Umbilical Cord Mesenchymal Stem Cell Secretome: A Potential Regulator of B Cells in Systemic Lupus Erythematosus
<p>Characterization of the isolated umbilical cord mesenchymal stem cells (UC-MSCs). MSCs isolated from the umbilical cord on day 1 (<b>A</b>) show visible fibroblast-like morphology (400×, phase contrast). After reaching 80% confluency (<b>B</b>), the conditioned medium was successfully received (400×, phase contrast). Flow cytometric histograms representing the expression of markers CD90, CD73, and CD105, as well as the absence of markers characteristic of hematopoietic lineage, are shown (<b>C</b>) together with light microscopic photo (100×) that shows the degree of confluency (100%) of the cells at which the analysis was performed (<b>D</b>). The graph represents the mean values of the percentages (Mean ± SD) for each marker examined (data are mean of seven experiments) (<b>E</b>). Representative light microscopic images of adipogenic (<b>F</b>) and osteogenic (Von Kossa staining (<b>G</b>) and Alizarin red S staining (<b>H</b>)) differentiated cells are shown. Lowercase letters on the microscopic images represent cells cultured in adipogenic differentiation medium ((<b>a</b>) (400×)), osteogenic differentiation medium ((<b>c</b>,<b>e</b>) (50×)), and in control medium ((<b>b</b>,<b>d</b>,<b>f</b>) (50×)).</p> "> Figure 2
<p>Phase contrast images (100×) of systemic lupus erythematosus (SLE) patients’ peripheral blood mononuclear cells (PBMCs) after 72 h of culture. (<b>A</b>) PBMCs, cultured in a control medium and (<b>B</b>) PBMCs cultured in a conditioned medium of umbilical cord MSCs (UC-MSCcm), with a significantly higher degree of cell cluster formation.</p> "> Figure 3
<p>Scatter plots displaying the changes in percentage values (<b>A</b>) of CD19+CD80+ B cells ((<b>A</b>)(<b>a</b>)), CD19+CD86+ B cells ((<b>A</b>)(<b>b</b>)), and CD19+CD268+ (BR3) B cells ((<b>A</b>)(<b>c</b>)) and MFI (<b>B</b>) of CD80 ((<b>B</b>)(<b>a</b>)), CD86 ((<b>B</b>)(<b>b</b>)), and CD268 ((<b>B</b>)(<b>c</b>)) on the membrane of B lymphocytes of SLE patients (<span class="html-italic">n</span> = 17) and healthy volunteers (HVs) (<span class="html-italic">n</span> = 10). Data are expressed as mean ± SD, and significant differences are presented after performing the Wilcoxon signed-rank test and Mann–Whitney U test (** <span class="html-italic">p</span> ≤ 0.01; **** <span class="html-italic">p</span> ≤ 0.0001).</p> "> Figure 4
<p>Flow cytometric dot plots of CD19+ B lymphocytes expressing the BR3 receptor from the pool of PBMCs cultured in (<b>A</b>) control medium and (<b>B</b>) UC-MSCcm. The red represents the formation of a homogeneous population of B lymphocytes with reduced expression of the BR3 receptor, influenced by the secretome of MSCs. A representative patient with SLE is shown in the figure.</p> "> Figure 5
<p>Scatter plots displaying the changes in percentage values (<b>A</b>) of CD19+CD40+ B cells ((<b>A</b>)(<b>a</b>)), CD19+CD279 (PD-1)+ B cells ((<b>A</b>)(<b>b</b>)), and CD19+HLA-DR+ B cells ((<b>A</b>)(<b>c</b>)) and MFI (<b>B</b>) of CD40 ((<b>B</b>)(<b>a</b>)), PD-1 ((<b>B</b>)(<b>b</b>)), and HLA-DR ((<b>B</b>)(<b>c</b>)) on the membrane of B lymphocytes of SLE patients (<span class="html-italic">n</span> = 17) and HVs (<span class="html-italic">n</span> = 10). Data are expressed as mean ± SD, and significant differences are presented after performing Wilcoxon test and Mann–Whitney U test (* <span class="html-italic">p</span> ≤ 0.05; ** <span class="html-italic">p</span> ≤ 0.01; *** <span class="html-italic">p</span> ≤ 0.001). Black lines represent significant differences between the two groups of participants.</p> "> Figure 6
