Computational Approach to Identifying New Chemical Entities as Elastase Inhibitors with Potential Antiaging Effects
"> Figure 1
<p>Non-peptide-based inhibitors of elastase that have reached (pre)clinical development.</p> "> Figure 2
<p>Chemical structures of the five ligands bound to PPE in the selected ligand/protein complexes available on PDB database (PDB codes: 1 BMA, 1 BTU, 1 ELE, 1 HV7, 1 JIM) [<a href="#B23-ijms-25-11174" class="html-bibr">23</a>,<a href="#B35-ijms-25-11174" class="html-bibr">35</a>,<a href="#B36-ijms-25-11174" class="html-bibr">36</a>,<a href="#B37-ijms-25-11174" class="html-bibr">37</a>,<a href="#B38-ijms-25-11174" class="html-bibr">38</a>].</p> "> Figure 3
<p>(<b>A</b>–<b>E</b>). The 3D structure-based pharmacophore models of PPE bound to different inhibitors derived from X-ray structure of complexes with PDB ID: (<b>A</b>) 1 BMA, (<b>B</b>) 1 BTU, (<b>C</b>) 1 ELE, (<b>D</b>) 1 HV7 and (<b>E</b>) 1 JIM (from references [<a href="#B23-ijms-25-11174" class="html-bibr">23</a>,<a href="#B35-ijms-25-11174" class="html-bibr">35</a>,<a href="#B36-ijms-25-11174" class="html-bibr">36</a>,<a href="#B37-ijms-25-11174" class="html-bibr">37</a>,<a href="#B38-ijms-25-11174" class="html-bibr">38</a>]). Target amino acids are shown as gray-colored sticks. Hydrophobic features are shown as yellow spheres, while hydrogen bond acceptors and donors are represented as red and green arrows, respectively.</p> "> Figure 4
<p>Schematic representation of the contributions of ΔΔG<span class="html-italic"><sub>stability</sub></span> analyzed by using Alanine scanning module in Schrodinger. Each colored bar displays the interaction between each PDB structure and key amino acid residues. The red line represents the threshold of ΔΔG<span class="html-italic"><sub>stability</sub></span> > 3 Kcal/mol.</p> "> Figure 5
<p>Merged pharmacophore composed of six hydrophobic features (yellow spheres, H<sub>1</sub>–H<sub>6</sub>), two hydrogen bond acceptors (red arrows, A<sub>1,2</sub>), one hydrogen bond donor (green arrow, D<sub>1</sub>), and one aromatic ring (Ar<sub>1</sub>). The table shows the label of the features and the corresponding amino acid residues involved in the interaction.</p> "> Figure 6
<p>Molecular dynamics results of complexes of 1 BMA (<b>A</b>), 1 BTU (<b>B</b>), 1 ELE (<b>C</b>), 1 HV7 (<b>D</b>), and 1 JIM (<b>E</b>). Interactions that occurred for more than 30% of the simulation time were examined.</p> "> Figure 7
<p>Refined pharmacophore model for elastase inhibitors composed of two hydrophobic features (yellow spheres, H<sub>2</sub>, H<sub>4,5</sub>), two hydrogen bond acceptor features (red arrows, A<sub>1</sub>–A<sub>2</sub>), one hydrogen bond donor (green arrow, D<sub>1</sub>). The table shows the label of the features and the corresponding amino acid residues involved in the interaction.</p> "> Figure 8
<p>Mapping of the five chemical features 2 HY (H<sub>2</sub>, H<sub>4,5</sub>), 2 HBA (A<sub>1</sub>, A<sub>2</sub>), 1 HBD (D<sub>1</sub>) on <span class="html-italic">N</span>-substituted-1H-benzimidazol-2-yl]thio]acetamides (<b>1</b>–<b>7</b>) selected by virtual screening. Red circle for hydrogen bond acceptor feature; green circle for hydrogen bond donor feature; yellow circle for hydrophobic feature.</p> "> Figure 9
<p>(<b>A</b>) Plausible binding mode of compound <b>2</b> (green stick) in the cavity of elastase protein structure (gray). The hydrogen bond is represented as yellow dashes. This figure was prepared using the program PyMOL (<a href="https://www.pymol.org" target="_blank">https://www.pymol.org</a> accessed on 14 August 2024, The PyMOL Molecular Graphics System, Version 3.0 Schrödinger, LLC., New York, NY, USA). (<b>B</b>) Schematic 2D representation of the interactions between compound <b>2</b> and PPE, the interactions were generated by Maestro.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Pharmacophore Modeling Generation
- (1)
- Figure 3A illustrates the pharmacophore extracted from PDB code 1 BMA for the complex with an aminimide-based peptidomimetic inhibitor 0BB; this model consists of five hydrophobic features (H1–H5 yellow spheres): H1 given by the interaction with Val103; H2 corresponding to the interactions with residues Thr221, Val224, Thr236; H3 with Thr152; H4 by interaction with Val103 and Phe223; and H5 given by interaction with Val103, Ala104, Thr182 and Phe223. Additionally, it is described the interaction with the main chain (backbone) of Val224 created both hydrogen bond acceptor feature (A1, red arrow) and one hydrogen bond donor feature (D1, green arrow).
