Rabbit and Human Angiotensin-Converting Enzyme-2: Structure and Electric Properties
<p>Renin-angiotensin system. <span class="html-italic">Subsection</span> (<b>a</b>) on the left: Renin and angiotensin-converting enzyme (ACE) action. The precursor α-2-globulin angiotensinogen is produced by hepatocytes. The renal enzyme renin cleaves the covalent peptide bond after the first 10 amino acids from the N-terminus of angiotensinogen, leading to the formation of angiotensin-I (first reaction). This decapeptide is converted by the pulmonary angiotensin-converting enzyme (ACE) to the octapeptide angiotensin-II by the cleavage of the last two amino acid residues, resulting in the emergence of a carboxylic group on the C-terminus (second reaction). <span class="html-italic">Subsection</span> (<b>b</b>) on the right: Angiotensin-converting enzyme-2 (ACE2) action. The angiotensin-converting enzyme-2 (ACE2) cleaves one amino acid residue from the C-terminus of both angiotensin peptides, which leads to the formation of the nonapeptide angiotensin-1–9 and the heptapeptide angiotensin-1–7, respectively. The cleaved peptide bonds (in the two subsections) are shown by dotted lines colored according to the corresponding enzyme: blue (ACE) or red (ACE2). The amino acid residues are colored according to their charge and hydrophilicity: green (uncharged hydrophilic), blue (positively charged hydrophilic), red (negatively charged hydrophilic), and yellow (uncharged hydrophobic); the charges are determined at neutral pH. The end-side residues are marked by double color considering the protonated α-amino group (NH<sub>3</sub><sup>+</sup>–) on the N-terminus and the deprotonated carboxylic group (–COO<sup>−</sup>) on the C-terminus. The N-end aspartic acid (Asp) residue bears one positive (NH<sub>3</sub><sup>+</sup>–) and one negative (COO<sup>−</sup>–) charge. The C-end histidine (His) residue of the angiotensin-1-9 bears one negative charge (the deprotonated carboxyl group) and one positive charge at acid pH (the protonated imidazole group), which disappears at basic pH. The C-ends of the remaining three peptides have only negative charge (–COO<sup>−</sup>).</p> "> Figure 2
<p>Primary amino acid sequence of the polypeptide chains of human (the rows beginning with <b>h</b>) and rabbit (<b>r</b>) ACE2. The numbers at the end of every row indicate the first and the last amino acid residue on the corresponding row. The amino acid residues are denoted according to the standard one-letter code. The cells of the different residues are colored according to the electric charge at pH 7.0 and the hydrophilicity of the given residue: red (negatively charged hydrophilic), blue (positively charged hydrophilic), green (uncharged hydrophilic), and yellow (uncharged hydrophobic). The polypeptide chain is divided (indicated by vertical lines) into three segments: signal peptide (amino acid residues 1–18, colored in bright orange), catalytic domain (19–615, colored in bright gray), and transmembrane segment (616–805 colored in bright purple). The five residues included in the zinc-binding motif HEMGH of the active center of the enzyme are denoted by the red rectangle.</p> "> Figure 2 Cont.
