Roles of Germin-like Protein Family in Response to Seed Germination and Shoot Branching in Brassica napus
<p>Distribution of <span class="html-italic">GLPs</span> on <span class="html-italic">B. napus</span> chromosomes. In total, 77 <span class="html-italic">BnGLPs</span> were mapped on 18 chromosomes.</p> "> Figure 2
<p>Phylogenetic analysis of Germ-like proteins from <span class="html-italic">B. napus</span> and <span class="html-italic">A. thaliana</span>. The amino acid sequences of 77 <span class="html-italic">BnGLPs</span> and 32 <span class="html-italic">AtGLPs</span> were aligned by the MUSCLE tool. A phylogenetic tree was generated by MEGA using the neighbor-joining (NJ) method (bootstrap replications, n = 1000). The phylogenetic tree was highlighted with Evolview (version 3.0). The proteins are clustered into six distinct clades which were designated clade a to f, respectively. These clades were labeled with different colors.</p> "> Figure 3
<p>Genome-wide synteny analysis for <span class="html-italic">BnGLPs</span>. Gray lines indicate all the collinear blocks, and red lines highlight the orthologous relationships among <span class="html-italic">BnGLPs</span>.</p> "> Figure 4
<p>The phylogenetic relationship, exon-intron architecture and conserved motifs of 77 <span class="html-italic">BnGLPs</span> in <span class="html-italic">B. napus</span>. (<b>A</b>) The phylogenetic relationships of <span class="html-italic">BnGLPs</span> based on the NJ method. (<b>B</b>) The conserved motif composition of <span class="html-italic">BnGLPs</span>. (<b>C</b>) Gene structures of <span class="html-italic">BnGLPs</span>. Yellow boxes represent the untranslated regions (UTR), green boxes represent exons, and the gray lines represent introns.</p> "> Figure 5
<p>(<b>A</b>) Transcriptional expression profiles of 77 <span class="html-italic">BnGLPs</span> across different developmental stages and organs of ZS11 variety. (<b>B</b>–<b>F</b>) are relative expression levels of five <span class="html-italic">BnGLPs</span> in root, stem, leaf and silique. Error bars are standard deviations of three biological replicates. The color bar represents log10 expression values (Counts + 1). The color scale represents relative expression levels from low (blue color) to high (red color). DAF means days after flowering.</p> "> Figure 6
<p>Seed germination of ZS11, where 0 h refers to dry seed; 2 h, 4 h, 8 h, 16 h, 24 h, 48 h and 72 h refer to the different stages of seed imbibed in water, respectively.</p> "> Figure 7
<p>RT-qPCR analysis of expression differences in six genes at 0 h, 2 h, 4 h, 8 h, 16 h, 24 h and 48 h seed imbibed in water. Error bars are standard deviations of three biological replicates.</p> "> Figure 8
<p>RT-qPCR analysis of five genes expression level expressed in radicles, hypocotyls and cotyledons after 72 h and 120 h seed imbibed in water. Error bars are standard deviations of three biological replicates.</p> "> Figure 9