- (2)
- In Figure 3B, it is reported that the pharmacophore extracted from 1 BTU for the complex with the (3R)-3-ethyl-N-[(4-methylphenyl)sulfonyl]-L-aspartic acid (2 BL) is derived as an acyl−enzyme complex formed between PPE and the monocyclic β-lactam-based inhibitor. For this second model, three hydrophobic features were generated: specifically, H1 for the interaction with Val103; H2 given by the interaction with four residues Ile144, Thr221, Val224 and Thr236; H6 for interaction with Trp98, Thr100, and Val103. The model comprises three hydrogen bond acceptor interaction features related to Gln200 (A2), Gly201 (A3), and Val224 (A1). Finally, one hydrogen bond donor feature for the interaction with Ser222 (D2) and one hydrophobic aromatic feature for interaction with crucial residue His60 (Ar1) are defined.
- (3)
- The pharmacophore extracted from the ligand–protein complex 1 ELE is represented in Figure 3C. In this case, the residue Val103 corresponds to the hydrophobic feature (H1), whereas the hydrophobic feature H2 is generated by the interaction with residues Thr221, Val224, and Thr236; Val 103 and Phe223 are responsible for the hydrophobic feature H4; finally, Val103, Ala104 and Thr182 give (H5). The pharmacophore also presents one hydrogen bond acceptor feature (A1) corresponding to residue Val224. Finally, two hydrogen bond donor features are defined by interaction with Ser222 (D2) and Val224 (D1).
- (4)
- Figure 3D shows the pharmacophore extracted from the 1HV7 containing the trans-lactam, GW311616A (see Figure 1); the bound represents the opened form of the inhibitor that allows us to define one hydrophobic feature (H2) given by the interaction with residues Thr221, Val224 and Thr236; additionally, the model consists of three hydrogen bond acceptor features created by residues Gly201 (A3), Ser203 (A4) and Val224 (A1).
- (5)
- The last model was created from the complex 1 JIM (Figure 3E) for the ligand methyl(2-acetoxy-2-(2-carboxy-4-amino-phenyl))acetate (ICU). This model is composed of two simple hydrogen bond acceptor features generated by Gly201 (A3) and Val224 (A1).
2.2. Contribution of Amino Acid Residues to Binding Free Energy
2.3. Merged Pharmacophore Model
2.4. Molecular Dynamic Simulations
2.5. Simplified Pharmacophore Model
2.6. Virtual Screening and Biological Assay
2.7. Molecular Docking
3. Materials and Methods
3.1. Molecular Modeling Studies
3.1.1. Protein Preparation
3.1.2. Pharmacophore Model Generation
- Scoring function: Pharmacophore fit;
- Screening mode: Match all query features;
- Retrieval mode: Obtain best matching conformation;
- Omitted features: 1.
