Kinetic Features of Degradation of R-Loops by RNase H1 from Escherichia coli
<p>The EMSA of the R-loops. The concentration of the RNA primer and of the DNA template and nontemplate strands was 1 µM. The presence/absence of components in the mixture is indicated by +/– signs.</p> "> Figure 2
<p>MST curves characterizing the interaction of RH1 D10N with R-loops.</p> "> Figure 3
<p>The RH1-driven cleavage of an RNA primer contained in the R-loops. The R-loops’ concentrations were 0.5 µM, and the RH1 concentration was 25 nM. Lanes show product accumulation for 0, 10, 20, 30, and 40 s and 1, 2, 5, 10, 20, and 30 min. The presence/absence of components in the mixture is indicated by +/– signs.</p> "> Figure 4
<p>The dependence of the observed rate constant <span class="html-italic">k</span><sub>obs</sub> of the RNA primer cleavage on the RH1 concentration.</p> "> Figure 5
<p>The RH1-driven cleavage of an RNA primer contained in the R-loops in the presence of the RNAP. The R-loops’ concentrations were 0.5 µM, the RNAP concentration was 1.0 µM, and the RH1 concentration was 25 nM. The lanes show product accumulation for 0, 10, 20, 30, and 40 s and 1, 2, 5, 10, 20, and 30 min. The presence/absence of components in the mixture is indicated by +/– signs.</p> "> Figure 6
<p>(<b>A</b>) The extent of the cleavage of an RNA primer by RH1 in the absence (gray) or presence (blue) of the RNAP. (<b>B</b>) Observed rate constant <span class="html-italic">k</span><sub>obs</sub> for RNA primer cleavage induced by RH1 in the absence (gray) or presence (blue) of the RNAP. The extent of the cleavage of an RNA primer was calculated at time point 30 min.</p> "> Figure 7
<p>(<b>A</b>) The crystal structure of a complex of the catalytic domain of <span class="html-italic">Bacillus halodurans</span> RNase HI with RNA–DNA hybrids (PDB ID 5SWM) [<a href="#B68-ijms-25-12263" class="html-bibr">68</a>]. (<b>B</b>) The structural features of the transcription elongation complex.</p> "> Scheme 1
<p>The kinetic scheme of the RH1-driven cleavage of an RNA primer contained in R-loops. E: RH1; S: an R-loop; E•S: The catalytic complex of the R-loop with the enzyme; P: a reaction product.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Design of R-Loops
2.2. R-Loop-Binding Assays
2.3. RNase H Activity Assay
2.4. RNase H Activity Assayactivity Assay in the Presence of the RNAP
3. Discussion
4. Materials and Methods
4.1. Enzymes and Oligonucleotides
4.2. Preparation of R-Loops
4.3. R-Loop-Binding Assays
4.4. RNase H Activity Assay
4.5. RNase H Activity Assay in the Presence of RNAP
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kuzminov, A. Bacterial nucleoid is a riddle wrapped in a mystery inside an enigma. J. Bacteriol. 2024, 206, e0021123. [Google Scholar] [CrossRef] [PubMed]
- Saitoh, T.; Ishihama, A. Biosynthesis of RNA polymerase in Escherichia coli. J. Mol. Biol. 1977, 115, 403–416. [Google Scholar] [CrossRef] [PubMed]
- Jin, D.J.; Martin, C.M.; Sun, Z.; Cagliero, C.; Zhou, Y.N. Nucleolus-like compartmentalization of the transcription machinery in fast-growing bacterial cells. Crit. Rev. Biochem. Mol. Biol. 2016, 52, 96–106. [Google Scholar] [CrossRef] [PubMed]