<p>Scatter plots display the percentage value alterations of CD19+Annexin V+ cells (<b>A</b>) and CD19+PI+ cells (<b>B</b>). Data are expressed as mean ± SD, and significant differences are presented after performing Wilcoxon sign-rank test (** <span class="html-italic">p</span> ≤ 0.01; *** <span class="html-italic">p</span> ≤ 0.001).</p> "> Figure 7
<p>A scatter plot displays the changes in PGE2 levels (pg/mL) after culturing PBMCs in a UC-MSCcm and control medium. Data are expressed as mean ± SD, and significant differences are presented using Wilcoxon sign-rank test (* <span class="html-italic">p</span> ≤ 0.05).</p> ">
Abstract
:1. Introduction
2. Results
2.1. Generation of Conditioned Media (MSC Secretome)
2.1.1. Umbilical Cord Mesenchymal Stem Cells (UC-MSCs)
2.1.2. Characterization of UC-MSCs
2.2. Peripheral Blood Mononuclear Cells (PBMCs)
2.3. Expression of B-Cell Markers Associated with Their Activation, Antigen-Presenting Function, and Survival Is Influenced by the MSC Secretome
2.3.1. Influence of MSC Secretome on CD80, CD86, and BR3 B-Cell Expression
2.3.2. Influence of MSC Secretome on CD40, CD279 (PD-1), and HLA-DR B-Cell Expression
2.4. Influence of MSC Secretome on Apoptotic and Necrotic CD19+ B Cells from Peripheral Mononuclear Cells
2.5. Influence of MSC Secretome on PGE2 Levels After Culturing PBMCs in UC-MSCcm
3. Discussion
4. Materials and Methods
4.1. Study Subjects, Sample Collection, and Clinical Assessments
4.2. UC-MSCs: Isolation, Culture, and Conditioned Media Preparation
4.3. Phenotyping of UC-MSCs
4.4. Investigation of the Differentiation Potential of the Isolated MSCs
4.5. Isolation and Culture of PBMCs
4.6. Phenotyping of CD19+ B Cells
4.7. Apoptosis
4.8. Enzyme-Linked Immunosorbent Assay (ELISA)
4.9. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siegel, C.H.; Sammaritano, L.R. Systemic lupus erythematosus. JAMA 2024, 331, 1480. [Google Scholar] [CrossRef] [PubMed]
- Horowitz, D.L.; Furie, R. Belimumab is approved by the FDA: What more do we need to know to optimize decision making? Curr. Rheumatol. Rep. 2012, 14, 318–323. [Google Scholar] [CrossRef] [PubMed]
- Burki, T.K. FDA approval for anifrolumab in patients with lupus. Lancet Rheumatol. 2021, 3, e689. [Google Scholar] [CrossRef]
- Smulski, C.R.; Eibel, H. BAFF and BAFF-Receptor in B cell selection and survival. Front. Immunol. 2018, 9, 2285. [Google Scholar] [CrossRef] [PubMed]
- Moisini, I.; Davidson, A. BAFF: A local and systemic target in autoimmune diseases. Clin. Exp. Immunol. 2009, 158, 155–163. [Google Scholar] [CrossRef]
- Pathak, S.; Mohan, C. Cellular and molecular pathogenesis of systemic lupus erythematosus: Lessons from animal models. Arthritis Res. Ther. 2011, 13, 241. [Google Scholar] [CrossRef]
- De Gruijter, N.M.; Jebson, B.; Rosser, E.C. Cytokine production by human B cells: Role in health and autoimmune disease. Clin. Exp. Immunol. 2022, 210, 253–262. [Google Scholar] [CrossRef]
- Rastogi, I.; Jeon, D.; Moseman, J.E.; Muralidhar, A.; Potluri, H.K.; McNeel, D.G. Role of B cells as antigen presenting cells. Front. Immunol. 2022, 13, 954936. [Google Scholar] [CrossRef]