<p>Primary amino acid sequence of the polypeptide chains of human (the rows beginning with <b>h</b>) and rabbit (<b>r</b>) ACE2. The numbers at the end of every row indicate the first and the last amino acid residue on the corresponding row. The amino acid residues are denoted according to the standard one-letter code. The cells of the different residues are colored according to the electric charge at pH 7.0 and the hydrophilicity of the given residue: red (negatively charged hydrophilic), blue (positively charged hydrophilic), green (uncharged hydrophilic), and yellow (uncharged hydrophobic). The polypeptide chain is divided (indicated by vertical lines) into three segments: signal peptide (amino acid residues 1–18, colored in bright orange), catalytic domain (19–615, colored in bright gray), and transmembrane segment (616–805 colored in bright purple). The five residues included in the zinc-binding motif HEMGH of the active center of the enzyme are denoted by the red rectangle.</p> "> Figure 3
<p>(<b>a</b>–<b>d</b>) 3D structure models of the human (red, hACE2) and rabbit (green, rACE2) catalytic domains of the angiotensin-converting enzyme-2 (the upper two models (<b>a</b>,<b>b</b>)); the α-helix segments are depicted as ribbon spirals. The model of the rabbit ACE2 (<b>b</b>) is reconstructed by replacement of the different amino acid residues in the hACE2 (PDB: 1r42) model (<b>a</b>). The violet spherical object (Zn<sup>2+</sup>) is the zinc atom in the enzyme active center. The low two models (<b>c</b>,<b>d</b>) present the aliment (hACE2+rACE2) of the human and rabbit ACE2 in two different projections: the 3D volume of the protein globules (the ribbon model on the left) (<b>c</b>) and the 2D surface of the globules (the atomic model on the right) (<b>d</b>). The right bottom model (<b>d</b>) presents the atoms exposed on the surface of the aligned two protein globules; the atoms are colored fully in red (hACE2) or green (rACE2) when they are entirely protruded above the others, or in mixed color when their coordinates partially coincide. The brightness, shade, and color nuance of the atomic images give the impression for a quasi 3D surface of the protein globules.</p> "> Figure 4
<p>pH dependences of the net electric charge <span class="html-italic">nz</span> + 2 of the globular catalytic domain of human (PDB: 1r42, hACE2, red curve 1) and reconstructed rabbit (rACE2, green curve 2) angiotensin-converting enzyme-2 in 3D conformation of the polypeptide chain in aqueous medium. The net charge of the two globular domains is the algebraic sum of the positive and negative coulombic charges of the polypeptide chain with the addition of two positive charges of the Zn<sup>2+</sup> atom in the catalytic center. <span class="html-italic">Insert</span>: pH dependence of hACE2 (red curve 1) and rACE2 (green curve 2) with denoted isoelectric point (<span class="html-italic">nz</span> = 0): pI 5.21 (human) and pI 5.21 (rabbit) ACE2.</p> "> Figure 5
<p>Electrostatic potential on the 3D surface of the catalytic domain of human (hACE2, two upper models, PDB: 1r42) and reconstructed rabbit (rACE2, two lower models) of angiotensin-converting enzyme-2 at pH 5.0 (two left models) and at pH 7.0 (two right models). The surfaces of the models are colored according to the electrostatic potential (negative—red, positive—blue), computed at pH 5.0 or pH 7.0, ionic strength 0.0001 mol/L, and temperature 20 °C, and visualized in the range <span class="html-italic">kT</span>/<span class="html-italic">e</span> = ±6 J/C (the scale on the right); 1 <span class="html-italic">kT</span>/<span class="html-italic">e</span> = 25.26 mV at 20 °C or 26.73 mV at 37 °C.</p> "> Figure 6
<p>Amino acid sequence of the polypeptide chains of human (rows beginning with <b>h</b>) and rabbit (<b>r</b>) ACE2. The numbers at the end of every row indicate the first and the last amino acid residue on the corresponding row. The cells of the amino acid residues (denoted by the standard one-letter code) are colored according to their affinity to the water molecules: hydrophilic (green) or hydrophobic (yellow). The vertical lines and the red rectangle denote the beginning and the end of the catalytic domain and the amino acid residues from the zinc-binding motif included in the enzyme active center, respectively.</p> "> Figure 6 Cont.