<p>The expression of <span class="html-italic">BnGLPs</span> family members in leaf under MeJA hormone treatment. The color bar represents log10 expression values (Counts + 1). The color scale represents relative expression levels from low (blue color) to high (red color).</p> "> Figure 10
<p>The expression of <span class="html-italic">BnGLPs</span> family members in different axillary buds. The color bar represents log10 expression values (Counts + 1) The color scale represents relative expression levels from low (blue color) to high (red color). S1 is the state of dormant axillary buds, S2 is the state of temporarily dormant axillary buds, S3 is the state of being activated axillary buds, S4 is the state of elongating axillary buds.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Identification of BnGLPs Family Members in B. napus
2.2. Phylogenetic and Gene Duplication of Analysis BnGLPs
2.3. Gene Structure and Conserved Motif Analysis of the BnGLPs Family in B. napus
2.4. Spatial-Temporal Expressions of BnGLPs in Different Developmental Stages of B. napus
2.5. RT-qPCR Analysis of BnGLPs in Seed Germination
2.6. Expression Patterns of BnGLPs in Four Different Development Stages of Axillary Buds
2.7. Expression Patterns of BnGLPs Under Four Hormones Treatments
3. Discussion
4. Materials and Methods
4.1. Plant Materials and Sampling
4.2. RNA Extraction and RT-qPCR
4.3. Identification and Phylogenetic Analyses of BnGLPs Gene Family in B. napus
4.4. Gene Mapping and Synteny Analysis of BnGLPs in B. napus
4.5. Gene Structure and Protein Motif Composition Analysis
4.6. Expression Profile Analysis Using Transcriptomic Data
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dunwell, J.M.; Purvis, A.; Khuri, S. Cupins: The most functionally diverse protein superfamily? Phytochemistry 2004, 65, 7–17. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Fu, Z.; Zhang, S.; Zhang, X.; Xue, X.; Chen, Y.; Zhang, Z.; Lai, Z.; Lin, Y. Genome-wide analysis of the GLP gene family and overexpression of GLP1-5–1 to promote lignin accumulation during early somatic embryo development in Dimocarpus longan. BMC Genom. 2023, 24, 138. [Google Scholar] [CrossRef] [PubMed]
- Dunwell, J.M.; Khuri, S.; Gane, P.J. Microbial Relatives of the Seed Storage Proteins of Higher Plants: Conservation of Structure and Diversification of Function during Evolution of the Cupin Superfamily. Microbiol. Mol. Biol. Rev. 2000, 64, 153–179. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, Y.; Xiao, N.; Zhang, G.; Wang, F.; Chen, X.; Fang, R. Rice GERMIN-LIKE PROTEIN 2-1 Functions in Seed Dormancy under the Control of Abscisic Acid and Gibberellic Acid Signaling Pathways. Plant Physiol. 2020, 183, 1157–1170. [Google Scholar] [CrossRef]
- Ham, B.K.; Li, G.; Kang, B.H.; Zeng, F.; Lucas, W.J. Overexpression of Arabidopsis Plasmodesmata Germin-like Proteins Disrupts Root Growth and Development. Plant Cell 2012, 24, 3630–3648. [Google Scholar] [CrossRef]
