Construction of Lentiviral Vectors Carrying Six Pluripotency Genes in Yak to Obtain Yak iPSC Cells
<p>Construction of lentiviral vectors FUW-tetO-OSM-EGFP and FUW-tetO-KNL-mCherry. (<b>A</b>–<b>F</b>) PCR amplification results of <span class="html-italic">Oct4</span>, <span class="html-italic">Sox2</span>, <span class="html-italic">Klf4</span>, <span class="html-italic">c-Myc</span>, <span class="html-italic">Nanog</span>, and <span class="html-italic">Lin28</span> genes; M represents marker 2000, 1 represents PCR product; (<b>G</b>) Structure of FUW-tetO-OSM-EGFP lentiviral vector; (<b>H</b>) Structure of FUW-tetO-KNL-mCherry lentiviral vector; (<b>I</b>) Electrophoresis of total RNA from yak gonadal ridge; (<b>J</b>) PCR amplification results of lentiviral vectors; M represents marker 2000, 1–5 represent FUW-tetO-OSM-EGFP plasmid PCR products (4317 bp), 6–10 represent FUW-tetO-KNL-mCherry plasmid PCR products (3897 bp); (<b>K</b>–<b>P</b>) PCR amplification results of <span class="html-italic">Oct4</span>, <span class="html-italic">Sox2</span>, <span class="html-italic">Klf4</span>, <span class="html-italic">c-Myc</span>, <span class="html-italic">Nanog</span>, and <span class="html-italic">Lin28</span> genes from plasmid; M represents marker 2000, 1–4 represent plasmid PCR products; (<b>Q</b>–<b>V</b>) Sequence information of <span class="html-italic">Oct4</span>, <span class="html-italic">Sox2</span>, <span class="html-italic">Klf4</span>, <span class="html-italic">c-Myc</span>, <span class="html-italic">Nanog</span>, and <span class="html-italic">Lin28</span> genes of yak.</p> "> Figure 2
<p>Lentiviral transduction of 293T cells and immunofluorescence identification of fibroblasts. (<b>A</b>) Packaging results of FUW-tetO-OSM-EGFP lentiviral vector; (<b>B</b>) Packaging results of FUW-tetO-KNL-mCherry lentiviral vector; (<b>C</b>,<b>D</b>) Expression of fluorescent proteins in 293T cells after lentiviral transduction; (<b>C</b>) is the experimental group, (<b>D</b>) is the control group; (<b>E</b>) Immunofluorescence identification of yak fibroblasts; (<b>F</b>) Immunofluorescence identification of mouse fibroblasts, with red fluorescence indicating vimentin.</p> "> Figure 3
<p>Reprogramming of yak fibroblasts and preliminary pluripotency identification. (<b>A</b>) Reprogramming steps and morphological changes of yak fibroblasts; (<b>B</b>,<b>C</b>) Expression of fluorescent proteins in yak fibroblasts after lentiviral transduction; (<b>B</b>) is the experimental group, (<b>C</b>) is the control group; (<b>D</b>–<b>G</b>) AP staining of yak iPSCs; (<b>D</b>) shows the clone morphology on a six-well plate before staining, (<b>E</b>) shows the clone morphology on a six-well plate after staining, (<b>F</b>) shows AP-stained clones, (<b>G</b>) shows the number of positive clones in three replicate wells; (<b>H</b>) PCR for the methylation-status detection of the <span class="html-italic">Oct4</span> promoter region; (<b>I</b>) RT-PCR detection of pluripotency-related genes in yak iPSCs, with gonadal ridge as the positive control and BEF as the negative control; (<b>J</b>) RT-PCR