Squalene in Nanoparticles Improves Antiproliferative Effect on Human Colon Carcinoma Cells Through Apoptosis by Disturbances in Redox Balance
"> Figure 1
<p>Viability effect on undifferentiated Caco-2 cells incubated with different squalene concentrations using DMEM, DMSO, EtOH, and PLGA vehicles for 72 h.</p> "> Figure 2
<p>Time and dose-response viability effect of a range of PLGA + Sq on undifferentiated Caco-2 cells.</p> "> Figure 3
<p>Differentiated Caco-2 cells incubated for 72 h with 70 or 140 μg/mL PLGA + Sq. PLGA 70 or 140 μg/mL (without Sq) represent the PLGA-NPs required for the indicated Sq concentration. C, control, refers to untreated cells.</p> "> Figure 4
<p>In vitro cellular uptake of squalene. Caco-2 cells were incubated with 140 μg/mL of PLGA + Sq NPs and PLGA NPs for a period of 24 h. * <span class="html-italic">p</span> < 0.05 vs. PLGA.</p> "> Figure 5
<p>Incubation of undifferentiated Caco-2 cells for 72 h. (<b>A</b>) Negative control, referring to the untreated cells, (<b>B</b>) PLGA, (<b>C</b>) PLGA + Sq at IC<sub>50</sub> concentration (140 μg/mL). Percentages of alive (A3), necrotic (A1), early apoptotic (A4) and late apoptotic (A2) cells are indicated.</p> "> Figure 6
<p>Undifferentiated Caco-2 cells with mitochondrial cytochrome c after 72 h incubation with/without PLGA or Sq (140 μg/mL). (<b>A</b>) Negative control, referring to the untreated cells, (<b>B</b>) PLGA, (<b>C</b>) PLGA + Sq. A1: cytochrome c released, A2: cytochrome c retained, A3 and A4: debris and dead cells.</p> "> Figure 7
<p>Percentage of undifferentiated Caco-2 cells with active caspase-3 after 72 h incubation with/without PLGA + Sq (140 μg/mL). * <span class="html-italic">p</span> < 0.05 vs. control.</p> "> Figure 8
<p>Measurement of the cell cycle after a 72 h incubation on undifferentiated Caco-2 cells (<b>A</b>) Negative control, referring to the untreated cells, (<b>B</b>) PLGA, (<b>C</b>) PLGA + Sq (IC<sub>50</sub>). From left to right: red peak: G1, black hatched peak: S, red peak: G2.</p> "> Figure 9
<p>Measurement of ROS levels on undifferentiated Caco-2 cells after 24 h incubation with PLGA + Sq and PLGA alone. PLGA 70 or 140 μg/mL (without Sq) represents the PLGA-NPs required for the indicated Sq concentration. * <span class="html-italic">p</span> < 0.05 vs. negative control (without PLGA and Sq). C, control, refers to untreated cells.</p> "> Figure 10
<p>Cell viability measurement after pretreatment of cells with 5 mM NAC for 2 h followed by treatment of cells with 140 μg/mM PLGA + Sq for 72 h. * <span class="html-italic">p</span> < 0.05 vs. control. C, control, refers to untreated cells.</p> "> Figure 11
<p>Differentiated Caco-2 cells incubated with 70 or 140 mg/mL PLGA in the presence or absence of squalene. PLGA 70 or 140 μg/mL (without Sq) represents the PLGA-NPs required for the indicated Sq concentration. C, control, refers to untreated cells.</p> "> Figure 12