<p>Amino acid sequence of the polypeptide chains of human (rows beginning with <b>h</b>) and rabbit (<b>r</b>) ACE2. The numbers at the end of every row indicate the first and the last amino acid residue on the corresponding row. The cells of the amino acid residues (denoted by the standard one-letter code) are colored according to their affinity to the water molecules: hydrophilic (green) or hydrophobic (yellow). The vertical lines and the red rectangle denote the beginning and the end of the catalytic domain and the amino acid residues from the zinc-binding motif included in the enzyme active center, respectively.</p> "> Figure 7
<p>pH dependences of the electrostatic component Δ<span class="html-italic">G</span><sub>el</sub> of the folding energy Δ<span class="html-italic">G</span><sub>fold</sub> of the human (hACE2, PDB: 1r42, curve 1) and reconstructed rabbit (rACE2, curve 2) polypeptide chains of angiotensin-converting enzyme-2 at the transformation of the polypeptide chain from fully unfolded (random coil) to folded (globular 3D structure) conformation. The two 3D models are optimized by the program YASARA.</p> "> Figure 8
<p>Amino acid sequence of the polypeptide chains of transmembrane collectrin-like segment of the human ACE2 (the rows denoted by <b>A</b>) and human collectrin (<b>C</b>). The numbers at the end of every row indicate the first and the last amino acid residue on the corresponding row (the numbering corresponds to that in the hACE2 shown in <a href="#ijms-25-12393-f006" class="html-fig">Figure 6</a>). The cells of the amino acid residues (denoted by the standard one-letter code) are colored according to their affinity to water: hydrophilic (green) or hydrophobic (yellow). The absent amino acid residues are denoted by dashes.</p> "> Figure 9
<p>pH dependences of the electrostatic component Δ<span class="html-italic">G</span><sub>el</sub> of the folding energy of the catalytic domain of rabbit ACE2 polypeptide chain at transformation from random coil to 3D structure for four models: reconstructed on the base of hACE2 (PDB: 1r42, curve 1) and optimized by Chimera (curve 2) or YASARA (curve 3), and created by AlphaFold2 on the base of amino acid sequence of rACE2 (curve 4).</p> "> Figure 10
<p>pH dependences of the net electric charge <span class="html-italic">nz</span> of the catalytic domain of human (hACE2, curves 1, 2, and 3) and rabbit (rACE2, curves 4, 5, and 6) angiotensin-converting enzyme-2 in aqueous medium when the polypeptide chain is in unfolded conformation (random coil, curves 1 and 4), folded in 3D globule without Zn<sup>2+</sup> (curves 2 and 5) and when the Zn<sup>2+</sup> cation is bound in the enzyme active center (curves 3 and 6). The folded 3D conformations correspond to the crystallographic model of hACE2 (PDB:1r42, red curve 3) and to the reconstructed model of rACE2 (green curve 6). The isoelectric points are denoted by open cycles. The net charge <span class="html-italic">nz</span> is the algebraic sum of the positive and negative coulombic charges of the polypeptide chain without (curves 1, 2, 4, 5) or with the attached Zn<sup>2+</sup> cation (curves 3 and 6).</p> "> Figure 11