- Li, A.; Guo, F.; Pan, Q.; Chen, S.; Chen, J.; Liu, H.; Pan, Q. Mesenchymal stem cell therapy: Hope for patients with systemic lupus erythematosus. Front. Immunol. 2021, 12, 728190. [Google Scholar] [CrossRef]
- Hass, R.; Kasper, C.; Böhm, S.; Jacobs, R. Different populations and sources of human mesenchymal stem cells (MSC): A comparison of adult and neonatal tissue-derived MSC. Cell Commun. Signal. 2011, 9, 12. [Google Scholar] [CrossRef]
- Haddad, R.; Saldanha-Araujo, F. Mechanisms of T-Cell immunosuppression by mesenchymal stromal cells: What do we know so far? Biomed Res. Int. 2014, 2014, 216806. [Google Scholar] [CrossRef] [PubMed]
- Spaggiari, G.M.; Capobianco, A.; Abdelrazik, H.; Becchetti, F.; Mingari, M.C.; Moretta, L. Mesenchymal stem cells inhibit natural killer–cell proliferation, cytotoxicity, and cytokine production: Role of indoleamine 2,3-dioxygenase and prostaglandin E2. Blood 2007, 111, 1327–1333. [Google Scholar] [CrossRef] [PubMed]
- Lu, D.; Xu, Y.; Liu, Q.; Zhang, Q. Mesenchymal stem Cell-Macrophage crosstalk and maintenance of inflammatory microenvironment homeostasis. Front. Cell Dev. Biol. 2021, 9, 681171. [Google Scholar] [CrossRef] [PubMed]
- Corcione, A.; Benvenuto, F.; Ferretti, E.; Giunti, D.; Cappiello, V.; Cazzanti, F.; Risso, M.; Gualandi, F.; Mancardi, G.L.; Pistoia, V.; et al. Human mesenchymal stem cells modulate B-cell functions. Blood 2006, 107, 367–372. [Google Scholar] [CrossRef]
- Bochev, I.; Elmadjian, G.; Kyurkchiev, D.; Tzvetanov, L.; Altankova, I.; Tivchev, P.; Kyurkchiev, S. Mesenchymal stem cells from human bone marrow or adipose tissue differently modulate mitogen-stimulated B-cell immunoglobulin production in vitro. Cell Biol. Int. 2008, 32, 384–393. [Google Scholar] [CrossRef]
- Asari, S.; Itakura, S.; Ferreri, K.; Liu, C.; Kuroda, Y.; Kandeel, F.; Mullen, Y. Mesenchymal stem cells suppress B-cell terminal differentiation. Exp. Hematol. 2009, 37, 604–615. [Google Scholar] [CrossRef]
- Rosado, M.M.; Bernardo, M.E.; Scarsella, M.; Conforti, A.; Giorda, E.; Biagini, S.; Cascioli, S.; Rossi, F.; Guzzo, I.; Vivarelli, M.; et al. Inhibition of B-Cell proliferation and antibody production by mesenchymal stromal cells is mediated by T cells. Stem. Cells Dev. 2014, 24, 93–103. [Google Scholar] [CrossRef]
- Műzes, G.; Sipos, F. Mesenchymal stem Cell-Derived secretome: A potential therapeutic option for autoimmune and Immune-Mediated inflammatory diseases. Cells 2022, 11, 2300. [Google Scholar] [CrossRef]
- Kumar, P.; Kandoi, S.; Misra, R.; Vijayalakshmi, S.; Rajagopal, K.; Verma, R.S. The mesenchymal stem cell secretome: A new paradigm towards cell-free therapeutic mode in regenerative medicine. Cytokine Growth Factor. Rev. 2019, 46, 1–9. [Google Scholar] [CrossRef]
- Dominici, M.; Blanc, K.L.; Mueller, I.; Slaper-Cortenbach, I.; Marini, F.; Krause, D.; Deans, R.; Keating, A.; Prockop, D.; Horwitz, E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006, 8, 315–317. [Google Scholar] [CrossRef]
- Yordanova, A.; Kyurkchiev, D.; Ivanova, M.; Tumangelova-Yuzeir, K.; Belemezova, K.; Ivanova-Todorova, E. Secreted Factors from Umbilical Cord-Mesenchymal Stem Cells Affect CD86 Expression on B Lymphocytes and Increase CCL5 Chemokine Secretion by Healthy Donors’ PBMC. Comptes Rendus L’Academie Bulg. Sci. 2022, 75, 1687–1695. [Google Scholar] [CrossRef]
