complex with coenzyme A. Biochim. Biophys. Acta 2014, 1844, 1741–1748. [Google Scholar] [CrossRef] [PubMed]
- Wirtz, M.; Berkowitz, O.; Droux, M.; Hell, R. The cysteine synthase complex from plants. Mitochondrial serine acetyltransferase from Arabidopsis thaliana carries a bifunctional domain for catalysis and protein-protein interaction. Eur. J. Biochem. 2001, 268, 686–693. [Google Scholar] [CrossRef] [PubMed]
- Kawashima, C.G.; Berkowitz, O.; Hell, R.; Noji, M.; Saito, K. Characterization and expression analysis of a serine acetyltransferase gene family involved in a key step of the sulfur assimilation pathway in Arabidopsis. Plant Physiol. 2005, 137, 220–230. [Google Scholar] [CrossRef]
- Noji, M.; Inoue, K.; Kimura, N.; Gouda, A.; Saito, K. Isoform-dependent differences in feedback regulation and subcellular localization of serine acetyltransferase involved in cysteine biosynthesis from Arabidopsis thaliana. J. Biol. Chem. 1998, 273, 32739–32745. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, M.; Mochida, K.; Kato, T.; Tabata, S.; Yoshimoto, N.; Noji, M.; Saito, K. Comparative genomics and reverse genetics analysis reveal indispensable functions of the serine acetyltransferase gene family in Arabidopsis. Plant Cell 2008, 20, 2484–2496. [Google Scholar] [CrossRef]
- Xiang, X.; Wu, Y.; Planta, J.; Messing, J.; Leustek, T. Overexpression of serine acetyltransferase in maize leaves increases seed-specific methionine-rich zeins. Plant Biotechnol. J. 2018, 16, 1057–1067. [Google Scholar] [CrossRef]
- Wirtz, M.; Hell, R. Dominant-negative modification reveals the regulatory function of the multimeric cysteine synthase protein complex in transgenic tobacco. Plant Cell 2007, 19, 625–639. [Google Scholar] [CrossRef] [PubMed]
- Shrivastava, P.; Kumar, R. Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J. Biol. Sci. 2015, 22, 123–131. [Google Scholar] [CrossRef]
- Munns, R.; Tester, M. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 2008, 59, 651–681. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Liu, J.; Geng, H.; Zhang, J.; Liu, Y.; Zhang, H.; Xing, S.; Du, J.; Ma, S.; Tian, Z. De novo assembly of a Chinese soybean genome. Sci. China Life Sci. 2018, 61, 871–884. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.; Guo, W.; Jiang, S.; Yan, D.; Shi, Y.; Wu, B.; Xin, X.; Chen, L.; Cai, Y.; Zhang, H.; et al. Transcriptional profiling reveals a critical role of GmFT2a in soybean staygreen syndrome caused by the pest Riptortus pedestris. New Phytol. 2023, 237, 1876–1890. [Google Scholar] [CrossRef] [PubMed]
- Leung, H.S.; Chan, L.Y.; Law, C.H.; Li, M.W.; Lam, H.M. Twenty years of mining salt tolerance genes in soybean. Mol. Breed. 2023, 43, 45. [Google Scholar] [CrossRef] [PubMed]
- Mao, S.; Zhou, W.L.; Yang, F.; Di, X.L.; Lin, J.X.; Yang, Q.J. Research progress on mechanism of plant roots response to salt-alkali stress. Acta Agric. Zhejiangensis 2021, 33, 1991–2000. [Google Scholar]
- Zhang, W.; Liao, X.; Yu, D.; Kan, G. A review of salt tolerance in soybean (Glycine max(L.) Merill). Soils Crops 2018, 7, 284–292. [Google Scholar]
- Liu, D.; Li, M.; Guo, T.; Lu, J.; Xie, Y.; Hao, Y.; Wang, L.; Zhao, D.; Zhang, L.; Liu, Z.; et al. Functional characterization of the Serine acetyltransferase family genes uncovers the diversification and conservation of cysteine biosynthesis in tomato. Front. Plant Sci. 2022, 13, 913856. [Google Scholar] [CrossRef]