<p>pH dependences of the electrostatic component Δ<span class="html-italic">G</span><sub>el</sub> of the folding energy (the main figure) and the net electric charge <span class="html-italic">nz</span> (the inserted figure) of horse myoglobine according to the original 3D model (PDB: 1AZI, curves 1) and its reconstructed analog (curves 2). The reconstruction of the 3D model of the horse myoglobine is performed on the base of human myoglobine (PDB: 3RGK) considering the difference in the amino acid sequences of the human and horse myoglobine without optimization.</p> ">
Abstract
:1. Introduction
2. Results and Interpretation
2.1. Structural Analysis
2.2. Electric Charge
2.3. Electrostatic Potential
2.4. Thermodynamic Stability
3. Discussion
3.1. Collectrin Similarity
3.2. Stability of 3D Structure
3.3. Electric Charge in Unfolded and 3D-Folded Conformation
3.4. Isoelectric Point in Unfolded and 3D-Folded Conformation
3.5. Isoelectric Point: Calculated and Experimental
3.6. Electrostatic Potential and Enzyme Activity
3.7. Verification of the 3D Reconstruction Procedure
3.8. Glycosylation and Glycation
4. Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Eriksson, U.; Danilczyk, U.; Penninger, J.M. Just the beginning: Novel functions for angiotensin-converting enzymes. Curr. Biol. 2002, 12, R745–R752. [Google Scholar] [CrossRef] [PubMed]
- Oudit, G.Y.; Crackower, M.A.; Backx, P.H.; Penninger, J.M. The role of ACE2 in cardiovascular physiology. Trends Cardiovasc. Med. 2003, 13, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Yagil, Y.; Yagil, C. Hypothesis: ACE2 modulates blood pressure in the mammalian organism. Hypertension 2003, 41, 871–873. [Google Scholar] [CrossRef] [PubMed]
- Raizada, M.K.; Ferreira, A.J. ACE2: A new target for cardiovascular disease therapeutics. J. Cardiovasc. Pharmacol. 2007, 50, 112–119. [Google Scholar] [CrossRef]
- Tipnis, S.R.; Hooper, N.M.; Hyde, R.; Karran, E.; Christie, G.; Turner, A.J. A human homolog of angiotensin-converting enzyme: Cloning and functional expression as a captopril-insensitive carboxypeptidase. J. Biol. Chem. 2000, 275, 33238–33243. [Google Scholar] [CrossRef]
- Donoghue, M.; Hsieh, F.; Baronas, E.; Godbout, K.; Gosselin, M.; Stagliano, N.; Acton, S. A novel angiotensin-converting enzyme–related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circ. Res. 2000, 87, e1–e9. [Google Scholar] [CrossRef]
- Crackower, M.A.; Sarao, R.; Oudit, G.Y.; Yagil, C.; Kozieradzki, I.; Scanga, S.E.; Olivera-dos-Santos, A.J.; da Costa, J.; Zhang, L.; Pei, Y.; et al. Angiotensin-converting enzyme 2 is an essential regulator of heart function. Nature 2002, 417, 822–828. [Google Scholar] [CrossRef]
- Danilczyk, U.; Eriksson, U.; Crackower, M.A.; Penninger, J.M. A story of two ACEs. J. Mol. Med. 2003, 81, 227–234. [Google Scholar] [CrossRef]
- Avdonin, P.P.; Rybakova, E.Y.; Trufanov, S.K.; Avdonin, P.V. SARS-CoV-2 receptors and their involvement in cell infection. Biochem. (Mosc.) Suppl. Ser. A Membr. Cell Biol. 2023, 17, 1–11. [Google Scholar] [CrossRef]
- Shirbhate, E.; Pandey, J.; Patel, V.K.; Kamal, M.; Jawaid, T.; Gorain, B.; Kesharwani, P.; Rajak, H. Understanding the role of ACE-2 receptor in pathogenesis of COVID-19 disease: A potential approach for therapeutic intervention. Pharmacol. Rep. 2021, 73, 1539–1550. [Google Scholar] [CrossRef]
- Wan, Y.; Shang, J.; Graham, R.; Baric, R.S.; Li, F. Receptor recognition by the novel coronavirus from Wuhan: An analysis based on decade-long structural studies of SARS coronavirus. J. Virol. 2020, 94, 1110–1128. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Deng, W.; Li, S.; Yang, X. Advances in research on ACE2 as a receptor for 2019-nCoV. Cell. Mol. Life Sci. 2021, 78, 531–544. [Google Scholar] [CrossRef] [PubMed]
