Matrix Background Screening of an ssDNA Aptamer and Its Identification Against Lactopontin
<p>Schematic illustration of the direct (<b>A</b>) and indirect (<b>B</b>) matrix background SELEX approaches.</p> "> Figure 2
<p>The dissociation curve analysis for each library to monitor the screening evolution: ten rounds (<b>A</b>) and the clear curves’ changes (<b>C</b>) in the direct approach; eight rounds (<b>B</b>) and the clear curves’ changes (<b>D</b>) in the indirect approach; their separate AGE results (<b>E</b>,<b>F</b>) of the PCR products after linking the connectors before HTS changed from 80 bp (bands 1 and 3) to the position of 200 bp (bands 2 and 4).</p> "> Figure 3
<p>(<b>A</b>): Evolutionary tree of the top 10 sequences of the direct approach (top) and indirect approach (bottom) via MEGA-11. (<b>B</b>): Their sequence logos of conserved bases through a Clustal X analysis of the direct approach (Top) and indirect approach (bottom). (<b>C</b>): The motif analysis of the selected nine candidate sequences through MEME Suite.</p> "> Figure 4
<p>(<b>A</b>): The ssDNA standard solutions through qPCR assay between ssDNA concentration and Cq values. (<b>B</b>): The preliminary affinity evaluation of the nine selected candidate sequences. (<b>C</b>): The affinity of Seq.I1II3 with seven concentration (Conc.) levels (0, 5, 10, 20, 50, 100, and 200 nM) based on the non-linear fitting method. (<b>D</b>): The specificity assessment of Seq.I1II3 (**** <span class="html-italic">p</span> < 0.0001).</p> "> Figure 5
<p>Binding mode analysis between the aptamer and LPN. The accompanying figure delineates the specific binding site with amino acid residues represented as blue stick models and nucleotide residues as red stick models.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. Illustration of Aptamer Screening
2.2. Matrix Background SELEX for LPN
2.3. Comprehensive Evaluation of Candidate Sequences
2.4. Performance Evaluation of the Candidate Aptamer
2.5. Binding Analysis by Molecular Dynamics
3. Material and Methods
3.1. Materials, Reagents, and Instruments
3.2. Buffer Preparation
3.3. Screening Process
3.4. PCR Amplification and ssDNA Purification
3.5. The Characterization of Affinity and Specificity
3.6. Structural Analysis and Molecular Docking
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sørensen, E.S.; Christensen, B. Milk osteopontin and human health. Nutrients 2023, 15, 2423. [Google Scholar] [CrossRef] [PubMed]
- Christensen, B.; Sørensen, E.S. Structure, function and nutritional potential of milk osteopontin. Int. Dairy J. 2016, 57, 1–6. [Google Scholar] [CrossRef]
- Franzen, A.; Heinegård, D. Isolation and characterization of two sialoproteins present only in bone calcified matrix. Biochem. J. 1985, 232, 715–724. [Google Scholar] [CrossRef] [PubMed]
- Azuma, N.; Yamauchi, K. A glyco-phosphoprotein in human milk. J. Dairy Res. 1987, 54, 199–205. [Google Scholar] [CrossRef] [PubMed]
- Sørensen, E.S.; Petersen, T.E. Purification and characterization of three proteins isolated from the proteose peptone fraction of bovine milk. J. Dairy Res. 1993, 60, 189–197. [Google Scholar] [CrossRef]
- Kanwar, J.; Kanwar, R.; Stathopoulos, S.; Haggarty, N.; MacGibbon, A.; Palmano, K.; Roy, K.; Rowan, A.; Krissansen, G. Comparative activities of milk components in reversing chronic colitis. J. Dairy Sci. 2016, 99, 2488–2501. [Google Scholar] [CrossRef]
- Aasmul-Olsen, K.; Henriksen, N.L.; Nguyen, D.N.; Heckmann, A.B.; Thymann, T.; Sangild, P.T.; Bering, S.B. Milk osteopontin for gut, immunity and brain development in preterm pigs. Nutrients 2021, 13, 2675. [Google Scholar] [CrossRef]
- Jiang, R.; Lönnerdal, B. Effects of milk osteopontin on intestine, neurodevelopment, and immunity, Milk. Mucosal Immun. Microbiome Impact Neonate 2020, 94, 152–157. [Google Scholar] [CrossRef]
- Schack, L.; Stapulionis, R.; Christensen, B.; Kofod-Olsen, E.; Sørensen, U.B.S.; Vorup-Jensen, T.; Sørensen, E.S.; Hollsberg, P. Osteopontin enhances phagocytosis through a novel osteopontin receptor, the αXβ2 integrin. J. Immunol. 2009, 182, 6943–6950. [Google Scholar] [CrossRef]
- Schack, L.; Lange, A.; Kelsen, J.; Agnholt, J.; Christensen, B.; Petersen, T.E.; Sørensen, E.S. Considerable variation in the concentration of osteopontin in human milk, bovine milk, and infant formulas. J. Dairy Sci. 2009, 92, 5378–5385. [Google Scholar] [CrossRef]
- Lönnerdal, B. Bioactive proteins in human milk: Health, nutrition, and implications for infant formulas. J. Pediatr. 2016, 173, S4–S9. [Google Scholar] [CrossRef] [PubMed]
- Commission Implementing Regulation (EU) 2023/463 of 3 March 2023 Authorising the Placing on the Market of Bovine Milk Osteopontin as a Novel Food and Amending Implementing Regulation (EU) 2017/2470 (Text with EEA Relevance, (2023-3). Available online: http://data.europa.eu/eli/reg_impl/2023/463/oj (accessed on 10 July 2024).
