SOCS3 Methylation Partially Mediated the Association of Exposure to Triclosan but Not Triclocarban with Type 2 Diabetes Mellitus: A Case-Control Study
"> Figure 1
<p>Dose–response relationship of Ln-TCScrea with T2DM and glucose metabolism-related indicators.</p> "> Figure 2
<p>Mediating role of the methylation level of <span class="html-italic">Chr17:76356190</span> or <span class="html-italic">Chr17:76356199</span> between the association of Ln-TCScrea with T2DM and its glucose metabolism-related indicators.</p> "> Figure 3
<p>The flowchart of the inclusion and exclusion of participants. Abbreviations: T2DM, type 2 diabetes mellitus; TCS, triclosan.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Basic Characteristics
2.2. Distributions of Urinary TCS and TCC
2.3. Association of TCS with T2DM and Glucose Metabolism-Related Indicators
2.4. Dose–Response Relationship of TCS with T2DM and Glucose Metabolism-Related Indicators
2.5. Association of SOCS3 Methylation Levels with T2DM and TCS
2.6. Mediating Effects of SOCS3 Methylation
2.7. Subgroup Analysis
2.8. Sensitivity Analysis
3. Discussion
4. Methods and Materials
4.1. Study Population
4.2. Laboratory Measurements
4.3. Quality Control
4.4. Definition of T2DM
4.5. Definition of Covariates
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- GBD 2019 Diseases and Injuries Collaborators. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1204–1222. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Saeedi, P.; Karuranga, S.; Pinkepank, M.; Ogurtsova, K.; Duncan, B.B.; Stein, C.; Basit, A.; Chan, J.C.; Mbanya, J.C.; et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res. Clin. Pract. 2022, 183, 109119. [Google Scholar] [CrossRef]
- Xu, G.; Liu, B.; Sun, Y.; Du, Y.; Snetselaar, L.G.; Hu, F.B.; Bao, W. Prevalence of diagnosed type 1 and type 2 diabetes among US adults in 2016 and 2017: Population based study. BMJ 2018, 362, k1497. [Google Scholar] [CrossRef] [PubMed]
- Stumvoll, M.; Goldstein, B.J.; van Haeften, T.W. Type 2 diabetes: Principles of pathogenesis and therapy. Lancet 2005, 365, 1333–1346. [Google Scholar] [CrossRef] [PubMed]
- Gustafson, D.; DiStefano, P.V.; Wang, X.F.; Wu, R.; Ghaffari, S.; Ching, C.; Rathnakumar, K.; Alibhai, F.; Syonov, M.; Fitzpatrick, J.; et al. Circulating small extracellular vesicles mediate vascular hyperpermeability in diabetes. Diabetologia 2024, 67, 1138–1154. [Google Scholar] [CrossRef]
- Villa-Fernández, E.; García, A.V.; Fernández-Fernández, A.; García-Villarino, M.; Ares-Blanco, J.; Pujante, P.; González-Vidal, T.; Fraga, M.F.; Torre, E.M.; Delgado, E.; et al. Metformin and Glucose Concentration as Limiting Factors in Retinal Pigment Epithelial Cell Viability and Proliferation. Int. J. Mol. Sci. 2024, 25, 2637. [Google Scholar] [CrossRef]
- Tuttle, K.R.; Bakris, G.L.; Bilous, R.W.; Chiang, J.L.; de Boer, I.H.; Goldstein-Fuchs, J.; Hirsch, I.B.; Kalantar-Zadeh, K.; Narva, A.S.; Navaneethan, S.D.; et al. Diabetic kidney disease: A report from an ADA Consensus Conference. Am. J. Kidney Dis. 2014, 64, 510–533. [Google Scholar] [CrossRef]
- Philippat, C.; Botton, J.; Calafat, A.M.; Ye, X.; Charles, M.A.; Slama, R. Prenatal exposure to phenols and growth in boys. Epidemiology 2014, 25, 625–635. [Google Scholar] [CrossRef]