- Leitner, A.; Jensen-Jarolim, E.; Grimm, R.; Wüthrich, B.; Ebner, H.; Scheiner, O.; Kraft, D.; Ebner, C. Allergens in pepper and paprika. Allergy 1998, 53, 36–41. [Google Scholar] [CrossRef] [PubMed]
- El-Sharkawy, I.; Mila, I.; Bouzayen, M.; Jayasankar, S. Regulation of two germin-like protein genes during plum fruit development. J. Exp. Bot. 2010, 61, 1761–1770. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, X.; Chang, X.; Sun, M.; Zhang, Y.; Li, W.; Li, Y. Overexpression of germin-like protein GmGLP10 enhances resistance to Sclerotinia sclerotiorum in transgenic tobacco. Biochem. Biophys. Res. Commun. 2018, 497, 160–166. [Google Scholar] [CrossRef] [PubMed]
- Beracochea, V.C.; Almasia, N.I.; Peluffo, L.; Nahirñak, V.; Hopp, E.H.; Paniego, N.; Heinz, R.A.; Vazquez-Rovere, C.; Lia, V.V. Sunflower germin-like protein HaGLP1 promotes ROS accumulation and enhances protection against fungal pathogens in transgenic Arabidopsis thaliana. Plant Cell Rep. 2015, 34, 1717–1733. [Google Scholar] [CrossRef]
- Sun, B.; Li, W.; Ma, Y.; Yu, T.; Huang, W.; Ding, J.; Yu, H.; Jiang, L.; Zhang, J.; Lv, S.; et al. OsGLP3-7 positively regulates rice immune response by activating hydrogen peroxide, jasmonic acid, and phytoalexin metabolic pathways. Mol. Plant Pathol. 2023, 24, 248–261. [Google Scholar] [CrossRef]
- Li, L.; Xu, X.; Chen, C.; Shen, Z. Genome-Wide Characterization and Expression Analysis of the Germin-Like Protein Family in Rice and Arabidopsis. Int. J. Mol. Sci. 2016, 17, 1622. [Google Scholar] [CrossRef]
- Kishi-Kaboshi, M.; Muto, H.; Takeda, A.; Murata, T.; Hasebe, M.; Watanabe, Y. Localization of tobacco germin-like protein 1 in leaf intercellular space. Plant Physiol. Biochem. 2014, 85, 1–8. [Google Scholar] [CrossRef]
- Huang, K.L.; Tian, J.; Wang, H.; Fu, Y.F.; Li, Y.; Zheng, Y.; Li, X.B. Fatty acid export protein BnFAX6 functions in lipid synthesis and axillary bud growth in Brassica napus. Plant Physiol. 2021, 186, 2064–2077. [Google Scholar] [CrossRef] [PubMed]
- Kebrom, T.H.; Spielmeyer, W.; Finnegan, E.J. Grasses provide new insights into regulation of shoot branching. Trends Plant Sci. 2013, 18, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, L.; Ge, Y.; Wang, J.; Yu, J.; Yang, Z.; Huang, B. Gibberellic acid inhibition of tillering in tall fescue involving crosstalks with cytokinins and transcriptional regulation of genes controlling axillary bud outgrowth. Plant Sci. 2019, 287, 110168. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, J. Branching in rice. Curr. Opin. Plant Biol. 2010, 14, 94–99. [Google Scholar] [CrossRef]
- Rubbab, T.; Pegg, C.L.; Phung, T.K.; Nouwens, A.S.; Yeo, K.B.; Zacchi, L.F.; Muhammad, A.; Naqvi, S.S.; Schulz, B.L. N-glycosylation on Oryza sativa root germin-like protein 1 is conserved but not required for stability or activity. Biochem. Biophys. Res. Commun. 2021, 553, 72–77. [Google Scholar] [CrossRef]