- Hikmet, F.; Méar, L.; Edvinsson, Å.; Micke, P.; Uhlén, M.; Lindskog, C. The protein expression profile of ACE2 in human tissues. Mol. Syst. Biol. 2020, 16, e9610. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Guo, Y.; Pan, Y.; Zhao, Z.J. Structure analysis of the receptor binding of 2019-nCoV. Biochem. Biophys. Res. Commun. 2020, 525, 135–140. [Google Scholar] [CrossRef]
- Verma, S.; Saksena, S.; Sadri-Ardekani, H. ACE2 receptor expression in testes: Implications in coronavirus disease 2019 pathogenesis. Biol. Reprod. 2020, 103, 449–451. [Google Scholar] [CrossRef]
- Hamming, I.; Timens, W.; Bulthuis, M.L.C.; Lely, A.T.; Navis, G.V.; van Goor, H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J. Pathol. A J. Pathol. Soc. Great Br. Irel. 2004, 203, 631–637. [Google Scholar] [CrossRef]
- Guy, J.L.; Jackson, R.M.; Acharya, K.R.; Sturrock, E.D.; Hooper, N.M.; Turner, A.J. Angiotensin-converting enzyme-2 (ACE2): Comparative modeling of the active site, specificity requirements, and chloride dependence. Biochemistry 2003, 42, 13185–13192. [Google Scholar] [CrossRef]
- Lubbe, L.; Cozier, G.E.; Oosthuizen, D.; Acharya, K.R.; Sturrock, E.D. ACE2 and ACE: Structure-based insights into mechanism, regulation and receptor recognition by SARS-CoV. Clin. Sci. 2020, 134, 2851–2871. [Google Scholar] [CrossRef]
- Warner, F.J.; Smith, A.I.; Hooper, N.M.; Turner, A.J. Angiotensin-converting enzyme-2: A molecular and cellular perspective. Cell. Mol. Life Sci. CMLS 2004, 61, 2704–2713. [Google Scholar] [CrossRef]
- Huang, L.; Sexton, D.J.; Skogerson, K.; Devlin, M.; Smith, R.; Sanyal, I.; Parry, T.; Kent, R.; Enright, J.; Wu, Q.L.; et al. Novel peptide inhibitors of angiotensin-converting enzyme 2. J. Biol. Chem. 2003, 278, 15532–15540. [Google Scholar] [CrossRef]
- Hristova, S.H.; Zhivkov, A.M. Three-dimensional structural stability and local electrostatic potential at point mutations in spike protein of SARS-CoV-2 coronavirus. Int. J. Mol. Sci. 2024, 25, 2174. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Jiang, Y.; Yan, J. Comparative analyses of ACE2 and TMPRSS2 gene: Implications for the risk to which vertebrate animals are susceptible to SARS-CoV-2. J. Med. Virol. 2021, 93, 5487–5504. [Google Scholar] [CrossRef] [PubMed]
- Preziuso, S. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exhibits high predicted binding affinity to ACE2 from lagomorphs (rabbits and pikas). Animals 2020, 10, 1460. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, H.; Tang, X.; Fang, S.; Ma, D.; Du, C.; Wang, Y.; Pan, H.; Yao, W.; Zhang, R.; et al. SARS-CoV-2 and three related coronaviruses utilize multiple ACE2 orthologs and are potently blocked by an improved ACE2-Ig. J. Virol. 2020, 94, e01283-20. [Google Scholar] [CrossRef]
- Zaharieva, M.M.; Foka, P.; Karamichali, E.; Kroumov, A.D.; Philipov, S.; Ilieva, Y.; Kim, T.C.; Podlesniy, P.; Manasiev, Y.; Kussovski, V.; et al. Photodynamic Inactivation of Bovine Coronavirus with the Photosensitizer Toluidine Blue O. Viruses 2024, 16, 48. [Google Scholar] [CrossRef]
- Esteves, P.J.; Abrantes, J.; Baldauf, H.M.; BenMohamed, L.; Chen, Y.; Christensen, N.; González-Gallego, J.; Giacani, L.; Hu, J.; Kaplan, G.; et al. The wide utility of rabbits as models of human diseases. Exp. Mol. Med. 2018, 50, 1–10. [Google Scholar] [CrossRef]