- Dodson, R.E.; Boronow, K.E.; Susmann, H.; Udesky, J.O.; Rodgers, K.M.; Weller, D.; Woudneh, M.; Brody, J.G.; Rudel, R.A. Consumer behavior and exposure to parabens, bisphenols, triclosan, dichlorophenols, and benzophenone-3: Results from a crowdsourced biomonitoring study. Int. J. Hyg. Environ. Health 2020, 230, 113624. [Google Scholar] [CrossRef]
- Halden, R.U. On the need and speed of regulating triclosan and triclocarban in the United States. Environ. Sci. Technol. 2014, 48, 3603–3611. [Google Scholar] [CrossRef]
- Bedoux, G.; Roig, B.; Thomas, O.; Dupont, V.; Le Bot, B. Occurrence and toxicity of antimicrobial triclosan and by-products in the environment. Environ. Sci. Pollut. Res. Int. 2012, 19, 1044–1065. [Google Scholar] [CrossRef] [PubMed]
- Moss, T.; Howes, D.; Williams, F.M. Percutaneous penetration and dermal metabolism of triclosan (2,4, 4’-trichloro-2’-hydroxydiphenyl ether). Food Chem. Toxicol. 2000, 38, 361–370. [Google Scholar] [CrossRef] [PubMed]
- Sandborgh-Englund, G.; Adolfsson-Erici, M.; Odham, G.; Ekstrand, J. Pharmacokinetics of triclosan following oral ingestion in humans. J. Toxicol. Environ. Health A 2006, 69, 1861–1873. [Google Scholar] [CrossRef]
- Lind, P.M.; Lind, L. Endocrine-disrupting chemicals and risk of diabetes: An evidence-based review. Diabetologia 2018, 61, 1495–1502. [Google Scholar] [CrossRef]
- Li, A.J.; Xue, J.; Lin, S.; Al-Malki, A.L.; Al-Ghamdi, M.A.; Kumosani, T.A.; Kannan, K. Urinary concentrations of environmental phenols and their association with type 2 diabetes in a population in Jeddah, Saudi Arabia. Environ. Res. 2018, 166, 544–552. [Google Scholar] [CrossRef]
- Sun, Q.; Cornelis, M.C.; Townsend, M.K.; Tobias, D.K.; Eliassen, A.H.; Franke, A.A.; Hauser, R.; Hu, F.B. Association of urinary concentrations of bisphenol A and phthalate metabolites with risk of type 2 diabetes: A prospective investigation in the Nurses’ Health Study (NHS) and NHSII cohorts. Environ. Health Perspect. 2014, 122, 616–623. [Google Scholar] [CrossRef]
- Yueh, M.F.; Tukey, R.H. Triclosan: A Widespread Environmental Toxicant with Many Biological Effects. Annu. Rev. Pharmacol. Toxicol. 2016, 56, 251–272. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Karvonen-Gutierrez, C.; Mukherjee, B.; Herman, W.H.; Harlow, S.D.; Park, S.K. Urinary concentrations of phenols and parabens and incident diabetes in midlife women: The Study of Women’s Health Across the Nation. Environ. Epidemiol. 2021, 5, e171. [Google Scholar] [CrossRef]
- Xie, X.; Lu, C.; Wu, M.; Liang, J.; Ying, Y.; Liu, K.; Huang, X.; Zheng, S.; Du, X.; Liu, D.; et al. Association between triclocarban and triclosan exposures and the risks of type 2 diabetes mellitus and impaired glucose tolerance in the National Health and Nutrition Examination Survey (NHANES 2013-2014). Environ. Int. 2020, 136, 105445. [Google Scholar] [CrossRef]
- Fisher, B.G.; Frederiksen, H.; Andersson, A.M.; Juul, A.; Thankamony, A.; Ong, K.K.; Dunger, D.B.; Hughes, I.A.; Acerini, C.L. Serum Phthalate and Triclosan Levels Have Opposing Associations with Risk Factors for Gestational Diabetes Mellitus. Front. Endocrinol. 2018, 9, 99. [Google Scholar] [CrossRef]