- Lönnerdal, B.; Kvistgaard, A.S.; Peerson, J.M.; Donovan, S.M.; Peng, Y.-M. Growth, nutrition, and cytokine response of breast-fed infants and infants fed formula with added bovine osteopontin. J. Pediatr. Gastroenterol. Nutr. 2016, 62, 650–657. [Google Scholar] [CrossRef] [PubMed]
- EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA); Turck, D.; Castenmiller, J.; De Henauw, S.; Hirsch-Ernst, K.I.; Kearney, J.; Maciuk, A.; Mangelsdorf, I.; McArdle, H.J.; Naska, A.; et al. Safety of bovine milk osteopontin as a Novel food pursuant to Regulation (EU) 2015/2283. EFSA J. 2022, 20, e07137. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.; Zhang, J.; Jiang, Y.; Tong, W.; Lai, S.; Ren, Y. Quantitative determination of osteopontin in bovine, buffalo, yak, sheep and goat milk by Ultra-high performance liquid chromatography-tandem mass spectrometry and stable isotope dimethyl labeling. Food Chem. 2021, 343, 128489. [Google Scholar] [CrossRef]
- Macur, K.; Hagen, L.; Ciesielski, T.M.; Konieczna, L.; Skokowski, J.; Jenssen, B.M.; Slupphaug, G.; Bączek, T. A targeted mass spectrometry immunoassay to quantify osteopontin in fresh-frozen breast tumors and adjacent normal breast tissues. J. Proteom. 2019, 208, 103469. [Google Scholar] [CrossRef]
- Moloney, C.; Brosnan, B.; Faulkner, H.; O’Regan, J. An analytical method to quantify osteopontin in dairy powders and infant formulas by signature peptide quantification with UHPLC-MS/MS. J. AOAC Int. 2020, 103, 1646–1653. [Google Scholar] [CrossRef]
- Wang, X.; Cui, D.; Qu, X.; You, H.; Lei, F.; Li, J.; Xie, Y.; Zhang, H.; Zhang, Y.; Jiang, S. Analytical Ultracentrifugation-Calibrated Anion-Exchange Chromatography for Sensitive and Intact Determination of Osteopontin in Infant Formula and Dairy Products. J. Agric. Food Chem. 2023, 71, 13880–13888. [Google Scholar] [CrossRef]
- Wazed, M.A.; Farid, M. A Reversed-Phase HPLC Method for Determination of Osteopontin in Infant Formula. Appl. Sci. 2019, 9, 3711. [Google Scholar] [CrossRef]
- Zhao, J.; Wen, J.; Han, M. Determination of osteopontin at trace levels by non-gel sieving capillary electrophoresis. Se Pu= Chin. J. Chromatogr. 2005, 23, 520–523. [Google Scholar] [CrossRef]
- Nagatomo, T.; Ohga, S.; Takada, H.; Nomura, A.; Hikino, S.; Imura, M.; Ohshima, K.; Hara, T. Microarray analysis of human milk cells: Persistent high expression of osteopontin during the lactation period. Clin. Exp. Immunol. 2004, 138, 47–53. [Google Scholar] [CrossRef]
- Zhou, H.; Li, Y.; Wu, W. Aptamers: Promising Reagents in Biomedicine Application. Adv. Biol. 2024, 8, 2300584. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Chen, C.; Larcher, L.M.; Barrero, R.A.; Veedu, R.N. Three decades of nucleic acid aptamer technologies: Lessons learned, progress and opportunities on aptamer development. Biotechnol. Adv. 2019, 37, 28–50. [Google Scholar] [CrossRef] [PubMed]
- Tuerk, C.; Gold, L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 1990, 249, 505–510. [Google Scholar] [CrossRef] [PubMed]