3.1.3. Molecular Dynamics
3.1.4. Molecular Docking
3.2. Elastase Inhibition Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tenchov, R.; Sasso, J.M.; Wang, X.; Zhou, Q.A. Aging Hallmarks and Progression and Age-Related Diseases: A Landscape View of Research Advancement. ACS Chem. Neurosci. 2024, 15, 1–30. [Google Scholar] [CrossRef]
- Werb, Z.; Banda, M.J.; McKerrow, J.H.; Sandhaus, R.A. Elastases and elastin degradation. J. Investig. Dermatol. 1982, 79 (Suppl. S1), 154s–159s. [Google Scholar] [CrossRef]
- Schmelzer, C.E.; Jung, M.C.; Wohlrab, J.; Neubert, R.H.; Heinz, A. Does human leukocyte elastase degrade intact skin elastin? FEBS J. 2012, 279, 4191–4200. [Google Scholar] [CrossRef]
- Antonicelli, F.; Bellon, G.; Debelle, L.; Hornebeck, W. Elastin-elastases and inflamm-aging. Curr. Top. Dev. Biol. 2007, 79, 99–155. [Google Scholar] [CrossRef]
- Tsuji, N.; Moriwaki, S.; Suzuki, Y.; Takema, Y.; Imokawa, G. The role of elastases secreted by fibroblasts in wrinkle formation: Implication through selective inhibition of elastase activity. Photochem. Photobiol. 2001, 74, 283–290. [Google Scholar] [CrossRef]
- Freitas-Rodriguez, S.; Folgueras, A.R.; Lopez-Otin, C. The role of matrix metalloproteinases in aging: Tissue remodeling and beyond. Biochim. Biophys. Acta Mol. Cell Res. 2017, 1864 Pt A, 2015–2025. [Google Scholar] [CrossRef]
- Rai, M.; Curley, M.; Coleman, Z.; Demontis, F. Contribution of proteases to the hallmarks of aging and to age-related neurodegeneration. Aging Cell 2022, 21, e13603. [Google Scholar] [CrossRef]
- Ocampo-Gallego, J.S.; Pedroza-Escobar, D.; Caicedo-Ortega, A.R.; Berumen-Murra, M.T.; Novelo-Aguirre, A.L.; de Sotelo-León, R.D.; Delgadillo-Guzmán, D. Human neutrophil elastase inhibitors: Classification, biological-synthetic sources and their relevance in related diseases. Fundam. Clin. Pharmacol. 2024, 38, 13–32. [Google Scholar] [CrossRef]
- Ahmad, S.; Saleem, M.; Riaz, N.; Lee, Y.S.; Diri, R.; Noor, A.; Almasri, D.; Bagalagel, A.; Elsebai, M.F. The Natural Polypeptides as Significant Elastase Inhibitors. Front. Pharmacol. 2020, 11, 688. [Google Scholar] [CrossRef]
- Talas, U.; Dunlop, J.; Khalaf, S.; Leigh, I.M.; Kelsell, D.P. Human elastase 1: Evidence for expression in the skin and the identification of a frequent frameshift polymorphism. J. Investig. Dermatol. 2000, 114, 165–170. [Google Scholar] [CrossRef]
- Hedstrom, L. Serine protease mechanism and specificity. Chem. Rev. 2002, 102, 4501–4524. [Google Scholar] [CrossRef]
- Bode, W.; Meyer, E.; Powers, J.C. Human leukocyte and porcine pancreatic elastase: X-ray crystal structures, mechanism, substrate specificity, and mechanism-based inhibitors. Biochemistry 1989, 28, 1951–1963. [Google Scholar] [CrossRef]
- Würtele, M.; Hahn, M.; Hilpert, K.; Höhne, W. Atomic resolution structure of native porcine pancreatic elastase at 1.1 A. Acta Crystallogr. D Biol. Crystallogr. 2000, 56 Pt 4, 520–523. [Google Scholar] [CrossRef]
- Navia, M.A.; McKeever, B.M.; Springer, J.P.; Lin, T.Y.; Williams, H.R.; Fluder, E.M.; Dorn, C.P.; Hoogsteen, K. Structure of human neutrophil elastase in complex with a peptide chloromethyl ketone inhibitor at 1.84-A resolution. Proc. Natl. Acad. Sci. USA 1989, 86, 7–11. [Google Scholar] [CrossRef]