- Zhu, Y.; Hedderson, M.M.; Calafat, A.M.; Alexeeff, S.E.; Feng, J.; Quesenberry, C.P.; Ferrara, A. Urinary Phenols in Early to Midpregnancy and Risk of Gestational Diabetes Mellitus: A Longitudinal Study in a Multiracial Cohort. Diabetes 2022, 71, 2539–2551. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.J.; Robledo, C.; Davis, E.M.; Goodman, J.R.; Xu, C.; Hwang, J.; Janitz, A.E.; Garwe, T.; Calafat, A.M.; Peck, J.D. Assessing urinary phenol and paraben mixtures in pregnant women with and without gestational diabetes mellitus: A case-control study. Environ. Res. 2022, 214 Pt 2, 113897. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, F.; Tang, N.; Zhang, H.J.; Wang, X.; Zhao, S.; Wang, W.; Zhang, J.; Cheng, W. Maternal urinary triclosan level, gestational diabetes mellitus and birth weight in Chinese women. Sci. Total Environ. 2018, 626, 451–457. [Google Scholar] [CrossRef] [PubMed]
- Calafat, A.M.; Ye, X.; Wong, L.Y.; Reidy, J.A.; Needham, L.L. Urinary concentrations of triclosan in the U.S. population: 2003-2004. Environ. Health Perspect. 2008, 116, 303–307. [Google Scholar] [CrossRef]
- Hua, X.; Cao, X.Y.; Wang, X.L.; Sun, P.; Chen, L. Exposure of Pregnant Mice to Triclosan Causes Insulin Resistance via Thyroxine Reduction. Toxicol. Sci. 2017, 160, 150–160. [Google Scholar] [CrossRef]
- Kuroda, A.; Rauch, T.A.; Todorov, I.; Ku, H.T.; Al-Abdullah, I.H.; Kandeel, F.; Mullen, Y.; Pfeifer, G.P.; Ferreri, K. Insulin gene expression is regulated by DNA methylation. PLoS ONE 2009, 4, e6953. [Google Scholar] [CrossRef]
- Dayeh, T.; Volkov, P.; Salö, S.; Hall, E.; Nilsson, E.; Olsson, A.H.; Kirkpatrick, C.L.; Wollheim, C.B.; Eliasson, L.; Rönn, T.; et al. Genome-wide DNA methylation analysis of human pancreatic islets from type 2 diabetic and non-diabetic donors identifies candidate genes that influence insulin secretion. PLoS Genet. 2014, 10, e1004160. [Google Scholar] [CrossRef]
- Soriano, S.F.; Hernanz-Falcón, P.; Rodríguez-Frade, J.M.; De Ana, A.M.; Garzón, R.; Carvalho-Pinto, C.; Vila-Coro, A.J.; Zaballos, A.; Balomenos, D.; Martínez, A.C.; et al. Functional inactivation of CXC chemokine receptor 4-mediated responses through SOCS3 up-regulation. J. Exp. Med. 2002, 196, 311–321. [Google Scholar] [CrossRef]
- Zhang, Y.; Lin, C.; Chen, R.; Luo, L.; Huang, J.; Liu, H.; Chen, W.; Xu, J.; Yu, H.; Ding, Y. Association analysis of SOCS3, JAK2 and STAT3 gene polymorphisms and genetic susceptibility to type 2 diabetes mellitus in Chinese population. Diabetol. Metab. Syndr. 2022, 14, 4. [Google Scholar] [CrossRef]
- Rui, L.; Yuan, M.; Frantz, D.; Shoelson, S.; White, M.F. SOCS-1 and SOCS-3 block insulin signaling by ubiquitin-mediated degradation of IRS1 and IRS2. J. Biol. Chem. 2002, 277, 42394–42398. [Google Scholar] [CrossRef]
- Seufert, J. Leptin effects on pancreatic beta-cell gene expression and function. Diabetes 2004, 53 (Suppl. S1), S152–S158. [Google Scholar] [CrossRef] [PubMed]
- Ali, O.; Cerjak, D.; Kent, J.W., Jr.; James, R.; Blangero, J.; Carless, M.A.; Zhang, Y. Methylation of SOCS3 is inversely associated with metabolic syndrome in an epigenome-wide association study of obesity. Epigenetics 2016, 11, 699–707. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Liu, X.; Wei, D.; Kang, N.; Nie, L.; Liu, P.; Fan, K.; Zhang, L.; Hou, J.; Li, X.; et al. The mediation role of SOCS3 methylation in the effect of serum testosterone on type 2 diabetes. J. Diabetes 2021, 13, 701–712. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Ito, S.; Nguyen, H.T.; Yamamoto, K.; Tanoue, R.; Kunisue, T.; Iwata, H. Effects of prenatal exposure to triclosan on the liver transcriptome in chicken embryos. Toxicol. Appl. Pharmacol. 2018, 347, 23–32. [Google Scholar] [CrossRef]