- Cabrera, J.E.; Jin, D.J. The distribution of RNA polymerase in Escherichia coli is dynamic and sensitive to environmental cues. Mol. Microbiol. 2003, 50, 1493–1505. [Google Scholar] [CrossRef] [PubMed]
- Libby, E.A.; Roggiani, M.; Goulian, M. Membrane protein expression triggers chromosomal locus repositioning in bacteria. Proc. Natl. Acad. Sci. USA 2012, 109, 7445–7450. [Google Scholar] [CrossRef] [PubMed]
- Stracy, M.; Lesterlin, C.; de Leon, F.G.; Uphoff, S.; Zawadzki, P.; Kapanidis, A.N. Live-cell superresolution microscopy reveals the organization of RNA polymerase in the bacterial nucleoid. Proc. Natl. Acad. Sci. USA 2015, 112, E4390–E4399. [Google Scholar] [CrossRef]
- Stracy, M.; Kapanidis, A.N. Single-molecule and super-resolution imaging of transcription in living bacteria. Methods 2017, 120, 103–114. [Google Scholar] [CrossRef]
- McHenry, C.S. DNA Replicases from a Bacterial Perspective. Annu. Rev. Biochem. 2011, 80, 403–436. [Google Scholar] [CrossRef]
- Xu, Z.-Q.; E Dixon, N. Bacterial replisomes. Curr. Opin. Struct. Biol. 2018, 53, 159–168. [Google Scholar] [CrossRef]
- Gan, W.; Guan, Z.; Liu, J.; Gui, T.; Shen, K.; Manley, J.L.; Li, X. R-loop-mediated genomic instability is caused by impairment of replication fork progression. Genes Dev. 2011, 25, 2041–2056. [Google Scholar] [CrossRef]
- Merrikh, H.; Zhang, Y.; Grossman, A.D.; Wang, J.D. Replication–transcription conflicts in bacteria. Nat. Rev. Microbiol. 2012, 10, 449–458. [Google Scholar] [CrossRef] [PubMed]
- Trautinger, B.W.; Jaktaji, R.P.; Rusakova, E.; Lloyd, R.G. RNA Polymerase Modulators and DNA Repair Activities Resolve Conflicts between DNA Replication and Transcription. Mol. Cell 2005, 19, 247–258. [Google Scholar] [CrossRef] [PubMed]
- Tehranchi, A.K.; Blankschien, M.D.; Zhang, Y.; Halliday, J.A.; Srivatsan, A.; Peng, J.; Herman, C.; Wang, J.D. The Transcription Factor DksA Prevents Conflicts between DNA Replication and Transcription Machinery. Cell 2010, 141, 595–605. [Google Scholar] [CrossRef]
- Brewer, B.J. When polymerases collide: Replication and the transcriptional organization of the E. coli chromosome. Cell 1988, 53, 679–686. [Google Scholar] [CrossRef] [PubMed]
- Srivatsan, A.; Tehranchi, A.; MacAlpine, D.M.; Wang, J.D. Co-Orientation of Replication and Transcription Preserves Genome Integrity. PLoS Genet. 2010, 6, e1000810. [Google Scholar] [CrossRef]
- Merrikh, H.; Machón, C.; Grainger, W.H.; Grossman, A.D.; Soultanas, P. Co-directional replication–transcription conflicts lead to replication restart. Nature 2011, 470, 554–557. [Google Scholar] [CrossRef]
- Dutta, D.; Shatalin, K.; Epshtein, V.; Gottesman, M.E.; Nudler, E. Linking RNA Polymerase Backtracking to Genome Instability in E. coli. Cell 2011, 146, 533–543. [Google Scholar] [CrossRef]
- García-Muse, T.; Aguilera, A. Transcription–replication conflicts: How they occur and how they are resolved. Nat. Rev. Mol. Cell Biol. 2016, 17, 553–563. [Google Scholar] [CrossRef]
- Foster, P.L.; Niccum, B.A.; Lee, H. DNA Replication-Transcription Conflicts Do Not Significantly Contribute to Spontaneous Mutations Due to Replication Errors in Escherichia coli. mBio 2021, 12, e0250321. [Google Scholar] [CrossRef]