- Shotton, D.M.; Hartley, B.S. Amino-acid sequence of porcine pancreatic elastase and its homologies with other serine proteinases. Nature 1970, 225, 802–806. [Google Scholar] [CrossRef]
- Tamada, T.; Kinoshita, T.; Kurihara, K.; Adachi, M.; Ohhara, T.; Imai, K.; Kuroki, R.; Tada, T. Combined high-resolution neutron and X-ray analysis of inhibited elastase confirms the active-site oxyanion hole but rules against a low-barrier hydrogen bond. J. Am. Chem. Soc. 2009, 131, 11033–11040. [Google Scholar] [CrossRef]
- Hartley, B.S. Amino-acid sequence of bovine chymotrypsinogen-a. Nature 1964, 201, 1284–1287. [Google Scholar] [CrossRef]
- Shaw, L.; Wiedow, O. Therapeutic potential of human elafin. Biochem. Soc. Trans. 2011, 39, 1450–1454. [Google Scholar] [CrossRef]
- Ohbayashi, H. Neutrophil elastase inhibitors as treatment for COPD. Expert. Opin. Investig. Drugs 2002, 11, 965–980. [Google Scholar] [CrossRef]
- Stockley, R.; De Soyza, A.; Gunawardena, K.; Perrett, J.; Forsman-Semb, K.; Entwistle, N.; Snell, N. Phase II study of a neutrophil elastase inhibitor (AZD9668) in patients with bronchiectasis. Respir. Med. 2013, 107, 524–533. [Google Scholar] [CrossRef]
- Ohmoto, K.; Yamamoto, T.; Okuma, M.; Horiuchi, T.; Imanishi, H.; Odagaki, Y.; Kawabata, K.; Sekioka, T.; Hirota, Y.; Matsuoka, S.; et al. Development of orally active nonpeptidic inhibitors of human neutrophil elastase. J. Med. Chem. 2001, 44, 1268–1285. [Google Scholar] [CrossRef]
- Matera, M.G.; Rogliani, P.; Ora, J.; Calzetta, L.; Cazzola, M. A comprehensive overview of investigational elastase inhibitors for the treatment of acute respiratory distress syndrome. Expert. Opin. Investig. Drugs 2023, 32, 793–802. [Google Scholar] [CrossRef]
- Macdonald, S.J.; Dowle, M.D.; Harrison, L.A.; Shah, P.; Johnson, M.R.; Inglis, G.G.; Clarke, G.D.; Smith, R.A.; Humphreys, D.; Molloy, C.R.; et al. The discovery of a potent, intracellular, orally bioavailable, long duration inhibitor of human neutrophil elastase--GW311616A a development candidate. Bioorg. Med. Chem. Lett. 2001, 11, 895–898. [Google Scholar] [CrossRef]
- Li, K.; Dong, L.; Gao, S.; Zhang, J.; Feng, Y.; Gu, L.; Yang, J.; Liu, X.; Wang, Y.; Mao, Z.; et al. Safety, tolerability, pharmacokinetics and neutrophil elastase inhibitory effects of Sivelestat: A randomized, double-blind, placebo-controlled single- and multiple-dose escalation study in Chinese healthy subjects. Eur. J. Pharm. Sci. 2024, 195, 106723. [Google Scholar] [CrossRef]
- Jakimiuk, K.; Gesek, J.; Atanasov, A.G.; Tomczyk, M. Flavonoids as inhibitors of human neutrophil elastase. J. Enzym. Inhib. Med. Chem. 2021, 36, 1016–1028. [Google Scholar] [CrossRef]
- Marinaccio, L.; Stefanucci, A.; Scioli, G.; Della Valle, A.; Zengin, G.; Cichelli, A.; Mollica, A. Peptide Human Neutrophil Elastase Inhibitors from Natural Sources: An Overview. Int. J. Mol. Sci. 2022, 23, 2924. [Google Scholar] [CrossRef]
- Papaemmanouil, C.D.; Peña-García, J.; Banegas-Luna, A.J.; Kostagianni, A.D.; Gerothanassis, I.P.; Pérez-Sánchez, H.; Tzakos, A.G. ANTIAGE-DB: A Database and Server for the Prediction of Anti-Aging Compounds Targeting Elastase, Hyaluronidase, and Tyrosinase. Antioxidants 2022, 11, 2268. [Google Scholar] [CrossRef]