- Du, G.; Yu, M.; Wang, L.; Hu, W.; Song, L.; Lu, C.; Wang, X. Transcriptome and DNA Methylome Dynamics during Triclosan-Induced Cardiomyocyte Differentiation Toxicity. Stem Cells Int. 2018, 2018, 8608327. [Google Scholar] [CrossRef]
- Falisse, E.; Ducos, B.; Stockwell, P.A.; Morison, I.M.; Chatterjee, A.; Silvestre, F. DNA methylation and gene expression alterations in zebrafish early-life stages exposed to the antibacterial agent triclosan. Environ. Pollut. 2018, 243, 1867–1877. [Google Scholar] [CrossRef]
- Esteller, M. Cancer epigenomics: DNA methylomes and histone-modification maps. Nat. Rev. Genet. 2007, 8, 286–298. [Google Scholar] [CrossRef]
- Nitert, M.D.; Dayeh, T.; Volkov, P.; Elgzyri, T.; Hall, E.; Nilsson, E.; Yang, B.T.; Lang, S.; Parikh, H.; Wessman, Y.; et al. Impact of an exercise intervention on DNA methylation in skeletal muscle from first-degree relatives of patients with type 2 diabetes. Diabetes 2012, 61, 3322–3332. [Google Scholar] [CrossRef]
- Regnault, C.; Willison, J.; Veyrenc, S.; Airieau, A.; Méresse, P.; Fortier, M.; Fournier, M.; Brousseau, P.; Raveton, M.; Reynaud, S. Metabolic and immune impairments induced by the endocrine disruptors benzo[a]pyrene and triclosan in Xenopus tropicalis. Chemosphere 2016, 155, 519–527. [Google Scholar] [CrossRef]
- Li, W.; Zhang, W.; Chang, M.; Ren, J.; Xie, W.; Chen, H.; Zhang, Z.; Zhuang, X.; Shen, G.; Li, H. Metabonomics reveals that triclocarban affects liver metabolism by affecting glucose metabolism, β-oxidation of fatty acids, and the TCA cycle in male mice. Toxicol. Lett. 2018, 299, 76–85. [Google Scholar] [CrossRef]
- Ward, J.B.; Casagrande, S.S.; Cowie, C.C. Urinary phenols and parabens and diabetes among US adults, NHANES 2005-2014. Nutr. Metab. Cardiovasc. Dis. 2020, 30, 768–776. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, G.D.; Arbuckle, T.E.; Ashley-Martin, J.; Fraser, W.D.; Fisher, M.; Bouchard, M.F.; Monnier, P.; Morisset, A.S.; Ettinger, A.S.; Dodds, L. Associations between maternal triclosan concentrations in early pregnancy and gestational diabetes mellitus, impaired glucose tolerance, gestational weight gain and fetal markers of metabolic function. Environ. Res. 2018, 161, 554–561. [Google Scholar] [CrossRef]
- Hou, Y.; Li, S.; Xia, L.; Yang, Q.; Zhang, L.; Zhang, X.; Liu, H.; Huo, R.; Cao, G.; Huang, C.; et al. Associations of urinary phenolic environmental estrogens exposure with blood glucose levels and gestational diabetes mellitus in Chinese pregnant women. Sci. Total Environ. 2021, 754, 142085. [Google Scholar] [CrossRef] [PubMed]
- Livadas, S.; Yildiz, B.O.; Mastorakos, G.; Gambineri, A.; Pignatelli, D.; Giorgino, F.; Andersen, M.S.; Obermayer-Pietsch, B.; Macut, D. European survey of diagnosis and management of the polycystic ovary syndrome: Full report on the ESE PCOS Special Interest Group’s 2023 Questionnaire. Eur. J. Endocrinol. 2024, 191, 134–143. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Xian, H.; Ren, X.; Ye, R.; Zhong, Y.; Huang, Y.; Liang, B.; Deng, Y.; Dai, M.; Guo, J.; et al. Insights into Triclosan-Induced Endocrine Disruption: Evidence from the National Health and Nutrition Examination Survey and Zebrafish Models. Environ. Health 2024, 2, 424–440. [Google Scholar] [CrossRef]
- Niu, X.; Wang, Y.; Huang, L.; Guo, P.; Zhang, S.; Sun, Y.; Jin, M. Effect of oral metformin on gut microbiota characteristics and metabolite fractions in normal-weight type 2 diabetic mellitus patients. Front. Endocrinol. 2024, 15, 1397034. [Google Scholar] [CrossRef]