detection of related genes in fibroblasts after lentiviral transduction; M is marker 2000. Experimental group: 1 for <span class="html-italic">Oct4</span> (242 bp), 3 for <span class="html-italic">Sox2</span> (215 bp), 5 for <span class="html-italic">c-Myc</span> (221 bp), 7 for <span class="html-italic">Klf4</span> (354 bp), 9 for <span class="html-italic">Nanog</span> (309 bp), 11 for <span class="html-italic">Lin28</span> (204 bp); control group: 2 for <span class="html-italic">Oct4</span>, 4 for <span class="html-italic">Sox2</span>, 6 for <span class="html-italic">c-Myc</span>, 8 for <span class="html-italic">Klf4</span>, 10 for <span class="html-italic">Nanog</span>, 12 for <span class="html-italic">Lin28</span>; (<b>K</b>) Methylation status of the <span class="html-italic">Oct4</span> promoter region in yak fibroblasts; (<b>L</b>) Methylation status of the <span class="html-italic">Oct4</span> promoter region in yak iPSCs.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Cloning of Six Pluripotency-Related Transcription Factors in Yak
2.2. Construction of the Lentiviral Vectors FUW-tetO-OSM-EGFP and FUW-tetO-KNL-mCherry
2.3. Immunofluorescence of Lentiviral Packaging and Transfection of 293T Cells
2.4. Identification of Yak and Mouse Embryonic Fibroblasts (MEFs)
2.5. Reprogramming of Yak Fibroblasts
2.6. AP Staining, Pluripotency Gene-Expression Analysis, and Epigenetic Characterization of Yak iPSCs
3. Discussion
4. Materials and Methods
4.1. Cloning of Six Pluripotency-Associated Transcription Factors in Yak
4.2. Construction of Lentiviral Vectors
4.3. Lentiviral Packaging and Transfection of 293T Cells
4.4. Isolation and Immunofluorescence Identification of Yak Fibroblasts
4.5. Isolation of MEF and Preparation of Feeder Layers
4.6. Lentiviral Transfection of Yak Fibroblasts
4.7. Passage Culture of Yak iPSCs
4.8. Alkaline Phosphatase Staining of Yak iPSCs
4.9. RT-PCR Detection of Pluripotency Genes in Yak iPSCs
4.10. Bisulfite Sequencing of Oct4 Gene
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Goszczynski, D.E.; Navarro, M.; Mutto, A.A.; Ross, P.J. Review: Embryonic stem cells as tools for in vitro gamete production in livestock. Animal 2023, 17 (Suppl. S1), 100828. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, K.; Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006, 126, 663–676. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Vodyanik, M.A.; Smuga-Otto, K.; Antosiewicz-Bourget, J.; Frane, J.L.; Tian, S.; Nie, J.; Jonsdottir, G.A.; Ruotti, V.; Stewart, R.; et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 2007, 318, 1917–1920. [Google Scholar] [CrossRef] [PubMed]
- Setthawong, P.; Phakdeedindan, P.; Tiptanavattana, N.; Rungarunlert, S.; Techakumphu, M.; Tharasanit, T. Generation of porcine induced-pluripotent stem cells from sertoli cells. Theriogenology 2019, 127, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Zhang, M.; Guo, T.; Zhao, L.; Guo, X.; Yin, Z.; Cheng, L.; Liu, H.; Zhao, L.; Li, X.; et al. Species origin of exogenous transcription factors affects the activation of endogenous pluripotency markers and signaling pathways of porcine induced pluripotent stem cells. Front. Cell Dev. Biol. 2023, 11, 1196273. [Google Scholar] [CrossRef] [PubMed]