- Lovett, S.T. DNA polymerase III protein, HolC, helps resolve replication/transcription conflicts. Microb. Cell 2021, 8, 143–145. [Google Scholar] [CrossRef]
- Lang, K.S.; Merrikh, H. Topological stress is responsible for the detrimental outcomes of head-on replication-transcription conflicts. Cell Rep. 2021, 34, 108797. [Google Scholar] [CrossRef] [PubMed]
- Browning, K.R.; Merrikh, H. Replication–Transcription Conflicts: A Perpetual War on the Chromosome. Annu. Rev. Biochem. 2024, 93, 21–46. [Google Scholar] [CrossRef] [PubMed]
- Vlachos-Breton, É.; Drolet, M. R-Loop Detection in Bacteria. Methods Mol. Biol. 2022, 2528, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Drolet, M.; Bi, X.; Liu, L. Hypernegative supercoiling of the DNA template during transcription elongation in vitro. J. Biol. Chem. 1994, 269, 2068–2074. [Google Scholar] [CrossRef] [PubMed]
- Phoenix, P.; Raymond, M.-A.; Massé, É.; Drolet, M. Roles of DNA Topoisomerases in the Regulation of R-loop Formation in Vitro. J. Biol. Chem. 1997, 272, 1473–1479. [Google Scholar] [CrossRef]
- Massé, E.; Phoenix, P.; Drolet, M. DNA Topoisomerases Regulate R-loop Formation during Transcription of the rrnB Operon in Escherichia coli. J. Biol. Chem. 1997, 272, 12816–12823. [Google Scholar] [CrossRef]
- Massé, E.; Drolet, M. Escherichia coli DNA Topoisomerase I Inhibits R-loop Formation by Relaxing Transcription-induced Negative Supercoiling. J. Biol. Chem. 1999, 274, 16659–16664. [Google Scholar] [CrossRef]
- Drolet, M.; Phoenix, P.; Menzel, R.; Massé, E.; Liu, L.F.; Crouch, R.J. Overexpression of RNase H partially complements the growth defect of an Escherichia coli delta topA mutant: R-loop formation is a major problem in the absence of DNA topoisomerase I. Proc. Natl. Acad. Sci. USA 1995, 92, 3526–3530. [Google Scholar] [CrossRef]
- Hraiky, C.; Raymond, M.-A.; Drolet, M. RNase H Overproduction Corrects a Defect at the Level of Transcription Elongation during rRNA Synthesis in the Absence of DNA Topoisomerase I in Escherichia coli. J. Biol. Chem. 2000, 275, 11257–11263. [Google Scholar] [CrossRef]
- Baaklini, I.; Hraiky, C.; Rallu, F.; Tse-Dinh, Y.; Drolet, M. RNase HI overproduction is required for efficient full-length RNA synthesis in the absence of topoisomerase I in Escherichia coli. Mol. Microbiol. 2004, 54, 198–211. [Google Scholar] [CrossRef]
- Baaklini, I.; Usongo, V.; Nolent, F.; Sanscartier, P.; Hraiky, C.; Drlica, K.; Drolet, M. Hypernegative Supercoiling Inhibits Growth by Causing RNA Degradation. J. Bacteriol. 2008, 190, 7346–7356. [Google Scholar] [CrossRef] [PubMed]
- Martel, M.; Balleydier, A.; Sauriol, S.A.; Drolet, M. Constitutive stable DNA replication in Escherichia coli cells lacking type 1A topoisomerase activity. DNA Repair 2015, 35, 37–47. [Google Scholar] [CrossRef] [PubMed]
- Brochu, J.; Vlachos-Breton, É.; Sutherland, S.; Martel, M.; Drolet, M. Topoisomerases I and III inhibit R-loop formation to prevent unregulated replication in the chromosomal Ter region of Escherichia coli. PLoS Genet. 2018, 14, e1007668. [Google Scholar] [CrossRef] [PubMed]