- Fritz, M.; de Riols de Fonclare, D.; Garcia, D.; Beurlet, S.; Becquart, P.; Rosolen, S.G.; Briend-Marchal, A.; Leroy, E.M. First Evidence of Natural SARS-CoV-2 infection in domestic rabbits. Vet. Sci. 2022, 9, 49. [Google Scholar] [CrossRef]
- Mykytyn, A.Z.; Lamers, M.M.; Okba, N.M.; Breugem, T.I.; Schipper, D.; van den Doel, P.B.; van Run, P.; van Amerongen, G.; de Waal, L.; Koopmans, M.P.; et al. Susceptibility of rabbits to SARS-CoV-2. Emerg. Microbes Infect. 2021, 10, 1–7. [Google Scholar] [CrossRef]
- Jia, H.; Neptune, E.; Cui, H. Targeting ACE2 for COVID-19 therapy: Opportunities and challenges. Am. J. Respir. Cell Mol. Biol. 2021, 64, 416–425. [Google Scholar] [CrossRef]
- Zhang, H.; Wada, J.; Hida, K.; Tsuchiyama, Y.; Hiragushi, K.; Shikata, K.; Wang, H.; Lin, S.; Kanwar, S.Y.; Makino, H. Collectrin, a collecting duct-specific transmembrane glycoprotein, is a novel homolog of ACE2 and is developmentally regulated in embryonic kidneys. J. Biol. Chem. 2001, 276, 17132–17139. [Google Scholar] [CrossRef]
- Zhang, Y.; Wada, J. Collectrin, a homologue of ACE2, its transcriptional control and functional perspectives. Biochem. Biophys. Res. Commun. 2007, 363, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Chu, P.L.; Le, T.H. Role of collectrin, an ACE2 homologue, in blood pressure homeostasis. Curr. Hypertens. Rep. 2014, 16, 1–7. [Google Scholar] [CrossRef]
- Danilczyk, U.; Sarao, R.; Remy, C.; Benabbas, C.; Stange, G.; Richter, A.; Arya, S.; Pospisilik, J.A.; Singer, D.D.; Camargo, S.M.; et al. Essential role for collectrin in renal amino acid transport. Nature 2006, 444, 1088–1091. [Google Scholar] [CrossRef] [PubMed]
- Singer, D.; Camargo, S.M. Collectrin and ACE2 in renal and intestinal amino acid transport. Channels 2011, 5, 410–423. [Google Scholar] [CrossRef] [PubMed]
- Turner, A.J.; Nalivaeva, N.N. Angiotensin-converting enzyme 2 (ACE2): Two decades of revlations and re-evaluation. Peptides 2022, 151, 170766. [Google Scholar] [CrossRef] [PubMed]
- Fauchere, I.I.; Pliska, N. Hydrophobic parameters II of amino acid side-chains from the partitioning of N-acetyl-amino acid amides. Eur. J. Med. Chem-Chim. 1983, 18, 369–375. [Google Scholar]
- Hristova, S.H.; Zhivkov, A.M. Omicron Coronavirus: pH-Dependent Electrostatic Potential and Energy of Association of Spike Protein to ACE2 Receptor. Viruses 2023, 15, 1752. [Google Scholar] [CrossRef]
- Hristova, S.H.; Zhivkov, A.M. Wild Type Coronavirus and Omicron Variant: pH-Dependent Energy of Association of the Spike Protein to ACE2, Receptor. In Prime Archives in Virology; Raad, H., Ed.; Vide Leaf: Hyderabad, India, 2023. [Google Scholar]
- Maier, C.; Schadock, I.; Haber, P.K.; Wysocki, J.; Ye, M.; Kanwar, Y.; Falsk, C.A.; Yu, X.; Hoit, B.D.; Adams, N.G.; et al. Prolylcarboxypeptidase deficiency is associated with increased blood pressure, glomerular lesions, and cardiac dysfunction independent of altered circulating and cardiac angiotensin II. J. Mol. Med. 2017, 95, 473–486. [Google Scholar] [CrossRef]
- Vickers, C.; Hales, P.; Kaushik, V.; Dick, L.; Gavin, J.; Tang, J.; Godbout, K.; Parsons, T.; Baronas, E.; Hsieh, F.; et al. Hydrolysis of biological peptides by human angiotensin-converting enzyme-related carboxypeptidase. J. Biol. Chem. 2002, 277, 14838–14843. [Google Scholar] [CrossRef]