- Kimura, K.; Tsukamoto, M.; Tanaka, M.; Kuwamura, M.; Ohtaka, M.; Nishimura, K.; Nakanishi, M.; Sugiura, K.; Hatoya, S. Efficient reprogramming of canine peripheral blood mononuclear cells into induced pluripotent stem cells. Stem Cells Dev. 2021, 30, 79–90. [Google Scholar] [CrossRef]
- Zhang, Y.; He, Y.; Wu, P.; Hu, S.; Zhang, Y.; Chen, C. miR-200c-141 enhances sheep kidney cell reprogramming into pluripotent cells by targeting ZEB1. Int. J. Stem Cells 2021, 14, 423–433. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Zhao, L.; Wang, Z.; Su, H.; Wang, T.; Yang, G.; Chen, L.; Wu, B.; Zhao, G.; Guo, J.; et al. Generation of sheep induced pluripotent stem cells with defined DOX-inducible transcription factors via piggyBac transposition. Front. Cell Dev. Biol. 2021, 9, 785055. [Google Scholar] [CrossRef] [PubMed]
- Bessi, B.W.; Botigelli, R.C.; Pieri, N.C.G.; Machado, L.S.; Cruz, J.B.; de Moraes, P.; de Souza, A.F.; Recchia, K.; Barbosa, G.; de Castro, R.V.G.; et al. Cattle in vitro induced pluripotent stem cells generated and maintained in 5 or 20% oxygen and different supplementation. Cells 2021, 10, 1531. [Google Scholar] [CrossRef]
- Su, Y.; Wang, L.; Fan, Z.; Liu, Y.; Zhu, J.; Kaback, D.; Oudiz, J.; Patrick, T.; Yee, S.P.; Tian, X.C.; et al. Establishment of bovine-induced pluripotent stem cells. Int. J. Mol. Sci. 2021, 22, 489. [Google Scholar] [CrossRef]
- Huang, B.; Li, T.; Alonso-Gonzalez, L.; Gorre, R.; Keatley, S.; Green, A.; Turner, P.; Kallingappa, P.K.; Verma, V.; Oback, B. A virus-free poly-promoter vector induces pluripotency in quiescent bovine cells under chemically defined conditions of dual kinase inhibition. PLoS ONE 2011, 6, e24501. [Google Scholar] [CrossRef]
- Bressan, F.F.; Bassanezze, V.; de Figueiredo Pessôa, L.V.; Sacramento, C.B.; Malta, T.M.; Kashima, S.; Fantinato Neto, P.; Strefezzi, R.F.; Pieri, N.C.G.; Krieger, J.E.; et al. Generation of induced pluripotent stem cells from large domestic animals. Stem Cell Res. Ther. 2020, 11, 247. [Google Scholar] [CrossRef]
- Ogorevc, J.; Orehek, S.; Dovč, P. Cellular reprogramming in farm animals: An overview of iPSC generation in the mammalian farm animal species. J. Anim. Sci. Biotechnol. 2016, 7, 10. [Google Scholar] [CrossRef]
- Weeratunga, P.; Harman, R.M.; Van de Walle, G.R. Induced pluripotent stem cells from domesticated ruminants and their potential for enhancing livestock production. Front. Vet. Sci. 2023, 10, 1129287. [Google Scholar] [CrossRef]
- Zhao, L.; Wang, Z.; Zhang, J.; Yang, J.; Gao, X.; Wu, B.; Zhao, G.; Bao, S.; Hu, S.; Liu, P.; et al. Characterization of the single-cell derived bovine induced pluripotent stem cells. Tissue Cell 2017, 49, 521–527. [Google Scholar] [CrossRef]
- Liu, J.; Balehosur, D.; Murray, B.; Kelly, J.M.; Sumer, H.; Verma, P.J. Generation and characterization of reprogrammed sheep induced pluripotent stem cells. Theriogenology 2012, 77, 338–346.e331. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Q.; Zhang, G.; Ma, T.; Qian, W.; Wang, J.; Ye, Z.; Cao, C.; Hu, Q.; Kim, J.; Larkin, D.M.; et al. The yak genome and adaptation to life at high altitude. Nat. Genet. 2012, 44, 946–949. [Google Scholar] [CrossRef] [PubMed]