- Cheng, Y.; Liang, C.; Qiu, Z.; Zhou, S.; Liu, J.; Yang, Y.; Wang, R.; Yin, J.; Ma, C.; Cui, Z.; et al. Jasmonic acid negatively regulates branch growth in pear. Front. Plant Sci. 2023, 14, 1105521. [Google Scholar] [CrossRef]
- Kania, J.; Krawczyk, T.; Gillner, D.M. Oilseed rape (Brassica napus): The importance of aminopeptidases in germination under normal and heavy metals stress conditions. J. Sci. Food Agric. 2021, 101, 6533–6541. [Google Scholar] [CrossRef]
- Allender, C.J.; King, G.J. Origins of the amphiploid species Brassica napus L. investigated by chloroplast and nuclear molecular markers. BMC Plant Biol. 2010, 10, 54. [Google Scholar] [CrossRef]
- He, Y.; Li, Y.; Bai, Z.; Xie, M.; Zuo, R.; Liu, J.; Xia, J.; Cheng, X.; Liu, Y.; Tong, C.; et al. Genome-wide identification and functional analysis of cupin_1 domain-containing members involved in the responses to Sclerotinia sclerotiorum and abiotic stress in Brassica napus. Front. Plant Sci. 2022, 13, 983786. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Wang, S.; Wei, L.; Huang, Y.; Liu, D.; Jia, Y.; Luo, C.; Lin, Y.; Liang, C.; Hu, Y.; et al. BnIR: A multi-omics database with various tools for Brassica napus research and breeding. Mol. Plant 2023, 16, 775–789. [Google Scholar] [CrossRef]
- Luo, T.; Sheng, Z.; Zhang, C.; Li, Q.; Liu, X.; Qu, Z.; Xu, Z. Seed Characteristics Affect Low-Temperature Stress Tolerance Performance of Rapeseed (Brassica napus L.) during Seed Germination and Seedling Emergence Stages. Agronomy 2022, 12, 1969. [Google Scholar] [CrossRef]
- Ge, F.W.; Tao, P.; Zhang, Y.; Wang, J.B. Characterization of AQP gene expressions in Brassica napus during seed germination and in response to abiotic stresses. Biol. Plant. 2014, 58, 274–282. [Google Scholar] [CrossRef]
- Chen, B.; Xu, K.; Li, J.; Li, F.; Qiao, J.; Li, H.; Gao, G.; Yan, G.; Wu, X. Evaluation of yield and agronomic traits and their genetic variation in 488 global collections of Brassica napus L. Genet. Resour. Crop. Evol. 2014, 61, 979–999. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Q.; Wang, L.; Wang, X.; Qiao, J.; Wang, H. New Insights into the TIFY Gene Family of Brassica napus and Its Involvement in the Regulation of Shoot Branching. Int. J. Mol. Sci. 2023, 24, 17114. [Google Scholar] [CrossRef]
- Wang, T.; Chen, X.; Zhu, F.; Li, H.; Li, L.; Yang, Q.; Chi, X.; Yu, S.; Liang, X. Characterization of Peanut Germin-Like Proteins, AhGLPs in Plant Development and Defense. PLoS ONE 2013, 8, e61722. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhang, H.; Gao, Y.; Sun, G.; Zhang, W.; Qiu, L. A Comprehensive Analysis of the Cupin Gene Family in Soybean (Glycine max). PLoS ONE 2014, 9, e110092. [Google Scholar] [CrossRef]
- Liao, L.; Hu, Z.; Liu, S.; Yang, Y.; Zhou, Y. Characterization of Germin-like Proteins (GLPs) and Their Expression in Response to Abiotic and Biotic Stresses in Cucumber. Horticulturae 2021, 7, 412. [Google Scholar] [CrossRef]