<p>Evaluation of the effect of PLGA + Sq nanoparticles on cytotoxicity and ROS modulation in undifferentiated and differentiated Caco-2 cells, and AML12 cells [<a href="#B16-ijms-25-13048" class="html-bibr">16</a>,<a href="#B49-ijms-25-13048" class="html-bibr">49</a>].</p> ">
Abstract
:1. Introduction
2. Results
2.1. The Vehicleization of Squalene and Cell Viability
2.2. PLGA-Squalene Uptake in Caco-2 Cells
2.3. PLGA-Squalene on Cell Death Studies
2.4. The Effect of PLGA-Squalene on Cell Cycle
2.5. The Effect of PLGA-Squalene on ROS Intracellular Levels
3. Discussion
4. Materials and Methods
4.1. The Formulation of Squalene Nanoparticles (PLGA)
4.2. Cell Culture
4.3. Squalene Extraction from Caco-2 Cells
4.4. Cell Death Studies
4.5. Apoptosis Determination by Flow Cytometry
4.6. The Determination of Cytochrome C and Caspase-3 by Flow Cytometry
4.7. Propidium Iodide Staining of DNA Content and Cell Cycle Analysis
4.8. RNA Extraction and Quantitative Real-Time PCR
4.9. The Determination of Intracellular Levels of ROS
4.10. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DMEM | Dulbecco’s modified Eagle’s medium |
DMSO | Dimethyl sulfoxide |
DNA | Deoxyribonucleic acid |
ddH2O | Deionized distilled H2O |
DCFH-DA | 2′,7′-dichlorofluorescein diacetate |
EtOH | Ethanol |
EDTA | Ethylenediaminetetraacetic acid |
FBS | Fetal bovine serum |
GC/MS | Gas chromatography/mass spectrometry |
HMG CoA | 3-hydroxy-3-methylglutaryl coenzyme A |
mRNA | Messenger RNA |
NPs | Nanoparticles |
NAC | N-acetylcysteine |
PLGA | Poly (lactic-co-glycolic acid) |
PBS | Phosphate-buffered saline |
ROS | Reactive oxygen species |
RT-qPCR | Quantitative reverse transcription -PCR |
RNA | Ribonucleic acid |
Sq | Squalene |
References
- Li, C.; Wang, Y.; Liu, D.; Wong, C.C.; Coker, O.O.; Zhang, X.; Liu, C.; Zhou, Y.; Liu, Y.; Kang, W. Squalene Epoxidase Drives Cancer Cell Proliferation and Promotes Gut Dysbiosis to Accelerate Colorectal Carcinogenesis. Gut 2022, 71, 2253–2265. [Google Scholar] [CrossRef] [PubMed]
- Bardelčíková, A.; Šoltys, J.; Mojžiš, J. Oxidative Stress, Inflammation and Colorectal Cancer: An Overview. Antioxidants 2023, 12, 901. [Google Scholar] [CrossRef]
- Taheri, E.; Ghorbani, S.; Safi, M.; Sani, N.S.; Amoodizaj, F.F.; Heidari, M.; Chavoshi, R.; Hajazimian, S.; Isazadeh, A.; Heidari, M. Inhibition of Colorectal Cancer Cell Line CaCo-2 by Essential Oil of Eucalyptus Camaldulensis through Induction of Apoptosis. Acta Med. Iran. 2020, 58, 260–265. [Google Scholar] [CrossRef]
- Kozovska, Z.; Gabrisova, V.; Kucerova, L. Colon Cancer: Cancer Stem Cells Markers, Drug Resistance and Treatment. Biomed. Pharmacother. 2014, 68, 911–916. [Google Scholar] [CrossRef]
- Hu, T.; Li, Z.; Gao, C.-Y.; Cho, C.H. Mechanisms of Drug Resistance in Colon Cancer and Its Therapeutic Strategies. World J. Gastroenterol. 2016, 22, 6876. [Google Scholar] [CrossRef]
- Huang, L.; Zhang, S.; Zhou, J.; Li, X. Effect of Resveratrol on Drug Resistance in Colon Cancer Chemotherapy. RSC Adv. 2019, 9, 2572–2580. [Google Scholar] [CrossRef] [PubMed]