- Chen, L.; Magliano, D.J.; Zimmet, P.Z. The worldwide epidemiology of type 2 diabetes mellitus—Present and future perspectives. Nat. Rev. Endocrinol. 2011, 8, 228–236. [Google Scholar] [CrossRef]
- Pedroso, J.A.B.; Ramos-Lobo, A.M.; Donato, J., Jr. SOCS3 as a future target to treat metabolic disorders. Hormones 2019, 18, 127–136. [Google Scholar] [CrossRef]
- Yang, Z.; Hulver, M.; McMillan, R.P.; Cai, L.; Kershaw, E.E.; Yu, L.; Xue, B.; Shi, H. Regulation of insulin and leptin signaling by muscle suppressor of cytokine signaling 3 (SOCS3). PLoS ONE 2012, 7, e47493. [Google Scholar] [CrossRef]
- Dai, Y.E.; Chen, W.; Qi, H.; Liu, Q.Q. Effect of bisphenol A on SOCS-3 and insulin signaling transduction in 3T3-L1 adipocytes. Mol. Med. Rep. 2016, 14, 331–336. [Google Scholar] [CrossRef]
- Niwa, Y.; Kanda, H.; Shikauchi, Y.; Saiura, A.; Matsubara, K.; Kitagawa, T.; Yamamoto, J.; Kubo, T.; Yoshikawa, H. Methylation silencing of SOCS-3 promotes cell growth and migration by enhancing JAK/STAT and FAK signalings in human hepatocellular carcinoma. Oncogene 2005, 24, 6406–6417. [Google Scholar] [CrossRef] [PubMed]
- Dennis, V.A.; Jefferson, A.; Singh, S.R.; Ganapamo, F.; Philipp, M.T. Interleukin-10 anti-inflammatory response to Borrelia burgdorferi, the agent of Lyme disease: A possible role for suppressors of cytokine signaling 1 and 3. Infect. Immun. 2006, 74, 5780–5789. [Google Scholar] [CrossRef]
- Bode, J.G.; Nimmesgern, A.; Schmitz, J.; Schaper, F.; Schmitt, M.; Frisch, W.; Häussinger, D.; Heinrich, P.C.; Graeve, L. LPS and TNFalpha induce SOCS3 mRNA and inhibit IL-6-induced activation of STAT3 in macrophages. FEBS Lett. 1999, 463, 365–370. [Google Scholar] [CrossRef]
- Chambers, J.C.; Loh, M.; Lehne, B.; Drong, A.; Kriebel, J.; Motta, V.; Wahl, S.; Elliott, H.R.; Rota, F.; Scott, W.R.; et al. Epigenome-wide association of DNA methylation markers in peripheral blood from Indian Asians and Europeans with incident type 2 diabetes: A nested case-control study. Lancet Diabetes Endocrinol. 2015, 3, 526–534. [Google Scholar] [CrossRef]
- Mathur, R.; Hui, Q.; Huang, Y.; Gwinn, M.; So-Armah, K.; Freiberg, M.S.; Justice, A.C.; Xu, K.; Marconi, V.C.; Sun, Y.V. DNA Methylation Markers of Type 2 Diabetes Mellitus Among Male Veterans with or Without Human Immunodeficiency Virus Infection. J. Infect. Dis. 2019, 219, 1959–1962. [Google Scholar] [CrossRef] [PubMed]
- Stoker, T.E.; Gibson, E.K.; Zorrilla, L.M. Triclosan exposure modulates estrogen-dependent responses in the female wistar rat. Toxicol. Sci. 2010, 117, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Barros, R.P.; Gustafsson, J. Estrogen receptors and the metabolic network. Cell Metab. 2011, 14, 289–299. [Google Scholar] [CrossRef]
- Shi, M.; Lin, Z.; Ye, L.; Chen, X.; Zhang, W.; Zhang, Z.; Luo, F.; Liu, Y.; Shi, M. Estrogen receptor-regulated SOCS3 modulation via JAK2/STAT3 pathway is involved in BPF-induced M1 polarization of macrophages. Toxicology 2020, 433–434, 152404. [Google Scholar] [CrossRef]
- Qi, H.M.; Dai, Y.E.; Chen, W.; Liu, Q.Q. SOCS-3 contributes to bisphenol a exposure-induced insulin resistance in hepatocytes. Sci. China Life Sci. 2019, 62, 1597–1600. [Google Scholar] [CrossRef]