- Zaynab, M.; Peng, J.; Sharif, Y.; Fatima, M.; Albaqami, M.; Al-Yahyai, R.; Khan, K.A.; Alotaibi, S.S.; Alaraidh, I.A.; Shaikhaldein, H.O.; et al. Genome-Wide Identification and Expression Profiling of Germin-Like Proteins Reveal Their Role in Regulating Abiotic Stress Response in Potato. Front. Plant Sci. 2022, 12, 831140. [Google Scholar] [CrossRef]
- Yang, Q.; Sharif, Y.; Zhuang, Y.; Chen, H.; Zhang, C.; Fu, H.; Wang, S.; Cai, T.; Chen, K.; Raza, A.; et al. Genome-wide identification of germin-like proteins in peanut (Arachis hypogea L.) and expression analysis under different abiotic stresses. Front. Plant Sci. 2023, 13, 1044144. [Google Scholar] [CrossRef] [PubMed]
- Ding, L.N.; Guo, X.J.; Li, M.; Fu, Z.L.; Yan, S.Z.; Zhu, K.M.; Wang, Z.; Tan, X.L. Improving seed germination and oil contents by regulating the GDSL transcriptional level in Brassica napus. Plant Cell Rep. 2018, 38, 243–253. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.-M.; Lo, S.-F.; Ho, T.-H.D. Source–Sink Communication: Regulated by Hormone, Nutrient, and Stress Cross-Signaling. Trends Plant Sci. 2015, 20, 844–857. [Google Scholar] [CrossRef] [PubMed]
- Bewley, J.D.; Bradford, K.; Hilhorst, H.; Nonogaki, H. Dormancy and the control of germination. In Seeds, Physiology of Development, Germination and Dormancy, 3rd ed.; Springer: New York, NY, USA, 2013; pp. 247–297. [Google Scholar]
- To, H.T.M.; Pham, D.T.; Le Thi, V.A.; Nguyen, T.T.; Tran, T.A.; Ta, A.S.; Chu, H.H.; Do, P.T. The Germin-like protein OsGER4 is involved in promoting crown root development under exogenous jasmonic acid treatment in rice. Plant J. 2022, 112, 860–874. [Google Scholar] [CrossRef]
- Chen, H.; Wang, T.; He, X.; Cai, X.; Lin, R.; Liang, J.; Wu, J.; King, G.; Wang, X. BRAD V3.0: An upgraded Brassicaceae database. Nucleic Acids Res. 2021, 50, D1432–D1441. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef]
- Voorrips, R.E. MapChart: Software for the graphical presentation of linkage maps and QTLs. J. Hered. 2002, 93, 77–78. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Tang, H.; DeBarry, J.D.; Tan, X.; Li, J.; Wang, X.; Lee, T.H.; Jin, H.; Marler, B.; Guo, H.; et al. MCScanX: A toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 2012, 40, e49. [Google Scholar] [CrossRef]
- Chen, C.J.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.H.; Xia, R. TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data. Mol. Plant 2020, 13, 1194–1202. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, Y.; Zhang, Z.; Zhu, J.; Yu, J. KaKs_Calculator 2.0: A Toolkit Incorporating Gamma-Series Methods and Sliding Window Strategies. Genom. Proteom. Bioinform. 2010, 8, 77–80. [Google Scholar] [CrossRef]
- Guo, A.-Y.; Zhu, Q.-H.; Chen, X.; Luo, J.-C. [GSDS: A gene structure display server]. Yi Chuan 2007, 29, 1023–1026. [Google Scholar] [PubMed]
- Bailey, T.L.; Boden, M.; Buske, F.A.; Frith, M.; Grant, C.E.; Clementi, L.; Ren, J.; Li, W.W.; Noble, W.S. MEME SUITE: Tools for motif discovery and searching. Nucleic Acids Res. 2009, 37, w202–w208. [Google Scholar] [CrossRef] [PubMed]