- Basak, D.; Uddin, M.N.; Hancock, J. The Role of Oxidative Stress and Its Counteractive Utility in Colorectal Cancer (CRC). Cancers 2020, 12, 3336. [Google Scholar] [CrossRef]
- Acquaviva, R.; Tomasello, B.; Di Giacomo, C.; Santangelo, R.; La Mantia, A.; Naletova, I.; Sarpietro, M.G.; Castelli, F.; Malfa, G.A. Protocatechuic Acid, a Simple Plant Secondary Metabolite, Induced Apoptosis by Promoting Oxidative Stress through HO-1 Downregulation and P21 Upregulation in Colon Cancer Cells. Biomolecules 2021, 11, 1485. [Google Scholar] [CrossRef]
- Muri, J.; Kopf, M. Redox Regulation of Immunometabolism. Nat. Rev. Immunol. 2021, 21, 363–381. [Google Scholar] [CrossRef]
- Wan, Y.; Yang, L.; Jiang, S.; Qian, D.; Duan, J. Excessive Apoptosis in Ulcerative Colitis: Crosstalk between Apoptosis, ROS, ER Stress, and Intestinal Homeostasis. Inflamm. Bowel Dis. 2022, 28, 639–648. [Google Scholar] [CrossRef]
- Lo Galbo, V.; Lauricella, M.; Giuliano, M.; Emanuele, S.; Carlisi, D.; Calvaruso, G.; De Blasio, A.; Di Liberto, D.; D’Anneo, A. Redox Imbalance and Mitochondrial Release of Apoptogenic Factors at the Forefront of the Antitumor Action of Mango Peel Extract. Molecules 2021, 26, 4328. [Google Scholar] [CrossRef] [PubMed]
- Foo, B.J.-A.; Eu, J.Q.; Hirpara, J.L.; Pervaiz, S. Interplay between Mitochondrial Metabolism and Cellular Redox State Dictates Cancer Cell Survival. Oxid. Med. Cell Longev. 2021, 2021, 1341604. [Google Scholar] [CrossRef] [PubMed]
- Mani, S.; Swargiary, G.; Ralph, S.J. Targeting the Redox Imbalance in Mitochondria: A Novel Mode for Cancer Therapy. Mitochondrion 2022, 62, 50–73. [Google Scholar] [CrossRef]
- Martinez-Aledo, N.; Navas-Carrillo, D.; Orenes-Pinero, E. Medicinal Plants: Active Compounds, Properties and Antiproliferative Effects in Colorectal Cancer. Phytochem. Rev. 2020, 19, 123–137. [Google Scholar] [CrossRef]
- George, S.; Abrahamse, H. Redox Potential of Antioxidants in Cancer Progression and Prevention. Antioxidants 2020, 9, 1156. [Google Scholar] [CrossRef] [PubMed]
- Bidooki, S.H.; Alejo, T.; Sánchez-Marco, J.; Martínez-Beamonte, R.; Abuobeid, R.; Burillo, J.C.; Lasheras, R.; Sebastian, V.; Rodríguez-Yoldi, M.J.; Arruebo, M. Squalene Loaded Nanoparticles Effectively Protect Hepatic AML12 Cell Lines against Oxidative and Endoplasmic Reticulum Stress in a TXNDC5-Dependent Way. Antioxidants 2022, 11, 581. [Google Scholar] [CrossRef]
- Martínez-Beamonte, R.; Alda, O.; Sanclemente, T.; Felices, M.J.; Escusol, S.; Arnal, C.; Herrera-Marcos, L.V.; Gascón, S.; Surra, J.C.; Osada, J. Hepatic Subcellular Distribution of Squalene Changes According to the Experimental Setting. J. Physiol. Biochem. 2018, 74, 531–538. [Google Scholar] [CrossRef]
- Hashim, Y.Z.H.Y.; Eng, M.; Gill, C.I.R.; McGlynn, H.; Rowland, I.R. Components of Olive Oil and Chemoprevention of Colorectal Cancer. Nutr. Rev. 2005, 63, 374–386. [Google Scholar] [CrossRef] [PubMed]
- Borzì, A.M.; Biondi, A.; Basile, F.; Luca, S.; Vicari, E.S.D.; Vacante, M. Olive Oil Effects on Colorectal Cancer. Nutrients 2018, 11, 32. [Google Scholar] [CrossRef]