- Houston, M.C. Pleural Fluid PH: Diagnostic, therapeutic, and prognostic value. Am. J. Surg. 1987, 154, 333–337. [Google Scholar] [CrossRef]
- Fischer, H.; Widdicombe, J.H. Mechanisms of acid and base secretion by the airway epithelium. J. Membr. Biol. 2006, 211, 139. [Google Scholar] [CrossRef] [PubMed]
- Moremen, K.W.; Tiemeyer, M.; Nairn, A.V. Vertebrate protein glycosylation: Diversity, synthesis and function. Nat. Rev. Mol. Cell Biol. 2012, 13, 448–462. [Google Scholar] [PubMed]
- Steen, P.V.D.; Rudd, P.M.; Dwek, R.A.; Opdenakker, G. Concepts and principles of O-linked glycosylation. Crit. Rev. Biochem. Mol. Biol. 1998, 33, 151–208. [Google Scholar] [CrossRef] [PubMed]
- Ramirez Hernandez, E.; Hernandez-Zimbron, L.F.; Martinez Zuniga, N.; Leal-Garcia, J.J.; Ignacio Hernandez, V.; Ucharima-Corona, L.E.; Campos, E.P.; Zenteno, E. The role of the SARS-CoV-2 S-protein glycosylation in the interaction of SARS-CoV-2/ACE2 and immunological responses. Viral Immunol. 2021, 34, 165–173. [Google Scholar] [CrossRef]
- Ernst, J.F.; Prill, S.H. O-glycosylation. Med. Mycol. 2001, 39, 67–74. [Google Scholar] [CrossRef]
- Mitra, N.; Sinha, S.; Ramya, T.N.; Surolia, A. N-linked oligosaccharides as outfitters for glycoprotein folding, form and function. Trends Biochem. Sci. 2006, 31, 156–163. [Google Scholar] [CrossRef]
- Wandall, H.H.; Nielsen, M.A.; King-Smith, S.; de Haan, N.; Bagdonaite, I. Global functions of O-glycosylation: Promises and challenges in O-glycobiology. FEBS J. 2021, 288, 7183–7212. [Google Scholar] [CrossRef]
- Grueninger-Leitch, F.; D’Arcy, A.; D’Arcy, B.; Chène, C. Deglycosylation of proteins for crystallization using recombinant fusion protein glycosidases. Protein Sci. 1996, 5, 2617–2622. [Google Scholar] [CrossRef]
- Bünning, P.; Budek, W.; Escher, R.; Schönherr, E. Characteristics of angiotensin converting enzyme and its role in the metabolism of angiotensin I by endothelium. J. Cardiovasc. Pharmacol. 1986, 8, S52–S57. [Google Scholar] [CrossRef]
- Lanzillo, J.J.; Stevens, J.; Dasarathy, Y.; Yotsumoto, H.; Fanburg, B.L. Angiotensin-converting enzyme from human tissues. Physicochemical, catalytic, and immunological properties. J. Biol. Chem. 1985, 260, 14938–14944. [Google Scholar] [CrossRef]
- Lanzillo, J.J.; Joanne, S.; Tumas, J.; Fanburg, B.L. Spontaneous change of human plasma angiotensin I converting enzyme isoelectric point. Arch. Biochem. Biophys. 1983, 227, 434–439. [Google Scholar] [CrossRef]
- Reily, C.; Stewart, T.J.; Renfrow, M.B.; Novak, J. Glycosylation in health and disease. Nat. Rev. Nephrol. 2019, 15, 346–366. [Google Scholar] [CrossRef] [PubMed]
- Blakytny, R.; Harding, J.J. Glycation (non-enzymic glycosylation) inactivates glutathione reductase. Biochem. J. 1992, 288, 303–307. [Google Scholar] [CrossRef] [PubMed]
- Conroy, J.M.; Hartley, J.L.; Soffer, R.L. Canine pulmonary angiotensin-converting enzyme. Physicochemical, catalytic and immunological properties. Biochim. Biophys. Acta (BBA)-Enzymol. 1978, 524, 403–412. [Google Scholar] [CrossRef]
- Ross, M.T.; Grafham, D.V.; Coffey, A.J.; Scherer, S.; McLay, K.; Muzny, D.; Platzer, M.; Howell, G.R.; Burrows, C.; Bird, C.P.; et al. The DNA sequence of the human X chromosome. Nature 2005, 434, 325–337. [Google Scholar] [CrossRef] [PubMed]
- Towler, P.; Staker, B.; Prasad, S.G.; Menon, S.; Tang, J.; Parsons, T.; Ryan, D.; Fisher, M.; Williams, D.; Dales, N.A.; et al. ACE2 X-ray structures reveal a large hinge-bending motion important for inhibitor binding and catalysis. J Biol. Chem. 2004, 279, 17996–18007. [Google Scholar] [CrossRef]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef]