- Ricci, F.; Schira, K.; Khettabi, L.; Lombardo, L.; Mirabile, S.; Gitto, R.; Soler-Lopez, M.; Scheuermann, J.; Wolber, G.; De Luca, L. Computational methods to analyze and predict the binding mode of inhibitors targeting both human and mushroom tyrosinase. Eur. J. Med. Chem. 2023, 260, 115771. [Google Scholar] [CrossRef]
- Mirabile, S.; Ielo, L.; Lombardo, L.; Ricci, F.; Gitto, R.; Germanò, M.P.; Pace, V.; De Luca, L. Leveraging the 3-Chloro-4-fluorophenyl Motif to Identify Inhibitors of Tyrosinase from. Int. J. Mol. Sci. 2023, 24, 7944. [Google Scholar] [CrossRef]
- Mirabile, S.; Germanò, M.P.; Fais, A.; Lombardo, L.; Ricci, F.; Floris, S.; Cacciola, A.; Rapisarda, A.; Gitto, R.; De Luca, L. Design, Synthesis, and in Vitro Evaluation of 4-(4-Hydroxyphenyl)piperazine-Based Compounds Targeting Tyrosinase. ChemMedChem 2022, 17, e202200305. [Google Scholar] [CrossRef]
- Mirabile, S.; Vittorio, S.; Paola Germanò, M.; Adornato, I.; Ielo, L.; Rapisarda, A.; Gitto, R.; Pintus, F.; Fais, A.; De Luca, L. Evaluation of 4-(4-Fluorobenzyl)piperazin-1-yl]-Based Compounds as Competitive Tyrosinase Inhibitors Endowed with Antimelanogenic Effects. ChemMedChem 2021, 16, 3083–3093. [Google Scholar] [CrossRef]
- Vittorio, S.; Seidel, T.; Germano, M.P.; Gitto, R.; Ielo, L.; Garon, A.; Rapisarda, A.; Pace, V.; Langer, T.; De Luca, L. A Combination of Pharmacophore and Docking-based Virtual Screening to Discover new Tyrosinase Inhibitors. Mol. Inform. 2020, 39, e1900054. [Google Scholar] [CrossRef]
- De Luca, L.; Germanò, M.P.; Fais, A.; Pintus, F.; Buemi, M.R.; Vittorio, S.; Mirabile, S.; Rapisarda, A.; Gitto, R. Discovery of a new potent inhibitor of mushroom tyrosinase (Agaricus bisporus) containing 4-(4-hydroxyphenyl)piperazin-1-yl moiety. Bioorganic Med. Chem. 2020, 28, 115497. [Google Scholar] [CrossRef]
- Ferro, S.; Deri, B.; Germanò, M.P.; Gitto, R.; Ielo, L.; Buemi, M.R.; Certo, G.; Vittorio, S.; Rapisarda, A.; Pazy, Y.; et al. Targeting Tyrosinase: Development and Structural Insights of Novel Inhibitors Bearing Arylpiperidine and Arylpiperazine Fragments. J. Med. Chem. 2018, 61, 3908–3917. [Google Scholar] [CrossRef]
- Peisach, E.; Casebier, D.; Gallion, S.L.; Furth, P.; Petsko, G.A.; Hogan, J.C.; Ringe, D. Interaction of a peptidomimetic aminimide inhibitor with elastase. Science 1995, 269, 66–69. [Google Scholar] [CrossRef]
- Wilmouth, R.C.; Westwood, N.J.; Anderson, K.; Brownlee, W.; Claridge, T.D.; Clifton, I.J.; Pritchard, G.J.; Aplin, R.T.; Schofield, C.J. Inhibition of elastase by N-sulfonylaryl beta-lactams: Anatomy of a stable acyl-enzyme complex. Biochemistry 1998, 37, 17506–17513. [Google Scholar] [CrossRef]
- Mattos, C.; Giammona, D.A.; Petsko, G.A.; Ringe, D. Structural analysis of the active site of porcine pancreatic elastase based on the X-ray crystal structures of complexes with trifluoroacetyl-dipeptide-anilide inhibitors. Biochemistry 1995, 34, 3193–3203. [Google Scholar] [CrossRef]
- Meyer, E.F., Jr.; Presta, L.G.; Radhakrishnan, R. Stereospecific reaction of 3-methoxy-4-chloro-7-aminoisocoumarin with crystalline porcine pancreatic elastase. J. Am. Chem. Soc. 1985, 107, 4091–4093. [Google Scholar] [CrossRef]
- Wolber, G.; Langer, T. LigandScout: 3-D pharmacophores derived from protein-bound ligands and their use as virtual screening filters. J. Chem. Inf. Model. 2005, 45, 160–169. [Google Scholar] [CrossRef]