- Ronco, A.L.; De Stéfani, E. Squalene: A Multi-Task Link in the Crossroads of Cancer and Aging. Funct. Foods Health Dis. 2013, 3, 462–476. [Google Scholar] [CrossRef]
- Kotelevets, L.; Chastre, E.; Caron, J.; Mougin, J.; Bastian, G.; Pineau, A.; Walker, F.; Lehy, T.; Desmaële, D.; Couvreur, P. A Squalene-Based Nanomedicine for Oral Treatment of Colon Cancer. Cancer Res. 2017, 77, 2964–2975. [Google Scholar] [CrossRef]
- Sánchez-Marco, J.; Bidooki, S.H.; Abuobeid, R.; Barranquero, C.; Herrero-Continente, T.; Arnal, C.; Martínez-Beamonte, R.; Lasheras, R.; Surra, J.C.; Navarro, M.A. Thioredoxin Domain Containing 5 Is Involved in the Hepatic Storage of Squalene into Lipid Droplets in a Sex-Specific Way. J. Nutr. Biochem. 2024, 124, 109503. [Google Scholar] [CrossRef]
- Abuobeid, R.; Herrera-Marcos, L.V.; Arnal, C.; Bidooki, S.H.; Sánchez-Marco, J.; Lasheras, R.; Surra, J.C.; Rodríguez-Yoldi, M.J.; Martínez-Beamonte, R.; Osada, J. Differentially Expressed Genes in Response to a Squalene-Supplemented Diet Are Accurate Discriminants of Porcine Non-Alcoholic Steatohepatitis. Int. J. Mol. Sci. 2023, 24, 12552. [Google Scholar] [CrossRef]
- Micera, M.; Botto, A.; Geddo, F.; Antoniotti, S.; Bertea, C.M.; Levi, R.; Gallo, M.P.; Querio, G. Squalene: More than a Step toward Sterols. Antioxidants 2020, 9, 688. [Google Scholar] [CrossRef]
- Zein, R.; Alghoraibi, I.; Soukkarieh, C.; Salman, A.; Alahmad, A. In-Vitro Anticancer Activity against Caco-2 Cell Line of Colloidal Nano Silver Synthesized Using Aqueous Extract of Eucalyptus Camaldulensis Leaves. Heliyon 2020, 6, e04594. [Google Scholar] [CrossRef] [PubMed]
- Venkatadri, B.; Shanparvish, E.; Rameshkumar, M.R.; Arasu, M.V.; Al-Dhabi, N.A.; Ponnusamy, V.K.; Agastian, P. Green Synthesis of Silver Nanoparticles Using Aqueous Rhizome Extract of Zingiber Officinale and Curcuma Longa: In-Vitro Anti-Cancer Potential on Human Colon Carcinoma HT-29 Cells. Saudi J. Biol. Sci. 2020, 27, 2980–2986. [Google Scholar] [CrossRef] [PubMed]
- Mishra, N.; Goyal, A.K.; Khatri, K.; Vaidya, B.; Paliwal, R.; Rai, S.; Mehta, A.; Tiwari, S.; Vyas, S.; Vyas, S.P. Biodegradable Polymer Based Particulate Carrier (s) for the Delivery of Proteins and Peptides. Anti-Inflamm. Anti-Allergy Agents Med. Chem. (Former. Curr. Med. Chem. Anti-Inflamm. Anti-Allergy Agents) 2008, 7, 240–251. [Google Scholar] [CrossRef]
- Shi, Y.; Huang, G. Recent Developments of Biodegradable and Biocompatible Materials Based Micro/Nanoparticles for Delivering Macromolecular Therapeutics. Crit. Rev. Ther. Drug Carr. Syst. 2009, 26, 29–84. [Google Scholar] [CrossRef] [PubMed]
- Jenjob, R.; Phakkeeree, T.; Seidi, F.; Theerasilp, M.; Crespy, D. Emulsion Techniques for the Production of Pharmacological Nanoparticles. Macromol. Biosci. 2019, 19, 1900063. [Google Scholar] [CrossRef]
- Yang, J.; Zeng, H.; Luo, Y.; Chen, Y.; Wang, M.; Wu, C.; Hu, P. Recent Applications of PLGA in Drug Delivery Systems. Polymers 2024, 16, 2606. [Google Scholar] [CrossRef]