- Krieger, E.; Joo, K.; Lee, J.; Lee, J.; Raman, S.; Thompson, J.; Tyka, M.; Baker, D.; Karplus, K. Improving physical realism, stereochemistry, and side-chain accuracy in homology modeling: Four approaches that performed well in CASP8. Proteins Struct. Funct. Bioinform. 2009, 77, 114–122. [Google Scholar] [CrossRef]
- Pandurangan, A.P.; Ochoa-Montaño, B.; Ascher, D.B.; Blundell, T.L. SDM: A server for predicting effects of mutations on protein stability. Nucleic Acids Res. 2017, 45, W229–W235. [Google Scholar] [CrossRef]
- Worth, C.L.; Preissner, R.; Blundell, T.L. SDM—A server for predicting effects of mutations on protein stability and malfunction. Nucleic Acids Res. 2011, 39 (Suppl. S2), W215–W222. [Google Scholar] [CrossRef]
- Pires, D.E.; Ascher, D.B.; . Blundell, T.L. DUET: A server for predicting effects of mutations on protein stability using an integrated computational approach. Nucleic Acids Res. 2014, 42, W314–W319. [Google Scholar] [CrossRef] [PubMed]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef] [PubMed]
- Available online: http://wishart.biology.ualberta.ca/SuperPose (accessed on 30 August 2024).
- Zhang, Y.; Skolnick, J. Scoring function for automated assessment of protein structure template quality. Proteins 2004, 57, 702–710. [Google Scholar] [CrossRef] [PubMed]
- Walsh, I.; Minervini, G.; Corazza, A.; Esposito, G.; Tosatto, S.C.E.; Fogolari, F. Bluues server: Electrostatic properties of wild-type and mutated protein structures. Bioinformatics 2012, 28, 2189–2190. [Google Scholar] [CrossRef]
- Dolinsky, T.J.; Nielsen, J.E.; McCammon, J.A.; Baker, N.A. PDB2PQR: An automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations. Nucleic Acids Res 2004, 32, W665–W667. [Google Scholar] [CrossRef]
- Li, H.; Robertson, A.D.; Jensen, J.H. Very fast empirical prediction and rationalization of protein pKa values. Proteins Struct. Funct. Bioinform. 2005, 61, 704–721. [Google Scholar] [CrossRef]
- Vargyas, M.; Vasko-Szedlar, J.; Roux, B.; Im, W. PBEQ-Solver for online visualization of electrostatic potential of Biomolecules. Nucleic Acids Res. 2008, 36, W270–W275. [Google Scholar]
- Available online: https://charmm-gui.org/?doc=tutorial&project=pbeqsolver (accessed on 30 August 2024).
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hristova, S.H.; Popov, T.T.; Zhivkov, A.M. Rabbit and Human Angiotensin-Converting Enzyme-2: Structure and Electric Properties. Int. J. Mol. Sci. 2024, 25, 12393. https://doi.org/10.3390/ijms252212393
Hristova SH, Popov TT, Zhivkov AM. Rabbit and Human Angiotensin-Converting Enzyme-2: Structure and Electric Properties. International Journal of Molecular Sciences. 2024; 25(22):12393. https://doi.org/10.3390/ijms252212393
Chicago/Turabian StyleHristova, Svetlana H., Trifon T. Popov, and Alexandar M. Zhivkov. 2024. "Rabbit and Human Angiotensin-Converting Enzyme-2: Structure and Electric Properties" International Journal of Molecular Sciences 25, no. 22: 12393. https://doi.org/10.3390/ijms252212393
APA StyleHristova, S. H., Popov, T. T., & Zhivkov, A. M. (2024). Rabbit and Human Angiotensin-Converting Enzyme-2: Structure and Electric Properties. International Journal of Molecular Sciences, 25(22), 12393. https://doi.org/10.3390/ijms252212393