- Hausen, P.; Stein, H.; Ribonuclease, H. An Enzyme Degrading the RNA Moiety of DNA-RNA Hybrids. Eur. J. Biochem. 1970, 14, 278–283. [Google Scholar] [CrossRef] [PubMed]
- Hyjek, M.; Figiel, M.; Nowotny, M. RNases H: Structure and mechanism. DNA Repair 2019, 84, 102672. [Google Scholar] [CrossRef]
- Itoh, T.; Tomizawa, J. Formation of an RNA primer for initiation of replication of ColE1 DNA by ribonuclease H. Proc. Natl. Acad. Sci. USA 1980, 77, 2450–2454. [Google Scholar] [CrossRef]
- Masukata, H.; Tomizawa, J.-I. A mechanism of formation of a persistent hybrid between elongating RNA and template DNA. Cell 1990, 62, 331–338. [Google Scholar] [CrossRef]
- Yu, K.; Chedin, F.; Hsieh, C.-L.; Wilson, T.E.; Lieber, M.R. R-loops at immunoglobulin class switch regions in the chromosomes of stimulated B cells. Nat. Immunol. 2003, 4, 442–451. [Google Scholar] [CrossRef]
- Holmes, J.B.; Akman, G.; Wood, S.R.; Sakhuja, K.; Cerritelli, S.M.; Moss, C.; Bowmaker, M.R.; Jacobs, H.T.; Crouch, R.J.; Holt, I.J. Primer retention owing to the absence of RNase H1 is catastrophic for mitochondrial DNA replication. Proc. Natl. Acad. Sci. USA 2015, 112, 9334–9339. [Google Scholar] [CrossRef]
- Park, J.; Baruch-Torres, N.; Yin, Y.W. Structural and Molecular Basis for Mitochondrial DNA Replication and Transcription in Health and Antiviral Drug Toxicity. Molecules 2023, 28, 1796. [Google Scholar] [CrossRef]
- Skourti-Stathaki, K.; Proudfoot, N.J.; Gromak, N. Human Senataxin Resolves RNA/DNA Hybrids Formed at Transcriptional Pause Sites to Promote Xrn2-Dependent Termination. Mol. Cell 2011, 42, 794–805. [Google Scholar] [CrossRef] [PubMed]
- Ohle, C.; Tesorero, R.; Schermann, G.; Dobrev, N.; Sinning, I.; Fischer, T. Transient RNA-DNA Hybrids Are Required for Efficient Double-Strand Break Repair. Cell 2016, 167, 1001–1013.e7. [Google Scholar] [CrossRef] [PubMed]
- Cohen, S.; Puget, N.; Lin, Y.-L.; Clouaire, T.; Aguirrebengoa, M.; Rocher, V.; Pasero, P.; Canitrot, Y.; Legube, G. Senataxin resolves RNA:DNA hybrids forming at DNA double-strand breaks to prevent translocations. Nat. Commun. 2018, 9, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Aguilera, A.; García-Muse, T. R Loops: From Transcription Byproducts to Threats to Genome Stability. Mol. Cell 2012, 46, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Manley, J.L. Inactivation of the SR Protein Splicing Factor ASF/SF2 Results in Genomic Instability. Cell 2005, 122, 365–378. [Google Scholar] [CrossRef] [PubMed]
- Hamperl, S.; Bocek, M.J.; Saldivar, J.C.; Swigut, T.; Cimprich, K.A. Transcription-Replication Conflict Orientation Modulates R-Loop Levels and Activates Distinct DNA Damage Responses. Cell 2017, 170, 774–786.e19. [Google Scholar] [CrossRef]
- Hamperl, S.; Cimprich, K.A. The contribution of co-transcriptional RNA:DNA hybrid structures to DNA damage and genome instability. DNA Repair 2014, 19, 84–94. [Google Scholar] [CrossRef]
- Hamperl, S.; Cimprich, K.A. Conflict Resolution in the Genome: How Transcription and Replication Make It Work. Cell 2016, 167, 1455–1467. [Google Scholar] [CrossRef]
- Barroso, S.; Herrera-Moyano, E.; Muñoz, S.; García-Rubio, M.; Gómez-González, B.; Aguilera, A. The DNA damage response acts as a safeguard against harmful DNA–RNA hybrids of different origins. EMBO Rep. 2019, 20, e47250. [Google Scholar] [CrossRef]