- Kapoor, D.N.; Bhatia, A.; Kaur, R.; Sharma, R.; Kaur, G.; Dhawan, S. PLGA: A Unique Polymer for Drug Delivery. Ther. Deliv. 2015, 6, 41–58. [Google Scholar] [CrossRef] [PubMed]
- Makadia, H.K.; Siegel, S.J. Poly Lactic-Co-Glycolic Acid (PLGA) as Biodegradable Controlled Drug Delivery Carrier. Polymers 2011, 3, 1377–1397. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, J.C.; Munoz-Pinedo, C.; Ricci, J.E.; Adams, S.R.; Kelekar, A.; Schuler, M.; Tsien, R.Y.; Green, D.R. Cytochrome c Is Released in a Single Step during Apoptosis. Cell Death Differ. 2005, 12, 453–462. [Google Scholar] [CrossRef] [PubMed]
- Nair, P.; Lu, M.; Petersen, S.; Ashkenazi, A. Apoptosis Initiation through the Cell-Extrinsic Pathway. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 2014; Volume 544, pp. 99–128. ISBN 0076-6879. [Google Scholar]
- Lossi, L. The Concept of Intrinsic versus Extrinsic Apoptosis. Biochem. J. 2022, 479, 357–384. [Google Scholar] [CrossRef] [PubMed]
- Yanumula, A.; Cusick, J.K. Biochemistry, Extrinsic Pathway of Apoptosis; StatPearls: Orlando, FL, USA, 2020. [Google Scholar]
- Mármol, I.; Jiménez-Moreno, N.; Ancín-Azpilicueta, C.; Osada, J.; Cerrada, E.; Rodríguez-Yoldi, M.J. A Combination of Rosa Canina Extracts and Gold Complex Favors Apoptosis of Caco-2 Cells by Increasing Oxidative Stress and Mitochondrial Dysfunction. Antioxidants 2019, 9, 17. [Google Scholar] [CrossRef]
- Gaforio, J.J.; Visioli, F.; Alarcón-de-la-Lastra, C.; Castañer, O.; Delgado-Rodríguez, M.; Fitó, M.; Hernández, A.F.; Huertas, J.R.; Martínez-González, M.A.; Menendez, J.A. Virgin Olive Oil and Health: Summary of the Iii International Conference on Virgin Olive Oil and Health Consensus Report, JAEN (Spain) 2018. Nutrients 2019, 11, 2039. [Google Scholar] [CrossRef]
- Sánchez-Quesada, C.; Gutiérrez-Santiago, F.; Rodríguez-García, C.; Gaforio, J.J. Synergistic Effect of Squalene and Hydroxytyrosol on Highly Invasive MDA-MB-231 Breast Cancer Cells. Nutrients 2022, 14, 255. [Google Scholar] [CrossRef]
- Zhang, Y.; Bejaoui, M.; Linh, T.N.; Arimura, T.; Isoda, H. A Novel Amphiphilic Squalene-Based Compound with Open-Chain Polyethers Reduces Malignant Melanoma Metastasis in-Vitro and in-Vivo. Cell Commun. Signal. 2024, 22, 437. [Google Scholar] [CrossRef]
- Chitra, K.; Sureshkumar, M.; Muraleedharan, A.; Selvamaleeswaran, P.; Selvankumar, T.; Thirumalaisamy, R.; Alyami, N.M.; Alharbi, S.A. In Vitro Cancer Cell Line Luminescence-based Validation of Anticancer Phytocompounds Obtained from Leucas Biflora against HELA Cervical and A549 Lung Cancer Cells. Luminescence 2024, 39, e4855. [Google Scholar] [CrossRef]
- Spanova, M.; Daum, G. Squalene–Biochemistry, Molecular Biology, Process Biotechnology, and Applications. Eur. J. Lipid Sci. Technol. 2011, 113, 1299–1320. [Google Scholar] [CrossRef]
- Güneş, F.E. Medical Use of Squalene as a Natural Antioxidant. J. Marmara Univ. Inst. Health Sci. 2013, 3, 220–228. [Google Scholar]
- Gohil, N.; Bhattacharjee, G.; Khambhati, K.; Braddick, D.; Singh, V. Engineering Strategies in Microorganisms for the Enhanced Production of Squalene: Advances, Challenges and Opportunities. Front. Bioeng. Biotechnol. 2019, 7, 50. [Google Scholar]