- Munoz-Perez, E.; Gonzalez-Pujana, A.; Igartua, M.; Santos-Vizcaino, E.; Hernandez, R.M. Mesenchymal Stromal cell secretome for the Treatment of Immune-Mediated Inflammatory Diseases: Latest Trends in isolation, content optimization and delivery avenues. Pharmaceutics 2021, 13, 1802. [Google Scholar] [CrossRef] [PubMed]
- Karrar, S.; Graham, D.S.C. Review: Abnormal B cell development in Systemic lupus erythematosus: What the Genetics tell us. Arthritis Rheumatol. 2017, 70, 496–507. [Google Scholar] [CrossRef]
- Carroll, M.J.; Stopfer, L.E.; Kreeger, P.K. A simplified culture system to examine soluble factor interactions between mammalian cells. Chem. Commun. 2013, 50, 5279–5281. [Google Scholar] [CrossRef]
- Damayanti, R.H.; Rusdiana, T.; Wathoni, N. Mesenchymal stem cell secretome for Dermatology Application: A review. Clin. Cosmet. Investig. Dermatol. 2021, 14, 1401–1412. [Google Scholar] [CrossRef]
- Nakandakari-Higa, S.; Walker, S.; Canesso MC, C.; Van Der Heide, V.; Chudnovskiy, A.; Kim, D.; Jacobsen, J.T.; Parsa, R.; Bilanovic, J.; Parigi, S.M.; et al. Universal recording of immune cell interactions in vivo. Nature 2024, 627, 399–406. [Google Scholar] [CrossRef]
- Vandenborre, K.; Van Gool, S.W.; Kasran, A.; Ceuppens, J.L.; Boogaerts, M.A.; Vandenberghe, P. Interaction of CTLA-4 (CD152) with CD80 or CD86 inhibits human T-cell activation. Immunology 1999, 98, 413–421. [Google Scholar] [CrossRef] [PubMed]
- Suvas, S.; Singh, V.; Sahdev, S.; Vohra, H.; Agrewala, J.N. Distinct role of CD80 and CD86 in the regulation of the activation of B cell and B cell lymphoma. J. Biol. Chem. 2002, 277, 7766–7775. [Google Scholar] [CrossRef] [PubMed]
- Tekguc, M.; Wing, J.B.; Osaki, M.; Long, J.; Sakaguchi, S. Treg-expressed CTLA-4 depletes CD80/CD86 by trogocytosis, releasing free PD-L1 on antigen-presenting cells. Proc. Natl. Acad. Sci. USA 2021, 118, e2023739118. [Google Scholar] [CrossRef]
- Kennedy, A.; Waters, E.; Rowshanravan, B.; Hinze, C.; Williams, C.; Janman, D.; Fox, T.A.; Booth, C.; Pesenacker, A.M.; Halliday, N.; et al. Differences in CD80 and CD86 transendocytosis reveal CD86 as a key target for CTLA-4 immune regulation. Nat. Immunol. 2022, 23, 1365–1378. [Google Scholar] [CrossRef]
- Azevedo, R.I.; Minskaia, E.; Fernandes-Platzgummer, A.; Vieira AI, S.; Da Silva, C.L.; Cabral JM, S.; Lacerda, J.F. Mesenchymal stromal cells induce regulatory T cells via epigenetic conversion of human conventional CD4 T cells in vitro. Stem Cells 2020, 38, 1007–1019. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Lin, W.; Hsu, F.; Yu, K. The susceptibility of single nucleotide polymorphisms located within co-stimulatory pathways to systemic lupus erythematosus. Front. Immunol. 2024, 14, 1331796. [Google Scholar] [CrossRef] [PubMed]
- Wykes, M. Why do B cells produce CD40 ligand? Immunol. Cell Biol. 2003, 81, 328–331. [Google Scholar] [CrossRef]
- Upadhyay, M.; Priya, G.K.; Ramesh, P.; Madhavi, M.; Rath, S.; Bal, V.; George, A.; Vaidya, T. CD40 signaling drives B lymphocytes into an intermediate Memory-Like state, poised between naïve and plasma cells. J. Cell Physiol. 2014, 229, 1387–1396. [Google Scholar] [CrossRef]
- Andjelic, S.; Hsia, C.; Suzuki, H.; Kadowaki, T.; Koyasu, S.; Liou, H. Phosphatidylinositol 3-Kinase and NF-ΚB/REL are at the divergence of CD40-Mediated Proliferation and Survival Pathways. J. Immun. 2000, 165, 3860–3867. [Google Scholar] [CrossRef]