- Morales, J.C.; Richard, P.; Patidar, P.L.; Motea, E.A.; Dang, T.T.; Manley, J.L.; Boothman, D.A. XRN2 Links Transcription Termination to DNA Damage and Replication Stress. PLoS Genet. 2016, 12, e1006107. [Google Scholar] [CrossRef]
- Sollier, J.; Cimprich, K.A. Breaking bad: R-loops and genome integrity. Trends Cell Biol. 2015, 25, 514–522. [Google Scholar] [CrossRef] [PubMed]
- Sollier, J.; Stork, C.T.; Garcia-Rubio, M.L.; Paulsen, R.D.; Aguilera, A.; Cimprich, K.A. Transcription-Coupled Nucleotide Excision Repair Factors Promote R-Loop-Induced Genome Instability. Mol. Cell 2014, 56, 777–785. [Google Scholar] [CrossRef] [PubMed]
- Lindahl, T. Instability and decay of the primary structure of DNA. Nature 1993, 362, 709–715. [Google Scholar] [CrossRef] [PubMed]
- Cerritelli, S.M.; Crouch, R.J. Ribonuclease H: The enzymes in eukaryotes. FEBS J. 2009, 276, 1494–1505. [Google Scholar] [CrossRef] [PubMed]
- Huertas, P.; Aguilera, A. Cotranscriptionally Formed DNA:RNA Hybrids Mediate Transcription Elongation Impairment and Transcription-Associated Recombination. Mol. Cell 2003, 12, 711–721. [Google Scholar] [CrossRef]
- Paulsen, R.D.; Soni, D.V.; Wollman, R.; Hahn, A.T.; Yee, M.-C.; Guan, A.; Hesley, J.A.; Miller, S.C.; Cromwell, E.F.; Solow-Cordero, D.E.; et al. A Genome-wide siRNA Screen Reveals Diverse Cellular Processes and Pathways that Mediate Genome Stability. Mol. Cell 2009, 35, 228–239. [Google Scholar] [CrossRef]
- Cerritelli, S.M.; Sakhuja, K.; Crouch, R.J. RNase H1, the Gold Standard for R-Loop Detection. Methods Mol Biol. 2022, 2528, 91–114. [Google Scholar] [CrossRef]
- Wagner, C.B.; Luke, B. DNA–RNA Hybrids at Telomeres in Budding Yeast. Methods Mol Biol. 2022, 2528, 145–157. [Google Scholar] [CrossRef]
- Zhang, X.; Hao, Y.; Fu, X.-D. Mapping R-Loops Using Catalytically Inactive RNaseH1 (R-ChIP); Springer: Berlin/Heidelberg, Germany, 2022; pp. 359–372. [Google Scholar] [CrossRef] [PubMed]
- Nudler, E. RNA Polymerase Active Center: The Molecular Engine of Transcription. Annu. Rev. Biochem. 2009, 78, 335–361. [Google Scholar] [CrossRef]
- Cueny, R.R.; McMillan, S.D.; Keck, J.L. G-quadruplexes in bacteria: Insights into the regulatory roles and interacting proteins of non-canonical nucleic acid structures. Crit. Rev. Biochem. Mol. Biol. 2022, 57, 539–561. [Google Scholar] [CrossRef]
- Yadav, P.; Kim, N.; Kumari, M.; Verma, S.; Sharma, T.K.; Yadav, V.; Kumar, A. G-Quadruplex Structures in Bacteria: Biological Relevance and Potential as an Antimicrobial Target. J. Bacteriol. 2021, 203. [Google Scholar] [CrossRef] [PubMed]
- Kanaya, S.; Kohara, A.; Miura, Y.; Sekiguchi, A.; Iwai, S.; Inoue, H.; Ohtsuka, E.; Ikehara, M. Identification of the amino acid residues involved in an active site of Escherichia coli ribonuclease H by site-directed mutagenesis. J. Biol. Chem. 1990, 265, 4615–4621. [Google Scholar] [CrossRef] [PubMed]
- Katayanagi, K.; Miyagawa, M.; Matsushima, M.; Ishikawa, M.; Kanaya, S.; Ikehara, M.; Matsuzaki, T.; Morikawa, K. Three-dimensional structure of ribonuclease H from E. coli. Nature 1990, 347, 306–309. [Google Scholar] [CrossRef] [PubMed]