- Teng, S.; Srivastava, A.K.; Schwartz, C.E.; Alexov, E.; Wang, L. Structural assessment of the effects of amino acid substitutions on protein stability and protein protein interaction. Int. J. Comput. Biol. Drug Des. 2010, 3, 334–349. [Google Scholar] [CrossRef]
- Friesner, R.A.; Murphy, R.B.; Repasky, M.P.; Frye, L.L.; Greenwood, J.R.; Halgren, T.A.; Sanschagrin, P.C.; Mainz, D.T. Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J. Med. Chem. 2006, 49, 6177–6196. [Google Scholar] [CrossRef]
- Gerace, A.; Masini, V.; Crocetti, L.; Giovannoni, M.P.; Ferraroni, M. X-ray structural study of human neutrophil elastase inhibition with a series of azaindoles, azaindazoles and isoxazolones. J. Mol. Struct. 2023, 1274, 134595. [Google Scholar] [CrossRef]
- Stergiou, P.Y.; Foukis, A.; Gkini, O.A.; Bieth, J.G.; Papamichael, E.M. Kinetic and computational analysis of the reversible inhibition of porcine pancreatic elastase: A structural and mechanistic approach. J. Enzym. Inhib. Med. Chem. 2016, 31 (Suppl. S3), 131–139. [Google Scholar] [CrossRef]
- D.E. Shaw Research. Shaw Research. Desmond Molecular Dynamics System. In Maestro-Desmond Interoperability Tools; Schrödinger: New York, NY, USA, 2020. [Google Scholar]
- Bowers, K.J.; Chow, E.; Xu, H.; Dror, R.O.; Eastwood, M.P.; Gregersen, B.A.; Klepeis, J.L.; Kolossvary, I.; Moraes, M.A.; Sacerdoti, F.D.; et al. Scalable algorithms for molecular dynamics simulations on commodity clusters. In Proceedings of the 2006 ACM/IEEE Conference on Supercomputing, Tampa, FL, USA, 11–17 November 2006; Association for Computing Machinery: New York, NY, USA, 2006. [Google Scholar]
- Monforte, A.M.; Ferro, S.; De Luca, L.; Lo Surdo, G.; Morreale, F.; Pannecouque, C.; Balzarini, J.; Chimirri, A. Design and synthesis of N1-aryl-benzimidazoles 2-substituted as novel HIV-1 non-nucleoside reverse transcriptase inhibitors. Bioorg. Med. Chem. 2014, 22, 1459–1467. [Google Scholar] [CrossRef]
- Era, B.; Floris, S.; Sogos, V.; Porcedda, C.; Piras, A.; Medda, R.; Fais, A.; Pintus, F. Anti-Aging Potential of Extracts from Washingtonia filifera seeds. Plants 2021, 10, 151. [Google Scholar] [CrossRef]
- Jones, G.; Willett, P.; Glen, R.C.; Leach, A.R.; Taylor, R. Development and validation of a genetic algorithm for flexible docking. J. Mol. Biol. 1997, 26, 727–748. [Google Scholar] [CrossRef]
- Pedretti, A.; Mazzolari, A.; Gervasoni, S.; Fumagalli, L.; Vistoli, G. The VEGA suite of programs: An versatile platform for cheminformatics and drug design projects. Bioinformatics 2021, 37, 1174–1175. [Google Scholar] [CrossRef]
- Mulchande, J.; Martins, L.; Moreira, R.; Archer, M.; Oliveira, T.F.; Iley, J. The efficiency of C-4 substituents in activating the β-lactam scaffold towards serine proteases and hydroxide ion. Org. Biomol. Chem. 2007, 5, 2617–2626. [Google Scholar] [CrossRef]
- Wilmouth, R.C.; Kassamally, S.; Westwood, N.J.; Sheppard, R.J.; Claridge, T.D.W.; Aplin, R.T.; Wright, P.A.; Pritchard, G.J.; Schofield, C.J. Mechanistic Insights into the Inhibition of Serine Proteases by Monocyclic Lactams, Biochemistry 1999, 38, 7989–7998. [Google Scholar] [CrossRef]
- Worldwide Pdb Protein Data Bank. Available online: https://www.wwpdb.org/pdb?id=pdb_00001e36 (accessed on 30 January 2024).