Gene ID | Chr | Start | End | Protein Length (aa) | MW (Da) | PI | Instability Index | Gravy | Subcellular Location |
---|---|---|---|---|---|---|---|---|---|
BnaA01G0279500ZS | A01 | 26001846 | 26003073 | 188 | 20,054.08 | 6.82 | 21.87 | −0.015 | Cytoplasm |
BnaA01G0381600ZS | A01 | 34489880 | 34490560 | 226 | 24,720.46 | 6.7 | 27.42 | −0.042 | Chloroplast |
BnaA01G0394400ZS | A01 | 35295249 | 35296270 | 229 | 24,842.54 | 6.41 | 25.47 | 0.239 | Vacuole |
BnaA02G0086600ZS | A02 | 4516448 | 4517083 | 211 | 21,894.19 | 6.39 | 37.63 | 0.328 | Vacuole |
BnaA02G0086700ZS | A02 | 4519203 | 4519862 | 219 | 22,632 | 5.76 | 35.83 | 0.4 | Extracellular |
BnaA02G0086900ZS | A02 | 4523177 | 4523815 | 212 | 22,087.47 | 7.81 | 38.16 | 0.411 | Chloroplast |
BnaA02G0201400ZS | A02 | 12642639 | 12643427 | 234 | 25,061.08 | 9.64 | 26.09 | 0.26 | Chloroplast |
BnaA02G0286100ZS | A02 | 25356649 | 25359760 | 289 | 32,052.41 | 6.59 | 55.66 | −0.311 | Extracellular |
BnaA02G0375300ZS | A02 | 32947293 | 32948069 | 223 | 24,137.83 | 5.9 | 24.91 | 0.281 | Peroxisome |
BnaA03G0089500ZS | A03 | 4320272 | 4320907 | 211 | 21,843.12 | 6.4 | 33.52 | 0.387 | Vacuole |
BnaA03G0293500ZS | A03 | 15466017 | 15466904 | 217 | 23,281.77 | 9.27 | 29.76 | 0.164 | Chloroplast |
BnaA03G0412900ZS | A03 | 22336972 | 22337586 | 204 | 22,424.42 | 4.77 | 36.57 | 0.091 | E.R. |
BnaA03G0556700ZS | A03 | 31685932 | 31687583 | 358 | 40,189.81 | 5.92 | 58.48 | −0.491 | Cytoplasm |
BnaA04G0105200ZS | A04 | 12328142 | 12328916 | 222 | 24,030.56 | 6.04 | 28.31 | 0.077 | Extracellular |
BnaA04G0132400ZS | A04 | 14807791 | 14808560 | 222 | 23,557.18 | 6.26 | 21.41 | 0.337 | Chloroplast |
BnaA04G0132500ZS | A04 | 14823963 | 14824726 | 220 | 23,365.93 | 6.26 | 20.08 | 0.323 | Cytoplasm |
BnaA04G0133100ZS | A04 | 14885336 | 14886115 | 223 | 24,079.75 | 5.9 | 25.59 | 0.307 | Extracellular |
BnaA05G0470500ZS | A05 | 42901285 | 42901653 | 122 | 13,547.99 | 6.81 | 22.82 | −0.573 | Chloroplast |
BnaA05G0470800ZS | A05 | 42909832 | 42910578 | 217 | 23,067.51 | 7.8 | 23.95 | −0.036 | Extracellular |
BnaA06G0057800ZS | A06 | 3579896 | 3580646 | 224 | 23,389.9 | 8.93 | 24.03 | 0.239 | Peroxisome |
BnaA06G0132400ZS | A06 | 7790401 | 7791045 | 214 | 22,469.75 | 5.85 | 28.96 | 0.32 | Plasma membrane |
BnaA06G0311200ZS | A06 | 40116394 | 40118973 | 703 | 84,184.33 | 5.7 | 92.59 | −1.332 | Chloroplast |
BnaA06G0343700ZS | A06 | 42231478 | 42232896 | 218 | 23,173.89 | 9.42 | 32.01 | 0.226 | Cytoplasm |
BnaA06G0437800ZS | A06 | 47863237 | 47864278 | 147 | 16,243.68 | 9.22 | 48.09 | −0.136 | Vacuole |
BnaA07G0169200ZS | A07 | 19649651 | 19650403 | 220 | 23,633.31 | 8.88 | 23.26 | 0.309 | Extracellular |
BnaA07G0174100ZS | A07 | 19930125 | 19930884 | 219 | 23,713.32 | 7.74 | 26.19 | 0.094 | Cytoplasm |
BnaA07G0249800ZS | A07 | 24162883 | 24163542 | 219 | 23,482.11 | 5.75 | 25.13 | 0.194 | Chloroplast |