- Ma, H.; Zheng, L.; Li, Y.; Pan, S.; Hu, J.; Yu, Z.; Zhang, G.; Sheng, G.; Fu, J. Triclosan reduces the levels of global DNA methylation in HepG2 cells. Chemosphere 2013, 90, 1023–1029. [Google Scholar] [CrossRef]
- Ivry Del Moral, L.; Le Corre, L.; Poirier, H.; Niot, I.; Truntzer, T.; Merlin, J.F.; Rouimi, P.; Besnard, P.; Rahmani, R.; Chagnon, M.C. Obesogen effects after perinatal exposure of 4,4’-sulfonyldiphenol (Bisphenol S) in C57BL/6 mice. Toxicology 2016, 357–358, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Dey, B.R.; Furlanetto, R.W.; Nissley, P. Suppressor of cytokine signaling (SOCS)-3 protein interacts with the insulin-like growth factor-I receptor. Biochem. Biophys. Res. Commun. 2000, 278, 38–43. [Google Scholar] [CrossRef] [PubMed]
- Bluyssen, H.A.; Rastmanesh, M.M.; Tilburgs, C.; Jie, K.; Wesseling, S.; Goumans, M.J.; Boer, P.; Joles, J.A.; Braam, B. IFN gamma-dependent SOCS3 expression inhibits IL-6-induced STAT3 phosphorylation and differentially affects IL-6 mediated transcriptional responses in endothelial cells. Am. J. Physiol. Cell Physiol. 2010, 299, C354–C362. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.X.; Liu, Y.; Zhang, S.M.; Wang, H.F.; Liu, Y.F.; Liu, J.L.; Li, X.H.; Zeng, M.R.; Han, Y.Z.; Liu, F.Y.; et al. Epac activation ameliorates tubulointerstitial inflammation in diabetic nephropathy. Acta Pharmacol. Sin. 2022, 43, 659–671. [Google Scholar] [CrossRef]
- Takahashi, Y.; Carpino, N.; Cross, J.C.; Torres, M.; Parganas, E.; Ihle, J.N. SOCS3: An essential regulator of LIF receptor signaling in trophoblast giant cell differentiation. EMBO J. 2003, 22, 372–384. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Badeanlou, L.; Bielawski, J.; Roberts, A.J.; Hannun, Y.A.; Samad, F. Central role of ceramide biosynthesis in body weight regulation, energy metabolism, and the metabolic syndrome. Am. J. Physiol. Endocrinol. Metab. 2009, 297, E211–E224. [Google Scholar] [CrossRef]
- Liu, Z.; Lu, Y.; Zhong, K.; Wang, C.; Xu, X. The associations between endocrine disrupting chemicals and markers of inflammation and immune responses: A systematic review and meta-analysis. Ecotoxicol. Environ. Saf. 2022, 234, 113382. [Google Scholar] [CrossRef]
- Wunderlich, C.M.; Hövelmeyer, N.; Wunderlich, F.T. Mechanisms of chronic JAK-STAT3-SOCS3 signaling in obesity. Jak-Stat 2013, 2, e23878. [Google Scholar] [CrossRef]
- Skyler, J.S.; Bakris, G.L.; Bonifacio, E.; Darsow, T.; Eckel, R.H.; Groop, L.; Groop, P.H.; Handelsman, Y.; Insel, R.A.; Mathieu, C.; et al. Differentiation of Diabetes by Pathophysiology, Natural History, and Prognosis. Diabetes 2017, 66, 241–255. [Google Scholar] [CrossRef]
- Kim, S.; Kim, S.; Won, S.; Choi, K. Considering common sources of exposure in association studies—Urinary benzophenone-3 and DEHP metabolites are associated with altered thyroid hormone balance in the NHANES 2007-2008. Environ. Int. 2017, 107, 25–32. [Google Scholar] [CrossRef]
- Liu, X.; Mao, Z.; Li, Y.; Wu, W.; Zhang, X.; Huo, W.; Yu, S.; Shen, L.; Li, L.; Tu, R.; et al. Cohort Profile: The Henan Rural Cohort: A prospective study of chronic non-communicable diseases. Int. J. Epidemiol. 2019, 48, 1756–1756j. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Qian, X.; Tu, R.; Mao, Z.; Huo, W.; Zhang, H.; Jiang, J.; Zhang, X.; Tian, Z.; Li, Y.; et al. SOCS3 methylation mediated the effect of sedentary time on type 2 diabetes mellitus: The Henan Rural Cohort study. Nutr. Metab. Cardiovasc. Dis. 2020, 30, 634–643. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, B.L.; Abbott, R.D.; Fujimoto, W.; Waitzfelder, B.; Chen, R.; Masaki, K.; Schatz, I.; Petrovitch, H.; Ross, W.; Yano, K.; et al. The American Diabetes Association and World Health Organization classifications for diabetes: Their impact on diabetes prevalence and total and cardiovascular disease mortality in elderly Japanese-American men. Diabetes Care 2002, 25, 951–955. [Google Scholar] [CrossRef]