- Wang, Z.; Wang, Y.; Li, Z.; Xue, W.; Hu, S.; Kong, X. Lipid Metabolism as a Target for Cancer Drug Resistance: Progress and Prospects. Front. Pharmacol. 2023, 14, 1274335. [Google Scholar] [CrossRef] [PubMed]
- Sobot, D.; Mura, S.; Couvreur, P. How Can Nanomedicines Overcome Cellular-Based Anticancer Drug Resistance? J. Mater. Chem. B 2016, 4, 5078–5100. [Google Scholar] [CrossRef]
- Silva, A.M.; Alvarado, H.L.; Abrego, G.; Martins-Gomes, C.; Garduño-Ramirez, M.L.; García, M.L.; Calpena, A.C.; Souto, E.B. In Vitro Cytotoxicity of Oleanolic/Ursolic Acids-Loaded in PLGA Nanoparticles in Different Cell Lines. Pharmaceutics 2019, 11, 362. [Google Scholar] [CrossRef]
- Danhier, F.; Ansorena, E.; Silva, J.M.; Coco, R.; Le Breton, A.; Préat, V. PLGA-Based Nanoparticles: An Overview of Biomedical Applications. J. Control. Release 2012, 161, 505–522. [Google Scholar] [CrossRef]
- Bidooki, S.H.; Spitzer, L.; Petitpas, A.; Sánchez-Marco, J.; Martínez-Beamonte, R.; Lasheras, R.; Pellerin, V.J. Rodríguez-Yoldi, M.; Angeles Navarro, M.; Osada, J.; et al. Chitosan Nanoparticles, a Novel Drug Delivery System to Transfer Squalene for Hepatocyte Stress Protection. ACSOmega 2024. [Google Scholar] [CrossRef]
- Quero, J.; Ballesteros, L.F.; Ferreira-Santos, P.; Velderrain-Rodriguez, G.R.; Rocha, C.M.R.; Pereira, R.N.; Teixeira, J.A.; Martin-Belloso, O.; Osada, J.; Rodríguez-Yoldi, M.J. Unveiling the Antioxidant Therapeutic Functionality of Sustainable Olive Pomace Active Ingredients. Antioxidants 2022, 11, 828. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-de-Diego, C.; Marmol, I.; Pérez, R.; Gascón, S.; Rodriguez-Yoldi, M.J.; Cerrada, E. The Anticancer Effect Related to Disturbances in Redox Balance on Caco-2 Cells Caused by an Alkynyl Gold (I) Complex. J. Inorg. Biochem. 2017, 166, 108–121. [Google Scholar] [CrossRef]
- Kumari, A.; Yadav, S.K.; Yadav, S.C. Biodegradable Polymeric Nanoparticles Based Drug Delivery Systems. Colloids Surf. B Biointerfaces 2010, 75, 1–18. [Google Scholar] [CrossRef]
- Vasir, J.K.; Labhasetwar, V. Biodegradable Nanoparticles for Cytosolic Delivery of Therapeutics. Adv. Drug Deliv. Rev. 2007, 59, 718–728. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, N.I.; Naina Mohamed, I. Interdependence of Anti-Inflammatory and Antioxidant Properties of Squalene–Implication for Cardiovascular Health. Life 2021, 11, 103. [Google Scholar] [CrossRef] [PubMed]
- Ndrepepa, G. Myeloperoxidase–A Bridge Linking Inflammation and Oxidative Stress with Cardiovascular Disease. Clin. Chim. Acta 2019, 493, 36–51. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Xie, Z.; Zheng, X.; Li, K.; Lu, T.; Lu, Y.; Chen, C.; Ling, X. Genetic Regulation and Fermentation Strategy for Squalene Production in Schizochytrium Sp. Appl. Microbiol. Biotechnol. 2022, 106, 2415–2431. [Google Scholar] [CrossRef] [PubMed]