BnaA07G0258500ZS | A07 | 24710205 | 24710828 | 207 | 21,620.23 | 9.23 | 26.48 | 0.521 | Nuclearear |
BnaA07G0334400ZS | A07 | 29388814 | 29389437 | 207 | 21,504.07 | 9.06 | 26.35 | 0.582 | Extracellular |
BnaA08G0089800ZS | A08 | 15198223 | 15198963 | 220 | 23,268.57 | 6.81 | 27.26 | 0.252 | Chloroplast |
BnaA08G0184000ZS | A08 | 21625853 | 21628613 | 576 | 64,442.47 | 5.47 | 54.41 | −0.535 | Plasma membrane |
BnaA09G0184900ZS | A09 | 12383111 | 12383870 | 222 | 23,573.12 | 7.83 | 29.24 | 0.275 | Plasma membrane |
BnaA09G0561300ZS | A09 | 57463324 | 57464099 | 220 | 23,463.08 | 8.93 | 21.87 | 0.132 | Cytoplasm |
BnaA09G0611200ZS | A09 | 60149591 | 60150235 | 214 | 22,542.91 | 7.77 | 29.39 | 0.3 | Cytoplasm |
BnaA09G0657900ZS | A09 | 62600298 | 62600957 | 219 | 23,631.13 | 6.21 | 28.67 | 0.093 | Extracellular |
BnaA10G0010600ZS | A10 | 583281 | 584423 | 218 | 23,250.76 | 7.69 | 25.74 | 0.113 | Cytoplasm |
BnaA10G0172500ZS | A10 | 20315202 | 20315837 | 211 | 21,901.19 | 6.04 | 34.68 | 0.366 | Peroxisome |
BnaC01G0479300ZS | C01 | 54318329 | 54319009 | 226 | 24,595.34 | 6.7 | 26.38 | −0.026 | Vacuole |
BnaC01G0484900ZS | C01 | 55794484 | 55795567 | 229 | 24,741.48 | 6.4 | 24.98 | 0.292 | Chloroplast |
BnaC01G0485000ZS | C01 | 55797246 | 55798113 | 218 | 23,192.56 | 6.5 | 24.73 | 0.047 | Cytoplasm |
BnaC02G0102600ZS | C02 | 6690185 | 6690820 | 211 | 21,895.17 | 6.04 | 38.62 | 0.328 | Cytoplasm |
BnaC02G0102700ZS | C02 | 6692787 | 6693446 | 219 | 22,597.98 | 5.76 | 33.85 | 0.402 | Peroxisome |
BnaC02G0103000ZS | C02 | 6698962 | 6699600 | 212 | 22,087.47 | 7.81 | 38.16 | 0.411 | Extracellular |
BnaC02G0268300ZS | C02 | 25601386 | 25602216 | 248 | 26,238.54 | 9.57 | 26.08 | 0.297 | Extracellular |
BnaC02G0388400ZS | C02 | 47521131 | 47521806 | 112 | 12,692.54 | 7.87 | 41.88 | −0.047 | Chloroplast |
BnaC03G0101700ZS | C03 | 5367297 | 5367932 | 211 | 21,881.17 | 6.4 | 33.89 | 0.38 | Extracellular |
BnaC03G0360600ZS | C03 | 24326192 | 24327108 | 218 | 23,199.73 | 7.01 | 30.5 | 0.074 | Extracellular |
BnaC03G0512300ZS | C03 | 37892343 | 37894861 | 684 | 81,780.8 | 5.83 | 88.27 | −1.271 | Extracellular |
BnaC03G0692500ZS | C03 | 66916733 | 66919518 | 577 | 64,785.96 | 5.49 | 58.48 | −0.555 | Chloroplast |
BnaC04G0388100ZS | C04 | 51389547 | 51390329 | 222 | 24,000.48 | 6.04 | 27.95 | 0.066 | Vacuole |
BnaC04G0421100ZS | C04 | 54631928 | 54634237 | 275 | 29,706.55 | 8.43 | 19.74 | 0.265 | Extracellular |
BnaC04G0421400ZS | C04 | 54665409 | 54671832 | 224 | 24,000.68 | 7.74 | 15.65 | 0.109 | Plasma membrane |
BnaC04G0422000ZS | C04 | 54762870 | 54763648 | 223 | 24,096.77 | 5.64 | 24.85 | 0.331 | Peroxisome |
BnaC05G0012500ZS | C05 | 889077 | 890208 | 218 | 23,221.73 | 7.7 | 28.27 | 0.125 | Chloroplast |
BnaC05G0023700ZS | C05 | 1444753 | 1445964 | 124 | 13,871.84 | 5.62 | 45.81 | 0.002 | Extracellular |
BnaC05G0073000ZS | C05 | 4131706 | 4132454 | 221 | 23,244.79 | 9.17 | 26.25 | 0.206 | Chloroplast |