- Wangriatisak, K.; Kochayoo, P.; Thawornpan, P.; Leepiyasakulchai, C.; Suangtamai, T.; Ngamjanyaporn, P.; Khowawisetsut, L.; Khaenam, P.; Pisitkun, P.; Chootong, P. CD4+T-cell cooperation promoted pathogenic function of activated naïve B cells of patients with SLE. Lupus Sci. Med. 2022, 9, e000739. [Google Scholar] [CrossRef]
- Kuca-Warnawin, E.; Janicka, I.; Szczęsny, P.; Olesińska, M.; Bonek, K.; Głuszko, P.; Kontny, E. Modulation of T-Cell Activation Markers Expression by the Adipose Tissue–Derived Mesenchymal Stem Cells of Patients with Rheumatic Diseases. Cell Transplant. 2020, 29, 096368972094568. [Google Scholar] [CrossRef]
- Wang, B.; Chen, C.; Liu, X.; Zhou, S.; Xu, T.; Wu, M. The effect of combining PD-1 agonist and low-dose Interleukin-2 on treating systemic lupus erythematosus. Front. Immunol. 2023, 14, 1111005. [Google Scholar] [CrossRef]
- Curran, C.S.; Gupta, S.; Sanz, I.; Sharon, E. PD-1 immunobiology in systemic lupus erythematosus. J. Autoimmun. 2018, 97, 1–9. [Google Scholar] [CrossRef]
- Thibult, M.; Mamessier, E.; Gertner-Dardenne, J.; Pastor, S.; Just-Landi, S.; Xerri, L.; Chetaille, B.; Olive, D. PD-1 is a novel regulator of human B-cell activation. Int. Immunol. 2012, 25, 129–137. [Google Scholar] [CrossRef]
- Shabgah, A.G.; Shariati-Sarabi, Z.; Tavakkol-Afshari, J.; Ghasemi, A.; Ghoryani, M.; Mohammadi, M. A significant decrease of BAFF, APRIL, and BAFF receptors following mesenchymal stem cell transplantation in patients with refractory rheumatoid arthritis. Gene 2020, 732, 144336. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Chen, X.; Liu, Q.; Xu, D.; Zheng, H.; Liu, L.; Liu, Q.; Liu, M.; Fan, Z.; Sun, J.; et al. Alteration of naïve and memory B-Cell subset in chronic Graft-Versus-Host disease patients after treatment with mesenchymal stromal cells. Stem Cells Transl. Med. 2014, 3, 1023–1031. [Google Scholar] [CrossRef]
- Zhao, L.; Li, Y.; Smith, M.; Wang, J.; Zhang, W.; Tang, F.; Tian, X.; Wang, H.; Zhang, F.; Ba, D.; et al. Expressions of BAFF/BAFF receptors and their correlation with disease activity in Chinese SLE patients. Lupus 2010, 19, 1534–1549. [Google Scholar] [CrossRef] [PubMed]
- Saito, Y.; Miyagawa, Y.; Onda, K.; Nakajima, H.; Sato, B.; Horiuchi, Y.; Okita, H.; Katagiri, Y.U.; Saito, M.; Shimizu, T.; et al. B-cell-activating factor inhibits CD20-mediated and B-cell receptor-mediated apoptosis in human B cells. Immunology 2008, 125, 570–590. [Google Scholar] [CrossRef]
- Fan, L.; Hu, C.; Chen, J.; Cen, P.; Wang, J.; Li, L. Interaction between Mesenchymal Stem Cells and B-Cells. IJMS 2016, 17, 650. [Google Scholar] [CrossRef] [PubMed]
- Kyurkchiev, D.; Bochev, I.; Ivanova-Todorova, E.; Mourdjeva, M.; Oreshkova, T.; Belemezova, K.; Kyurkchiev, S. Secretion of immunoregulatory cytokines by mesenchymal stem cells. World J. Stem Cells 2014, 6, 552. [Google Scholar] [CrossRef]
- Polchert, D.; Sobinsky, J.; Douglas, G.; Kidd, M.; Moadsiri, A.; Reina, E.; Genrich, K.; Mehrotra, S.; Setty, S.; Smith, B.; et al. IFN-γ activation of mesenchymal stem cells for treatment and prevention of graft versus host disease. Eur. J. Immunol. 2008, 38, 1745–1755. [Google Scholar] [CrossRef]
- Murn, J.; Alibert, O.; Wu, N.; Tendil, S.; Gidrol, X. Prostaglandin E2 regulates B cell proliferation through a candidate tumor suppressor, Ptger4. J. Exp. Med. 2008, 205, 3091–3103. [Google Scholar] [CrossRef]