- Wang, L.; Liu, D.; Jiao, X.; Wu, Q.; Wang, W. The serine acetyltransferase (SAT) gene family in tea plant (Camellia sinensis): Identification, classification and expression analysis under salt stress. Int. J. Mol. Sci. 2024, 25, 9794. [Google Scholar] [CrossRef] [PubMed]
- Karl-Josef, D.; Lara, V. A general concept of quantitative abiotic stress sensing. Trends Plant Sci. 2024, 29, 319–328. [Google Scholar]
- Yang, Y.; Guo, Y. Elucidating the molecular mechanisms mediating plant salt-stress responses. New Phytol. 2018, 217, 523–539. [Google Scholar] [CrossRef] [PubMed]
- Foyer, C.H.; Noctor, G. Ascorbate and glutathione: The heart of the redox hub. Plant Physiol. 2011, 155, 2–18. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Nahar, K.; Anee, T.I.; Fujita, M. Glutathione in plants: Biosynthesis and physiological role in environmental stress tolerance. Physiol. Mol. Biol. Plants. 2017, 23, 249–268. [Google Scholar] [CrossRef] [PubMed]
- Kurt, F.; Filiz, E.; Aydın, A. Genome-wide identification of serine acetyltransferase (SAT) gene family in rice (Oryza sativa) and their expressions under salt stress. Mol. Biol. Rep. 2021, 48, 6277–6290. [Google Scholar] [CrossRef] [PubMed]
- Cannon, S.B.; Mitra, A.; Baumgarten, A.; Young, N.D.; May, G. The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biol. 2004, 4, 10. [Google Scholar] [CrossRef] [PubMed]
- Panchy, N.; LehtiShiu, M.; Shiu, S.H. Evolution of gene duplication in plants. Plant Physiol. 2016, 171, 2294–2316. [Google Scholar] [CrossRef]
- Wirtz, M.; Droux, M. Synthesis of the sulfur amino acids: Cysteine and methionine. Photosynth. Res. 2005, 86, 345–362. [Google Scholar] [CrossRef]
- Yeon, J.Y.; Yoo, S.J.; Takagi, H.; Kang, H.A. A novel mitochondrial serine o-acetyltransferase, OpSAT1, plays a critical role in sulfur metabolism in the thermotolerant methylotrophic yeast Ogataea parapolymorpha. Sci. Rep. 2018, 8, 2377. [Google Scholar] [CrossRef]
- Dharavath, S.; Kumari, K.; Kumar, S.; Gourinath, S. Structural and functional studies of serine acetyltransferase isoform from Entamoeba histolytica reveals novel role of the C-terminal tail in loss of regulation from feedback inhibition. Int. J. Biol. Macromol. 2022, 217, 689–700. [Google Scholar] [CrossRef]
- Ma, H.; Song, Y.; Zhang, Y.; Guo, H.; Lv, G.; Chen, H.; Liu, J.; Liu, X.; An, Z.; Wang, L.; et al. Critical sites of serine acetyltransferase in Lathyrus sativus L. affecting its enzymatic activities. J. Agric. Food Chem. 2023, 71, 7858–7865. [Google Scholar] [CrossRef]
- Neugebauer, K.M. On the importance of being co-transcriptional. J. Cell Sci. 2002, 115, 3865–3871. [Google Scholar] [CrossRef] [PubMed]
- Chung, B.Y.; Simons, C.; Firth, A.E.; Brown, C.M.; Hellens, R.P. Effect of 5’UTR introns on gene expression in Arabidopsis thaliana. BMC Genom. 2006, 7, 120. [Google Scholar] [CrossRef]
- Lin, X.; Dong, L.; Tang, Y.; Li, H.; Cheng, Q.; Li, H.; Zhang, T.; Ma, L.; Xiang, H.; Chen, L.; et al. Novel and multifaceted regulations of photoperiodic flowering by phytochrome A in soybean. Proc. Natl. Acad. Sci. USA 2022, 119, e2208708119. [Google Scholar] [CrossRef]