BnaC05G0159400ZS | C05 | 10346316 | 10346960 | 214 | 22,432.7 | 6.81 | 29.06 | 0.318 | Chloroplast |
BnaC05G0513100ZS | C05 | 54581632 | 54582291 | 219 | 23,713.18 | 6.42 | 30.34 | 0.013 | Cytoplasm |
BnaC05G0517300ZS | C05 | 54738504 | 54743617 | 461 | 50,045.61 | 9.42 | 45 | 0.103 | Extracellular |
BnaC06G0159700ZS | C06 | 25763408 | 25764160 | 220 | 23,674.3 | 8.64 | 25.89 | 0.267 | Extracellular |
BnaC06G0166900ZS | C06 | 26806007 | 26806766 | 219 | 23,701.3 | 6.82 | 25.72 | 0.107 | Vacuole |
BnaC06G0204200ZS | C06 | 31557235 | 31558350 | 153 | 16,791.47 | 7.82 | 36.42 | 0.226 | Cytoplasm |
BnaC06G0204400ZS | C06 | 31592677 | 31592943 | 88 | 9636.31 | 9.39 | 22.62 | 0.231 | Cytoplasm |
BnaC06G0275500ZS | C06 | 38135322 | 38136011 | 229 | 24,712.64 | 7.74 | 19.59 | 0.25 | Chloroplast |
BnaC06G0288600ZS | C06 | 39361993 | 39362616 | 207 | 21,622.25 | 9.23 | 23.01 | 0.545 | Vacuole |
BnaC06G0392400ZS | C06 | 48572295 | 48572918 | 207 | 21,565.15 | 9.03 | 22.36 | 0.598 | Vacuole |
BnaC07G0384800ZS | C07 | 50651376 | 50651990 | 204 | 22,399.43 | 4.85 | 37.77 | 0.083 | Plasma membrane |
BnaC07G0533100ZS | C07 | 59889494 | 59891371 | 495 | 55,430.54 | 5.3 | 51.25 | −0.25 | Vacuole |
BnaC08G0128300ZS | C08 | 22966159 | 22974637 | 220 | 23,268.57 | 6.81 | 25.26 | 0.251 | Cytoplasm |
BnaC08G0128400ZS | C08 | 22995479 | 22996212 | 191 | 20,407.36 | 6.81 | 31.45 | 0.241 | Vacuole |
BnaC08G0194800ZS | C08 | 30444591 | 30445333 | 220 | 23,306.84 | 8.88 | 27.83 | 0.22 | E.R. |
BnaC08G0410100ZS | C08 | 46371939 | 46372592 | 217 | 22,961.71 | 9.52 | 25.67 | 0.155 | Cytoplasm |
BnaC08G0465400ZS | C08 | 49562986 | 49563630 | 214 | 22,548.96 | 7.77 | 29.14 | 0.289 | Chloroplast |
BnaC08G0519500ZS | C08 | 52811937 | 52812599 | 220 | 23,801.4 | 6.27 | 29.39 | 0.126 | Plasma membrane |
BnaC08G0524900ZS | C08 | 53105014 | 53105726 | 216 | 22,737.02 | 7.8 | 30.63 | 0.135 | Cytoplasm |
BnaC09G0210700ZS | C09 | 18874192 | 18874951 | 222 | 23,610.23 | 7.83 | 31.36 | 0.28 | Vacuole |
BnaC09G0459300ZS | C09 | 57238548 | 57239183 | 211 | 21,901.19 | 6.04 | 34.68 | 0.366 | Extracellular |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Q.; Wang, L.; Wang, X.; Qiao, J.; Wang, H. Roles of Germin-like Protein Family in Response to Seed Germination and Shoot Branching in Brassica napus. Int. J. Mol. Sci. 2024, 25, 11518. https://doi.org/10.3390/ijms252111518
Zhang Q, Wang L, Wang X, Qiao J, Wang H. Roles of Germin-like Protein Family in Response to Seed Germination and Shoot Branching in Brassica napus. International Journal of Molecular Sciences. 2024; 25(21):11518. https://doi.org/10.3390/ijms252111518
Chicago/Turabian StyleZhang, Qian, Luman Wang, Xinfa Wang, Jiangwei Qiao, and Hanzhong Wang. 2024. "Roles of Germin-like Protein Family in Response to Seed Germination and Shoot Branching in Brassica napus" International Journal of Molecular Sciences 25, no. 21: 11518. https://doi.org/10.3390/ijms252111518