- Bidooki, S.H.; Navarro, M.A.; Fernandes, S.C.M.; Osada, J. Thioredoxin Domain Containing 5 (TXNDC5): Friend or Foe? Curr. Issues Mol. Biol. 2024, 46, 3134–3163. [Google Scholar] [CrossRef]
- Ibrahim, N.I.; Fairus, S.; Zulfarina, M.S.; Naina Mohamed, I. The Efficacy of Squalene in Cardiovascular Disease Risk-a Systematic Review. Nutrients 2020, 12, 414. [Google Scholar] [CrossRef]
- Pani, G.; Galeotti, T.; Chiarugi, P. Metastasis: Cancer Cell’s Escape from Oxidative Stress. Cancer Metastasis Rev. 2010, 29, 351–378. [Google Scholar] [CrossRef]
- Valko, M.; Rhodes, C.J.B.; Moncol, J.; Izakovic, M.M.; Mazur, M. Free Radicals, Metals and Antioxidants in Oxidative Stress-Induced Cancer. Chem. Biol. Interact. 2006, 160, 1–40. [Google Scholar] [CrossRef]
- Ray, P.D.; Huang, B.-W.; Tsuji, Y. Reactive Oxygen Species (ROS) Homeostasis and Redox Regulation in Cellular Signaling. Cell Signal 2012, 24, 981–990. [Google Scholar] [CrossRef]
- Kaminskyy, V.O.; Zhivotovsky, B. Free Radicals in Cross Talk between Autophagy and Apoptosis. Antioxid. Redox Signal 2014, 21, 86–102. [Google Scholar] [CrossRef]
- Bleau, A.-M.; Hambardzumyan, D.; Ozawa, T.; Fomchenko, E.I.; Huse, J.T.; Brennan, C.W.; Holland, E.C. PTEN/PI3K/Akt Pathway Regulates the Side Population Phenotype and ABCG2 Activity in Glioma Tumor Stem-like Cells. Cell Stem Cell 2009, 4, 226–235. [Google Scholar] [CrossRef] [PubMed]
- Copaja, M.; Venegas, D.; Aránguiz, P.; Canales, J.; Vivar, R.; Catalán, M.; Olmedo, I.; Rodríguez, A.E.; Chiong, M.; Leyton, L.; et al. Simvastatin induces apoptosis by a Rho-dependent mechanism in cultured cardiac fibroblasts and myofibroblasts. Toxicol. Appl. Pharmacol. 2011, 255, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Lou-Bonafonte, J.M.; Martínez-Beamonte, R.; Sanclemente, T.; Surra, J.C.; Herrera-Marcos, L.V.; Sanchez-Marco, J.; Arnal, C.; Osada, J. Current Insights into the Biological Action of Squalene. Mol. Nutr. Food Res. 2018, 62, 1800136. [Google Scholar] [CrossRef] [PubMed]
- McCully, K.S. Chemical Pathology of Homocysteine VIII. Effects of Tocotrienol, Geranylgeraniol, and Squalene on Thioretinaco Ozonide, Mitochondrial Permeability, and Oxidative Phosphorylation in Arteriosclerosis, Cancer, Neurodegeneration and Aging. Ann. Clin. Lab. Sci. 2020, 50, 567–577. [Google Scholar] [PubMed]
- Fernandes, N.V.; Yeganehjoo, H.; Katuru, R.; DeBose-Boyd, R.A.; Morris, L.L.; Michon, R.; Yu, Z.-L.; Mo, H. Geranylgeraniol Suppresses the Viability of Human DU145 Prostate Carcinoma Cells and the Level of HMG CoA Reductase. Exp. Biol. Med. 2013, 238, 1265–1274. [Google Scholar] [CrossRef]
- Wang, S.; El-Deiry, W.S. P53, Cell Cycle Arrest and Apoptosis. In 25 Years of p53 Research; Springer: Berlin/Heidelberg, Germany, 2007; pp. 141–163. [Google Scholar]
- Meulmeester, E.; Jochemsen, A.G. P53: A Guide to Apoptosis. Curr. Cancer Drug Targets 2008, 8, 87–97. [Google Scholar] [CrossRef]
- Adriouach, S.; Vorobiev, V.; Trefalt, G.; Allémann, E.; Lange, N.; Babič, A. Squalene-PEG: Pyropheophorbide-a Nanoconstructs for Tumor Theranostics. Nanomedicine 2019, 15, 243–251. [Google Scholar] [CrossRef]