- Wei, D.; Shi, J.; Xu, H.; Guo, Y.; Wu, X.; Chen, Z.; Chen, T.; Lou, H.; Han, E.; Han, G.; et al. Prospective study on the joint effect of persistent organic pollutants and glucose metabolism on chronic kidney disease: Modifying effects of lifestyle interventions. Sci. Total Environ. 2024, 951, 175694. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Whole | Control | T2DM | p-Value a |
---|---|---|---|---|
(n = 956) | (n = 626) | (n = 330) | ||
Age, years, median (IQR) | 61 (54, 65) | 61 (54, 65) | 61 (54, 65) | 0.931 |
<55 | 325 (34.00) | 211 (33.71) | 114 (34.55) | |
55–65 | 405 (42.36) | 266 (42.49) | 139 (42.12) | |
>65 | 226 (23.64) | 149 (23.80) | 77 (23.33) | |
Men, n (%) | 415 (43.41) | 275 (43.93) | 140 (42.42) | 0.655 |
Educational level, n (%) | 0.990 | |||
never attended school | 242 (25.31) | 159 (25.40) | 83 (25.15) | |
primary school | 294 (30.75) | 193 (30.83) | 101 (30.61) | |
Junior, secondary, and above | 420 (43.94) | 274 (43.77) | 146 (44.24) | |
Marital status, n (%) | 0.315 | |||
married/cohabiting | 856 (89.54) | 556 (88.82) | 300 (90.91) | |
widowed/single/divorced | 100 (10.46) | 70 (11.18) | 30 (9.09) | |
Average monthly income, n (%) | 0.011 | |||
CNY <500 | 374 (39.12) | 229 (36.58) | 145 (43.94) | |
CNY 500~ | 310 (32.43) | 223 (35.62) | 87 (26.36) | |
CNY 1000~ | 272 (28.45) | 174 (27.80) | 98 (29.70) | |
Smoking status, n (%) | 0.063 | |||
current | 191 (19.98) | 136 (21.73) | 55 (16.67) | |
never/past | 765 (80.02) | 490 (78.27) | 275 (83.33) | |
Alcohol status, n (%) | 0.025 | |||
current | 148 (15.48) | 85 (13.58) | 63 (19.09) | |
never/past | 808 (84.52) | 541 (86.42) | 267 (80.91) | |
Physical activity, n (%) | 0.404 | |||
low | 249 (26.05) | 156 (24.92) | 93 (28.18) | |
moderate | 427 (44.67) | 279 (44.57) | 148 (44.85) | |
high | 280 (29.28) | 191 (30.51) | 89 (26.97) | |
High-fat diet (>75 g/day, n (%)) | 188 (19.67) | 120 (19.17) | 68 (20.61) | 0.595 |
Vegetable and fruit intake (>500 g/day, n (%)) | 618 (64.64) | 405 (64.70) | 213 (64.55) | 0.963 |
Family history of T2DM, n (%) | 28 (2.93) | 7 (1.12) | 21 (6.36) | <0.001 |
BMI, kg/m2, mean ± SD | 24.42 ± 3.65 | 23.32 ± 2.94 | 26.50 ± 3.94 | <0.001 |
<18.5 | 19 (1.99) | 14 (2.24) | 5 (1.52) | |
18.5–23.9 | 459 (48.01) | 371 (59.27) | 88 (26.67) | |
>23.9 | 478 (50.00) | 241 (38.49) | 237 (71.83) | |
PP (mm Hg), median (IQR) | 47 (41, 56) | 46 (40, 55) | 49 (42, 58) | 0.001 |
TC (mmol/L), median (IQR) | 4.66 (4.11, 5.32) | 4.63 (4.09, 5.23) | 4.73 (4.19, 5.45) | 0.052 |
TG (mmol/L), median (IQR) | 1.61 (1.12, 2.42) | 1.47 (1.02, 2.20) | 1.88 (1.32, 2.92) | <0.001 |
Pollutants, median (IQR) | ||||
TCS, (ng/mL) | 0.056 (0.003, 0.236) | 0.040 (0.003, 0.182) | 0.107 (0.003, 0.334) | <0.001 |
TCC, (ng/mL) | <LOD | <LOD | <LOD | |
SOCS-3 DNA methylation (%), mean ± SD | ||||
Methylation of Chr17:76356190 | 1.05 ± 0.62 | 1.13 ± 0.66 | 0.88 ± 0.49 | <0.001 |
Methylation of Chr17:76356199 | 0.95 ± 0.38 | 0.99 ± 0.40 | 0.86 ± 0.32 | <0.001 |