- Jing, X.; Ding, L.; Zhou, J.; Huang, X.; Degen, A.; Long, R. The adaptive strategies of yaks to live in the Asian highlands. Anim. Nutr. 2022, 9, 249–258. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.; Yang, P.; Pu, Y.; Sun, X.; Yin, H.; Zhang, Y.; Zhang, Y.; Li, Y.; Liu, Y.; Fang, F.; et al. Characterization of bovine induced pluripotent stem cells by lentiviral transduction of reprogramming factor fusion proteins. Int. J. Biol. Sci. 2012, 8, 498–511. [Google Scholar] [CrossRef]
- Tiscornia, G.; Singer, O.; Verma, I.M. Production and purification of lentiviral vectors. Nat. Protoc. 2006, 1, 241–245. [Google Scholar] [CrossRef]
- West, F.D.; Terlouw, S.L.; Kwon, D.J.; Mumaw, J.L.; Dhara, S.K.; Hasneen, K.; Dobrinsky, J.R.; Stice, S.L. Porcine induced pluripotent stem cells produce chimeric offspring. Stem Cells Dev. 2010, 19, 1211–1220. [Google Scholar] [CrossRef]
- Fan, N.; Chen, J.; Shang, Z.; Dou, H.; Ji, G.; Zou, Q.; Wu, L.; He, L.; Wang, F.; Liu, K.; et al. Piglets cloned from induced pluripotent stem cells. Cell Res. 2013, 23, 162–166. [Google Scholar] [CrossRef] [PubMed]
- Varzideh, F.; Gambardella, J.; Kansakar, U.; Jankauskas, S.S.; Santulli, G. Molecular mechanisms underlying pluripotency and self-renewal of embryonic stem cells. Int. J. Mol. Sci. 2023, 24, 8386. [Google Scholar] [CrossRef] [PubMed]
- Maklad, A.; Sedeeq, M.; Chan, K.M.; Gueven, N.; Azimi, I. Exploring Lin28 proteins: Unravelling structure and functions with emphasis on nervous system malignancies. Life Sci. 2023, 335, 122275. [Google Scholar] [CrossRef] [PubMed]
- Boyer, L.A.; Lee, T.I.; Cole, M.F.; Johnstone, S.E.; Levine, S.S.; Zucker, J.P.; Guenther, M.G.; Kumar, R.M.; Murray, H.L.; Jenner, R.G.; et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 2005, 122, 947–956. [Google Scholar] [CrossRef]
- Omole, A.E.; Fakoya, A.O.J. Ten years of progress and promise of induced pluripotent stem cells: Historical origins, characteristics, mechanisms, limitations, and potential applications. PeerJ 2018, 6, e4370. [Google Scholar] [CrossRef] [PubMed]
- Park, C.S.; Lewis, A.; Chen, T.; Lacorazza, D. Concise review: Regulation of self-renewal in normal and malignant hematopoietic stem cells by Krüppel-Like Factor 4. Stem Cells Transl. Med. 2019, 8, 568–574. [Google Scholar] [CrossRef]
- Rowland, B.D.; Bernards, R.; Peeper, D.S. The KLF4 tumour suppressor is a transcriptional repressor of p53 that acts as a context-dependent oncogene. Nat. Cell Biol. 2005, 7, 1074–1082. [Google Scholar] [CrossRef]
- Kim, S.H.; Singh, S.V. Role of Krüppel-like Factor 4-p21(CIP1) Axis in breast cancer stem-like cell inhibition by benzyl isothiocyanate. Cancer Prev. Res. 2019, 12, 125–134. [Google Scholar] [CrossRef]
- Ishida, T.; Ueyama, T.; Ihara, D.; Harada, Y.; Nakagawa, S.; Saito, K.; Nakao, S.; Kawamura, T. c-Myc/microRNA-17-92 axis phase-dependently regulates PTEN and p21 expression via ceRNA during reprogramming to mouse pluripotent stem cells. Biomedicines 2023, 11, 1737. [Google Scholar] [CrossRef]