- Ellington, A.D.; Szostak, J.W. In vitro selection of RNA molecules that bind specific ligands. Nature 1990, 346, 818–822. [Google Scholar] [CrossRef] [PubMed]
- DeRosa, M.C.; Lin, A.; Mallikaratchy, P.; McConnell, E.M.; McKeague, M.; Patel, R.; Shigdar, S. In vitro selection of aptamers and their applications. Nat. Rev. Methods Primers 2023, 3, 54. [Google Scholar] [CrossRef]
- Dong, Y.; Wang, J.; Chen, L.; Chen, H.; Dang, S.; Li, F. Aptamer-based assembly systems for SARS-CoV-2 detection and therapeutics. Chem. Soc. Rev. 2024, 53, 6830–6859. [Google Scholar] [CrossRef]
- Qin, M.; Khan, I.M.; Ding, N.; Qi, S.; Dong, X.; Zhang, Y.; Wang, Z. Aptamer-modified paper-based analytical devices for the detection of food hazards: Emerging applications and future perspective. Biotechnol. Adv. 2024, 73, 108368. [Google Scholar] [CrossRef]
- Tian, R.; Sun, J.; Ye, Y.; Lu, X.; Sun, X. Screening strategy of aptamer and its application in food contaminants determination. TrAC Trends Anal. Chem. 2024, 16, 117710. [Google Scholar] [CrossRef]
- Gragoudas, E.S.; Adamis, A.P.; Cunningham, E.T., Jr.; Feinsod, M.; Guyer, D.R. Pegaptanib for neovascular age-related macular degeneration. N. Engl. J. Med. 2004, 351, 2805–2816. [Google Scholar] [CrossRef]
- Mullard, A. FDA approves second RNA aptamer, Nature reviews. Drug Discov. 2023, 22, 774. [Google Scholar] [CrossRef]
- Askari, A.; Kota, S.; Ferrell, H.; Swamy, S.; Goodman, K.S.; Okoro, C.C.; Crenshaw, I.C.S.; Hernandez, D.K.; Oliphant, T.E.; Badrayani, A.A. UTexas Aptamer Database: The collection and long-term preservation of aptamer sequence information. Nucleic Acids Res. 2024, 52, D351–D359. [Google Scholar] [CrossRef] [PubMed]
- Brown, A.; Brill, J.; Amini, R.; Nurmi, C.; Li, Y. Development of better aptamers: Structured library approaches, selection methods, and chemical modifications. Angew. Chem. Int. Ed. 2024, 63, e202318665. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Mitchell, N.M.; Banerjee, S.; Cheng, Z.; Taylor, S.; Kostic, A.M.; Wong, I.; Sajjath, S.; Zhang, Y.; Stevens, J. A functional group–guided approach to aptamers for small molecules. Science 2023, 380, 942–948. [Google Scholar] [CrossRef] [PubMed]
- Song, P.; Fan, C. Selecting aptamers with programmed affinities. Nat. Chem. 2023, 15, 747–748. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Ma, P.; Mahmood, K.I.; Zhang, Y.; Wang, Z. A review: Construction of aptamer screening methods based on improving the screening rate of key steps. Talanta 2023, 253, 124003. [Google Scholar] [CrossRef]
- Zhao, Y.; Yavari, K.; Liu, J. Critical evaluation of aptamer binding for biosensor designs. TrAC Trends Anal. Chem. 2022, 146, 116480. [Google Scholar] [CrossRef]
- Zhu, C.; Feng, Z.; Qin, H.; Chen, L.; Yan, M.; Li, L.; Qu, F. Recent progress of SELEX methods for screening nucleic acid aptamers. Talanta 2023, 351, 124998. [Google Scholar] [CrossRef]
- Lu, C.; Liu, C.; Zhou, Q.; Chen, X.; Li, H.; Wang, S.; Guo, Y. Selecting specific aptamers that bind to ovine pregnancy-associated glycoprotein 7 using real serum sample–assisted FluMag-SELEX to develop magnetic microparticle–based colorimetric aptasensor. Anal. Chim. Acta 2022, 1191, 339291. [Google Scholar] [CrossRef]