- Cheng, L.; Ji, T.; Zhang, M.; Fang, B. Recent Advances in Squalene: Biological Activities, Sources, Extraction, and Delivery Systems. Trends Food Sci. Technol. 2024, 146, 104392. [Google Scholar] [CrossRef]
- Arpicco, S.; Battaglia, L.; Brusa, P.; Cavalli, R.; Chirio, D.; Dosio, F.; Gallarate, M.; Milla, P.; Peira, E.; Rocco, F. Recent Studies on the Delivery of Hydrophilic Drugs in Nanoparticulate Systems. J. Drug Deliv. Sci. Technol. 2016, 32, 298–312. [Google Scholar] [CrossRef]
- Quero, J.; Cabello, S.; Fuertes, T.; Mármol, I.; Laplaza, R.; Polo, V.; Gimeno, M.C.; Rodriguez-Yoldi, M.J.; Cerrada, E. Proteasome versus Thioredoxin Reductase Competition as Possible Biological Targets in Antitumor Mixed Thiolate-Dithiocarbamate Gold (III) Complexes. Inorg. Chem. 2018, 57, 10832–10845. [Google Scholar] [CrossRef]
- Christensen, M.E.; Jansen, E.S.; Sanchez, W.; Waterhouse, N.J. Flow Cytometry Based Assays for the Measurement of Apoptosis-Associated Mitochondrial Membrane Depolarisation and Cytochrome c Release. Methods 2013, 61, 138–145. [Google Scholar] [CrossRef] [PubMed]
- Quero, J.; Jiménez-Moreno, N.; Esparza, I.; Osada, J.; Cerrada, E.; Ancín-Azpilicueta, C.; Rodríguez-Yoldi, M.J. Grape Stem Extracts with Potential Anticancer and Antioxidant Properties. Antioxidants 2021, 10, 243. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bidooki, S.H.; Quero, J.; Sánchez-Marco, J.; Herrero-Continente, T.; Marmol, I.; Lasheras, R.; Sebastian, V.; Arruebo, M.; Osada, J.; Rodriguez-Yoldi, M.J. Squalene in Nanoparticles Improves Antiproliferative Effect on Human Colon Carcinoma Cells Through Apoptosis by Disturbances in Redox Balance. Int. J. Mol. Sci. 2024, 25, 13048. https://doi.org/10.3390/ijms252313048
Bidooki SH, Quero J, Sánchez-Marco J, Herrero-Continente T, Marmol I, Lasheras R, Sebastian V, Arruebo M, Osada J, Rodriguez-Yoldi MJ. Squalene in Nanoparticles Improves Antiproliferative Effect on Human Colon Carcinoma Cells Through Apoptosis by Disturbances in Redox Balance. International Journal of Molecular Sciences. 2024; 25(23):13048. https://doi.org/10.3390/ijms252313048
Chicago/Turabian StyleBidooki, Seyed Hesamoddin, Javier Quero, Javier Sánchez-Marco, Tania Herrero-Continente, Inés Marmol, Roberto Lasheras, Victor Sebastian, Manuel Arruebo, Jesús Osada, and María Jesús Rodriguez-Yoldi. 2024. "Squalene in Nanoparticles Improves Antiproliferative Effect on Human Colon Carcinoma Cells Through Apoptosis by Disturbances in Redox Balance" International Journal of Molecular Sciences 25, no. 23: 13048. https://doi.org/10.3390/ijms252313048
APA StyleBidooki, S. H., Quero, J., Sánchez-Marco, J., Herrero-Continente, T., Marmol, I., Lasheras, R., Sebastian, V., Arruebo, M., Osada, J., & Rodriguez-Yoldi, M. J. (2024). Squalene in Nanoparticles Improves Antiproliferative Effect on Human Colon Carcinoma Cells Through Apoptosis by Disturbances in Redox Balance. International Journal of Molecular Sciences, 25(23), 13048. https://doi.org/10.3390/ijms252313048