Genomic region, mean ± SD | ||||
Chr17:76355106_Chr17:76355374 | 1.61 ± 0.38 | 1.61 ± 0.38 | 1.62 ± 0.39 | 0.624 |
Chr17:76356032_Chr17:76356279 | 0.96 ± 0.16 | 0.96 ± 0.15 | 0.97 ± 0.16 | 0.607 |
Chr17:76354901_Chr17:76355135 | 31.28 ± 8.77 | 31.36 ± 9.04 | 31.15 ± 8.26 | 0.723 |
Chr17:76354539_Chr17: 76354788 | 76.66 ± 4.14 | 76.62 ± 4.20 | 76.72 ± 4.03 | 0.729 |
Outcome | OR (95%CI) | β (95%CI) | ||||
---|---|---|---|---|---|---|
T2DM | FBG | INS | HbA1c | Ln-HOMA2-β | Ln-HOMA2-IR | |
model 1 | ||||||
Continuous | 1.134 (1.073, 1.198) | 0.159 (0.093, 0.225) | 0.226 (0.072, 0.379) | 0.081 (0.039, 0.122) | −0.027 (−0.042, −0.011) | 0.021 (0.009, 0.032) |
T1 | Reference | Reference | Reference | Reference | Reference | Reference |
T2 | 1.352 (0.964, 1.898) | 0.320 (−0.078, 0.717) | 0.677 (−0.246, 1.600) | 0.107 (−0.140, 0.354) | −0.042 (−0.133, 0.049) | 0.061 (−0.008, 0.130) |
T3 | 1.982 (1.422,2.761) | 0.770 (0.373, 1.168) | 0.815 (−0.108, 1.738) | 0.474 (0.227, 0.721) | −0.150 (−0.241, −0.059) | 0.083 (0.014, 0.151) |
p for trend | <0.001 | <0.001 | 0.083 | <0.001 | 0.001 | 0.018 |
model 2 | ||||||
Continuous | 1.138 (1.075, 1.205) | 0.162 (0.097, 0.227) | 0.223 (0.069, 0.377) | 0.082 (0.042, 0.123) | −0.027 (−0.042, −0.012) | 0.020 (0.009, 0.032) |
T1 | Reference | Reference | Reference | Reference | Reference | Reference |
T2 | 1.388 (0.976, 1.973) | 0.350 (−0.043, 0.743) | 0.699 (−0.228, 1.626) | 0.138 (−0.106, 0.383) | −0.046 (−0.136, 0.044) | 0.062 (−0.007, 0.131) |
T3 | 2.000 (1.416, 2.824) | 0.768 (0.376, 1.160) | 0.799 (−0.126, 1.724) | 0.475 (0.231, 0.719) | −0.147 (−0.237, −0.057) | 0.080 (0.011, 0.148) |
p for trend | <0.001 | <0.001 | 0.091 | <0.001 | 0.001 | 0.023 |
model 3 | ||||||
Continuous | 1.132 (1.062, 1.207) | 0.135 (0.073, 0.196) | 0.157 (0.013, 0.302) | 0.067 (0.028, 0.106) | −0.023 (−0.038, −0.008) | 0.015 (0.004, 0.025) |
T1 | Reference | Reference | Reference | Reference | Reference | Reference |
T2 | 1.260 (0.853, 1.861) | 0.253 (−0.119, 0.625) | 0.442 (−0.425, 1.309) | 0.082 (−0.150, 0.313) | −0.030 (−0.119, 0.058) | 0.040 (−0.023, 0.103) |
T3 | 1.776 (1.207, 2.614) | 0.573 (0.200, 0.945) | 0.289 (−0.580, 1.158) | 0.360 (0.128, 0.592) | −0.119 (−0.208, −0.031) | 0.036 (−0.027, 0.100) |
p for trend | 0.003 | 0.003 | 0.516 | 0.002 | 0.008 | 0.258 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Q.; Huan, C.; Jia, Z.; Cao, Q.; Yuan, P.; Li, X.; Wang, C.; Mao, Z.; Huo, W. SOCS3 Methylation Partially Mediated the Association of Exposure to Triclosan but Not Triclocarban with Type 2 Diabetes Mellitus: A Case-Control Study. Int. J. Mol. Sci. 2024, 25, 12113. https://doi.org/10.3390/ijms252212113
Gao Q, Huan C, Jia Z, Cao Q, Yuan P, Li X, Wang C, Mao Z, Huo W. SOCS3 Methylation Partially Mediated the Association of Exposure to Triclosan but Not Triclocarban with Type 2 Diabetes Mellitus: A Case-Control Study. International Journal of Molecular Sciences. 2024; 25(22):12113. https://doi.org/10.3390/ijms252212113
Chicago/Turabian StyleGao, Qian, Changsheng Huan, Zexin Jia, Qingqing Cao, Pengcheng Yuan, Xin Li, Chongjian Wang, Zhenxing Mao, and Wenqian Huo. 2024. "SOCS3 Methylation Partially Mediated the Association of Exposure to Triclosan but Not Triclocarban with Type 2 Diabetes Mellitus: A Case-Control Study" International Journal of Molecular Sciences 25, no. 22: 12113. https://doi.org/10.3390/ijms252212113