- Haruki, M.; Noguchi, E.; Kanaya, S.; Crouch, R.J. Kinetic and Stoichiometric Analysis for the Binding of Escherichia coli Ribonuclease HI to RNA-DNA Hybrids Using Surface Plasmon Resonance. J. Biol. Chem. 1997, 272, 22015–22022. [Google Scholar] [CrossRef] [PubMed]
- Kanaya, E.; Kanaya, S. Kinetic Analysis of Escherichia Coli Ribonuclease HI Using Oligomeric DNA/RNA Substrates Suggests an Alternative Mechanism for the Interaction between the Enzyme and the Substrate. Eur. J. Biochem. 1995, 231, 557–562. [Google Scholar] [CrossRef]
- Iwai, S.; Wakasa, M.; Ohtsuka, E.; Kanaya, S.; Kidera, A.; Nakamura, H. Interaction of the Basic Protrusion ofEscherichia coliRibonuclease HI with its Substrate. J. Mol. Biol. 1996, 263, 699–706. [Google Scholar] [CrossRef]
- Nowotny, M.; Gaidamakov, S.A.; Crouch, R.J.; Yang, W. Crystal Structures of RNase H Bound to an RNA/DNA Hybrid: Substrate Specificity and Metal-Dependent Catalysis. Cell 2005, 121, 1005–1016. [Google Scholar] [CrossRef]
- Pallan, P.S.; Prakash, T.P.; de Leon, A.R.; Egli, M. Limits of RNA 2′-OH Mimicry by Fluorine: Crystal Structure of Bacillus halodurans RNase H Bound to a 2′-FRNA:DNA Hybrid. Biochemistry 2016, 55, 5321–5325. [Google Scholar] [CrossRef]
- Esyunina, D.; Turtola, M.; Pupov, D.; Bass, I.; Klimašauskas, S.; Belogurov, G.; Kulbachinskiy, A. Lineage-specific variations in the trigger loop modulate RNA proofreading by bacterial RNA polymerases. Nucleic Acids Res. 2016, 44, 1298–1308. [Google Scholar] [CrossRef]
- Kuznetsova, A.A.; Novopashina, D.S.; Fedorova, O.S.; Kuznetsov, N.A. Effect of the Substrate Structure and Metal Ions on the Hydrolysis of Undamaged RNA by Human AP Endonuclease APE1. Acta Naturae 2020, 12, 74–85. [Google Scholar] [CrossRef]
Shorthand | Nucleotide Sequence |
---|---|
R-loop 1 | |
R-loop 2 | |
R-loop 3 | |
R-loop 4 | |
R-loop 5 | |
R-loop 6 | |
R-loop 7 | |
R-loop 8 | |
R-loop 9 |
Substrate | Kd, µM | k1, M−1⋅s−1, ×10−5 |
---|---|---|
R-loop 1 | 1.2 ± 0.4 | 28 ± 3 |
R-loop 2 | 1.1 ± 0.4 | 38 ± 8 |
R-loop 3 | 1.5 ± 0.4 | 36 ± 2 |
R-loop 4 | 1.8 ± 0.4 | 27 ± 2 |
R-loop 5 | 0.35 ± 0.15 | 65 ± 5 |
R-loop 6 | 9.7 ± 2.7 | 14 ± 3 |
R-loop 7 | 6.7 ± 3.1 | 16 ± 2 |
R-loop 8 | 9.3 ± 4.8 | 5.8 ± 0.5 |
R-loop 9 | 5.1 ± 1.4 | 9.1 ± 0.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuznetsova, A.A.; Kosarev, I.A.; Timofeyeva, N.A.; Novopashina, D.S.; Kuznetsov, N.A. Kinetic Features of Degradation of R-Loops by RNase H1 from Escherichia coli. Int. J. Mol. Sci. 2024, 25, 12263. https://doi.org/10.3390/ijms252212263
Kuznetsova AA, Kosarev IA, Timofeyeva NA, Novopashina DS, Kuznetsov NA. Kinetic Features of Degradation of R-Loops by RNase H1 from Escherichia coli. International Journal of Molecular Sciences. 2024; 25(22):12263. https://doi.org/10.3390/ijms252212263
Chicago/Turabian StyleKuznetsova, Aleksandra A., Iurii A. Kosarev, Nadezhda A. Timofeyeva, Darya S. Novopashina, and Nikita A. Kuznetsov. 2024. "Kinetic Features of Degradation of R-Loops by RNase H1 from Escherichia coli" International Journal of Molecular Sciences 25, no. 22: 12263. https://doi.org/10.3390/ijms252212263