- Radhakrishnan, R.; Presta, L.; Meyer, E.; Wildonger, R. Crystal structures of the complex of porcine pancreatic elastase with two valine-derived benzoxazinone inhibitors. J. Mol. Biol. 1987, 198, 417–424. [Google Scholar] [CrossRef]
- de la Sierra, I.L.; Papamichael, E.; Sakarellos, C.; Dimicoli, J.; Prangé, T. Interaction of the peptide CF3-Leu-Ala-NH-C6 H4-CF3 (TFLA) with porcine pancreatic elastase. X-ray studies at 1.8 Å. J. Mol. Recognit. 1990, 3, 36–44. [Google Scholar] [CrossRef]
- Ruivo, E.F.P.; Gonçalves, L.M.; Carvalho, L.A.R.; Guedes, R.C.; Hofbauer, S.; Brito, J.A.; Archer, M.; Moreira, R.; Lucas, S.D. Clickable 4-Oxo-β-lactam-Based Selective Probing for Human Neutrophil Elastase Related Proteomes. ChemMedChem 2016, 11, 2037–2042. [Google Scholar] [CrossRef]
- Odagaki, Y.; Ohmoto, K.; Matsuoka, S.; Hamanaka, N.; Nakai, H.; Toda, M.; Katsuya, Y. The crystal structure of the complex of non-peptidic inhibitor of human neutrophil elastase ONO-6818 and porcine pancreatic elastase. Bioorganic Med. Chem. 2001, 9, 647–651. [Google Scholar] [CrossRef]
- Cregge, R.J.; Durham, S.L.; Farr, R.A.; Gallion, S.L.; Hare, C.M.; Hoffman, R.V.; Janusz, M.J.; Kim, H.-O.; Koehl, J.R.; Mehdi, S.; et al. Inhibition of Human Neutrophil Elastase. 4. Design, Synthesis, X-ray Crystallographic Analysis, and Structure−Activity Relationships for a Series of P2-Modified, Orally Active Peptidyl Pentafluoroethyl Ketones. J. Med. Chem. 1998, 41, 2461–2480. [Google Scholar] [CrossRef]
- Carvalho, L.A.R.; Almeida, V.T.; Brito, J.A.; Lum, K.M.; Oliveira, T.F.; Guedes, R.C.; Gonçalves, L.M.; Lucas, S.D.; Cravatt, B.F.; Archer, M.; et al. 3-Oxo-β-sultam as a Sulfonylating Chemotype for Inhibition of Serine Hydrolases and Activity-Based Protein Profiling. ACS Chem. Biol. 2020, 15, 878–883. [Google Scholar] [CrossRef]
- Johnston, R.C.; Yao, K.; Kaplan, Z.; Chelliah, M.; Leswing, K.; Seekins, S.; Watts, S.; Calkins, D.; Chief Elk, J.; Jerome, S.V.; et al. Epik: pK(a) and Protonation State Prediction through Machine Learning. J. Chem. Theory Comput. 2023, 19, 2380–2388. [Google Scholar] [CrossRef]
PDB Entry | Resolution | R-Factor |
---|---|---|
1 BMA | 1.80 Å | 0.192 |
1 BTU | 1.60 Å | 0.192 |
1 ELE | 2.00 Å | 0.171 |
1 HV7 | 1.70 Å | 0.150 |
1 JIM | 2.31 Å | 0.153 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pitasi, G.; Brancale, A.; Floris, S.; Fais, A.; Gitto, R.; De Luca, L. Computational Approach to Identifying New Chemical Entities as Elastase Inhibitors with Potential Antiaging Effects. Int. J. Mol. Sci. 2024, 25, 11174. https://doi.org/10.3390/ijms252011174
Pitasi G, Brancale A, Floris S, Fais A, Gitto R, De Luca L. Computational Approach to Identifying New Chemical Entities as Elastase Inhibitors with Potential Antiaging Effects. International Journal of Molecular Sciences. 2024; 25(20):11174. https://doi.org/10.3390/ijms252011174
Chicago/Turabian StylePitasi, Giovanna, Andrea Brancale, Sonia Floris, Antonella Fais, Rosaria Gitto, and Laura De Luca. 2024. "Computational Approach to Identifying New Chemical Entities as Elastase Inhibitors with Potential Antiaging Effects" International Journal of Molecular Sciences 25, no. 20: 11174. https://doi.org/10.3390/ijms252011174
APA StylePitasi, G., Brancale, A., Floris, S., Fais, A., Gitto, R., & De Luca, L. (2024). Computational Approach to Identifying New Chemical Entities as Elastase Inhibitors with Potential Antiaging Effects. International Journal of Molecular Sciences, 25(20), 11174. https://doi.org/10.3390/ijms252011174