- Huang, M.; Song, J.; Huang, P.; Chen, X.; Wang, W.; Zhu, Z.; Song, Y.; Yang, C. Molecular crowding evolution for enabling discovery of enthalpy-driven aptamers for robust biomedical applications. Anal. Chem. 2019, 91, 10879–10886. [Google Scholar] [CrossRef]
- Mohamad, N.; Hashim, A.M.; Mokhtar, N.F.K.; Yuswan, M.H.; Mustafa, S. Discovery of porcine proteins-binding DNA aptamer through SELEX and proteomics for pork authentication. Microchem. J. 2024, 196, 109650. [Google Scholar] [CrossRef]
- Bailey, T.L.; Elkan, C. Fitting a mixture model by expectation maximization to discover motifs in bipolymers. Proc. Int. Conf. Intell. Syst. Mol. Biol. 1994, 2, 28–36. [Google Scholar] [PubMed]
- Lee, S.J.; Cho, J.; Lee, B.-H.; Hwang, D.; Park, J.-W. Design and prediction of aptamers assisted by in silico methods. Biomedicines 2023, 11, 356. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Yang, G.; Liu, W.; Liu, Q.; Wang, Z.; Fan, K.; Qu, F.; Huang, Y. Screening and identification of ssDNA aptamers for low-density lipoprotein (LDL) receptor-related protein 6. Molecules 2023, 28, 3838. [Google Scholar] [CrossRef] [PubMed]
Seq. | Bases Composition (5′F-3′R) | Frequency | Ratio (%) | p-Value |
---|---|---|---|---|
I1II3 | GTCAAGAAGCAACTTTAGAAGCAGGGGAGAGGTCGTGTAT | 3595 vs. 1680 | 4.8 vs. 2.44 | 1.13 × 10−7 |
I2II40 | GGAGGGCAGTCAAAAACGGGCAGCACTCTAGTAAAGGTCG | 627 vs. 137 | 0.84 vs. 0.2 | 3.20 × 10−1 |
I-3 | GAGACGTGTATAGCACCAATTGAATCAAGAAGCAGCTACC | 557 | 0.74 | 9.79 × 10−6 |
I-4 | GGGCATGGGAAGTAGGGATAGGCCGGTTTCCACCAATGAG | 222 | 0.3 | 2.84 × 10−2 |
I-5 | GCCAATTTCCGGGCACCTGGACACAGAATACTGATAGGTT | 177 | 0.24 | 2.98 × 10−1 |
II-1 | GGTGTAGTGAGGTTGTTGCATGGGTTTACGCGTGTACGGT | 27,306 | 39.65 | 2.95 × 10−2 |
II-2 | GGATCTATGTCATCACACACGGATGGAGGAGTGCATTCGCT | 2683 | 3.9 | 3.02 × 10−2 |
II4I8 | GGCGTAAAGTGATCGGTACGGGAAAGGGAAGGATGCTTAT | 1111 | 1.61 | 5.33 × 10−3 |
II-5 | GTCAAGCGTCGGTGCCGCTCGGGGAGCCCACTAATGGATG | 441 | 0.64 | 5.08 × 10−1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, C.; Feng, Z.; Yan, M.; Du, H.; Li, T.; Mao, J. Matrix Background Screening of an ssDNA Aptamer and Its Identification Against Lactopontin. Int. J. Mol. Sci. 2024, 25, 11832. https://doi.org/10.3390/ijms252111832
Zhu C, Feng Z, Yan M, Du H, Li T, Mao J. Matrix Background Screening of an ssDNA Aptamer and Its Identification Against Lactopontin. International Journal of Molecular Sciences. 2024; 25(21):11832. https://doi.org/10.3390/ijms252111832
Chicago/Turabian StyleZhu, Chao, Ziru Feng, Mengmeng Yan, Hongxia Du, Tengfei Li, and Jiangsheng Mao. 2024. "Matrix Background Screening of an ssDNA Aptamer and Its Identification Against Lactopontin" International Journal of Molecular Sciences 25, no. 21: 11832. https://doi.org/10.3390/ijms252111832
APA StyleZhu, C., Feng, Z., Yan, M., Du, H., Li, T., & Mao, J. (2024). Matrix Background Screening of an ssDNA Aptamer and Its Identification Against Lactopontin. International Journal of Molecular Sciences, 25(21), 11832. https://doi.org/10.3390/ijms252111832