- Roper, R.L.; Phipps, R.P. Prostaglandin E2 and cAMP inhibit B lymphocyte activation and simultaneously promote IgE and IgG1 synthesis. J. Immunol. 1992, 149, 2984–2991. [Google Scholar] [CrossRef]
- Brown, D.M.; Warner, G.L.; Alés-Martínez, J.; Scott, D.W.; Phipps, R.P. Prostaglandin E2 induces apoptosis in immature normal and malignant B lymphocytes. Clin. Immunol. Immunopathol. 1992, 63, 221–229. [Google Scholar] [CrossRef]
- Porter, B.O.; Malek, T.R. Prostaglandin E2 inhibits T cell activation-induced apoptosis and Fas-mediated cellular cytotoxicity by blockade of Fas-ligand induction. Eur. J. Immunol. 1999, 29, 2360–2365. [Google Scholar] [CrossRef]
- Belemezova, K.; Bochev, I.; Ivanova-Todorova, E.; Kyurkchiev, S.; Kyurkchiev, D. A study of the transformation of umbilical cord mesenchymal stem cells by interferon-gamma. Iran. J. Basic. Med. Sci. 2021, 24, 1203–1210. [Google Scholar] [CrossRef] [PubMed]
SLE | HV | |||
---|---|---|---|---|
N | 17 | 10 | ||
Age (Years) | 42.71 ± 8.28 1 | 33.5 ± 9.10 1 | ||
Gender | ||||
Male (%) | 2 (12) | 5 (50) | ||
Female (%) | 15 (88) | 5 (50) | ||
Disease duration (Years) | 6.82 ± 7.92 1 | - | ||
ANA n (titer) | n (immunofluorescence pattern (ICAP)) | 13 (≥1:1280) 3 (≥1:320) 1 (1:160) | 11 (AC-1) 7 (AC-4) 3 (AC-5) 2 (AC-21-like) | - |
Anti-dsDNA (IU/mL) | 65.65 ± 68.54 1 | - | ||
C3 (g/L) | 1.22 ± 0.52 1 | - | ||
C4 (g/L) | 0.22 ± 0.07 1 | - | ||
ESR (mm/h) | 15.76 ± 20.66 1 | - | ||
CRP (mg/L) | 9.42 ± 19.54 1 | - | ||
SLEDAI-2K | 10.88 ± 6.95 1 | - | ||
Clinical manifestations n (%) | - | |||
Musculoskeletal manifestations | 15 (48) | - | ||
Mucocutaneous manifestations | 10 (32) | - | ||
Hematological abnormalities | 2 (7) | - | ||
Renal involvement | 2 (7) | - | ||
Neuropsychiatric lupus | 2 (6) | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yordanova, A.; Ivanova, M.; Tumangelova-Yuzeir, K.; Angelov, A.; Kyurkchiev, S.; Belemezova, K.; Kurteva, E.; Kyurkchiev, D.; Ivanova-Todorova, E. Umbilical Cord Mesenchymal Stem Cell Secretome: A Potential Regulator of B Cells in Systemic Lupus Erythematosus. Int. J. Mol. Sci. 2024, 25, 12515. https://doi.org/10.3390/ijms252312515
Yordanova A, Ivanova M, Tumangelova-Yuzeir K, Angelov A, Kyurkchiev S, Belemezova K, Kurteva E, Kyurkchiev D, Ivanova-Todorova E. Umbilical Cord Mesenchymal Stem Cell Secretome: A Potential Regulator of B Cells in Systemic Lupus Erythematosus. International Journal of Molecular Sciences. 2024; 25(23):12515. https://doi.org/10.3390/ijms252312515
Chicago/Turabian StyleYordanova, Adelina, Mariana Ivanova, Kalina Tumangelova-Yuzeir, Alexander Angelov, Stanimir Kyurkchiev, Kalina Belemezova, Ekaterina Kurteva, Dobroslav Kyurkchiev, and Ekaterina Ivanova-Todorova. 2024. "Umbilical Cord Mesenchymal Stem Cell Secretome: A Potential Regulator of B Cells in Systemic Lupus Erythematosus" International Journal of Molecular Sciences 25, no. 23: 12515. https://doi.org/10.3390/ijms252312515
APA StyleYordanova, A., Ivanova, M., Tumangelova-Yuzeir, K., Angelov, A., Kyurkchiev, S., Belemezova, K., Kurteva, E., Kyurkchiev, D., & Ivanova-Todorova, E. (2024). Umbilical Cord Mesenchymal Stem Cell Secretome: A Potential Regulator of B Cells in Systemic Lupus Erythematosus. International Journal of Molecular Sciences, 25(23), 12515. https://doi.org/10.3390/ijms252312515