- Goodstein, D.M.; Shu, S.; Howson, R.; Neupane, R.; Hayes, R.D.; Fazo, J.; Mitros, T.; Dirks, W.; Hellsten, U.; Putnam, N.; et al. Phytozome: A comparative platform for green plant genomics. Nucleic Acids Res. 2012, 40, 1178–1186. [Google Scholar] [CrossRef]
- Bolser, D.; Staines, D.M.; Pritchard, E.; Kersey, P. Ensembl Plants: Integrating tools for visualizing, mining, and analyzing plant genomics data. Methods Mol. Biol. 2016, 1374, 115–140. [Google Scholar] [PubMed]
- El-Gebali, S.; Mistry, J.; Bateman, A.; Eddy, S.R.; Luciani, A.; Potter, S.C.; Qureshi, M.; Richardson, L.J.; Salazar, G.A.; Smart, A.; et al. The Pfam protein families database in 2019. Nucleic Acids Res. 2019, 47, 427–432. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Wu, Y.; Li, J.; Wang, X.; Zeng, Z.; Xu, J.; Liu, Y.; Feng, J.; Chen, H.; He, Y.; et al. TBtools-II: A “one for all, all for one” bioinformatics platform for biological big-data mining. Mol. Plant 2023, 16, 1733–1742. [Google Scholar] [CrossRef] [PubMed]
- Artimo, P.; Jonnalagedda, M.; Arnold, K.; Baratin, D.; Csardi, G.; Castro, E.; Duvaud, S.; Flegel, V.; Fortier, A.; Gasteiger, E.; et al. ExPASy: SIB bioinformatics resource portal. Nucleic Acids Res. 2012, 40, 597–603. [Google Scholar] [CrossRef]
- Hung, J.H.; Weng, Z. Sequence alignment and homology search with BLAST and ClustalW. Cold Spring Harb. Protoc. 2016, 11, 10. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [PubMed]
- Subramanian, B.; Gao, S.; Lercher, M.J.; Hu, S.; Chen, W.H. Evolview v3: A webserver for visualization, annotation, and management of phylogenetic trees. Nucleic Acids Res. 2019, 47, 270–275. [Google Scholar] [CrossRef]
- Bailey, T.L.; Boden, M.; Buske, F.A.; Frith, M.; Grant, C.E.; Clementi, L.; Ren, J.; Li, W.W.; Noble, W.S. MEME SUITE: Tools for motif discovery and searching. Nucleic Acids Res. 2009, 37, 202–208. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Sun, Z.; Liu, H.; Yue, L.; Wang, F.; Liu, S.; Su, B.; Liu, B.; Kong, F.; Fang, C. Genome-wide identification and characterization of the soybean Snf2 gene family and expression response to rhizobia. Int. J. Mol. Sci. 2023, 24, 7250. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, C.; Zou, H.; Zhang, M.; Jiang, Y.; Liu, B.; Sun, Z.; Su, B. Identification and Expression Analysis of the Soybean Serine Acetyltransferase (SAT) Gene Family Under Salt Stress. Int. J. Mol. Sci. 2025, 26, 1882. https://doi.org/10.3390/ijms26051882
Fan C, Zou H, Zhang M, Jiang Y, Liu B, Sun Z, Su B. Identification and Expression Analysis of the Soybean Serine Acetyltransferase (SAT) Gene Family Under Salt Stress. International Journal of Molecular Sciences. 2025; 26(5):1882. https://doi.org/10.3390/ijms26051882
Chicago/Turabian StyleFan, Caiyun, Hui Zou, Miao Zhang, Yu Jiang, Baohui Liu, Zhihui Sun, and Bohong Su. 2025. "Identification and Expression Analysis of the Soybean Serine Acetyltransferase (SAT) Gene Family Under Salt Stress" International Journal of Molecular Sciences 26, no. 5: 1882. https://doi.org/10.3390/ijms26051882
APA StyleFan, C., Zou, H., Zhang, M., Jiang, Y., Liu, B., Sun, Z., & Su, B. (2025). Identification and Expression Analysis of the Soybean Serine Acetyltransferase (SAT) Gene Family Under Salt Stress. International Journal of Molecular Sciences, 26(5), 1882. https://doi.org/10.3390/ijms26051882