- Masui, S.; Nakatake, Y.; Toyooka, Y.; Shimosato, D.; Yagi, R.; Takahashi, K.; Okochi, H.; Okuda, A.; Matoba, R.; Sharov, A.A.; et al. Pluripotency governed by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells. Nat. Cell Biol. 2007, 9, 625–635. [Google Scholar] [CrossRef]
- Farzaneh, M.; Attari, F.; Khoshnam, S.E. Concise review: LIN28/let-7 signaling, a critical double-negative feedback loop during pluripotency, reprogramming, and tumorigenicity. Cell Reprogram 2017, 19, 289–293. [Google Scholar] [CrossRef]
- Liao, J.; Wu, Z.; Wang, Y.; Cheng, L.; Cui, C.; Gao, Y.; Chen, T.; Rao, L.; Chen, S.; Jia, N.; et al. Enhanced efficiency of generating induced pluripotent stem (iPS) cells from human somatic cells by a combination of six transcription factors. Cell Res. 2008, 18, 600–603. [Google Scholar] [CrossRef]
- Su, Y.; Zhu, J.; Salman, S.; Tang, Y. Induced pluripotent stem cells from farm animals. J. Anim. Sci. 2020, 98, skaa343. [Google Scholar] [CrossRef]
- Sumer, H.; Liu, J.; Malaver-Ortega, L.F.; Lim, M.L.; Khodadadi, K.; Verma, P.J. NANOG is a key factor for induction of pluripotency in bovine adult fibroblasts. J. Anim. Sci. 2011, 89, 2708–2716. [Google Scholar] [CrossRef]
- Esteban, M.A.; Xu, J.; Yang, J.; Peng, M.; Qin, D.; Li, W.; Jiang, Z.; Chen, J.; Deng, K.; Zhong, M.; et al. Generation of induced pluripotent stem cell lines from Tibetan miniature pig. J. Biol. Chem. 2009, 284, 17634–17640. [Google Scholar] [CrossRef]
- Wu, Z.; Chen, J.; Ren, J.; Bao, L.; Liao, J.; Cui, C.; Rao, L.; Li, H.; Gu, Y.; Dai, H.; et al. Generation of pig induced pluripotent stem cells with a drug-inducible system. J. Mol. Cell Biol. 2009, 1, 46–54. [Google Scholar] [CrossRef]
- Han, X.; Han, J.; Ding, F.; Cao, S.; Lim, S.S.; Dai, Y.; Zhang, R.; Zhang, Y.; Lim, B.; Li, N. Generation of induced pluripotent stem cells from bovine embryonic fibroblast cells. Cell Res. 2011, 21, 1509–1512. [Google Scholar] [CrossRef]
- Bao, L.; He, L.; Chen, J.; Wu, Z.; Liao, J.; Rao, L.; Ren, J.; Li, H.; Zhu, H.; Qian, L.; et al. Reprogramming of ovine adult fibroblasts to pluripotency via drug-inducible expression of defined factors. Cell Res. 2011, 21, 600–608. [Google Scholar] [CrossRef]
Gene | Primer (5′-3′) | Product Length (bp) |
---|---|---|
Oct4 | F: ATGGCGGGACACCTCGCTT | 1083 |
R: TCAGTTTGAATGCATAGGAGAGCC | ||
Sox2 | F: ATGTACAACATGATGGAGACGG | 963 |
R: TCACATGTGCGAGAGGGG | ||
Klf4 | F: ATGGCTGTCAGCGACGC | 1434 |
R: TTAAAAGTGCCTCTTCATGTGTAAG | ||
c-Myc | F: ATGCCCCTCAACGTCAGCT | 1320 |
R: TTAGGCGCAAGAGTTCCGTAT | ||
Nanog | F: ATGAGTGTGGGCCCAGCTTGT | 903 |
R: TTACAAATCTTCAGGCTGTATGTT | ||
Lin28 | F: ATGGGCTCTGTGTCAAACCAG | 618 |
R: TCAATTCTGGGCCTCTGGGAG |
Gene | Primer (5′-3′) | Product Length (bp) |
---|---|---|
Oct4 | F: AATTACAGGCTAGCTATCAGGCCACCATGGCGGGACACCTCGCTT | 1148 |
R: ACCTGCTTGCTTTAGCAGAGAGAAGTTTGTGGCGCCGCTGCCGTTTGAATGCATAGGAGAGCCCAG | ||
Sox2 | F: CTGCTAAAGCAAGCAGGTGATGTTGAAGAAAACCCCGGGCCTATGTACAACATGATGGAGACGGAG | 1043 |
R: TCCCCGCATGTTAGAAGACTTCCCCTGCCCTCGCCGGAGCCCATGTGCGAGAGGGGCAG | ||
c-Myc | F: TCTTCTAACATGCGGGGACGTGGAGGAAAATCCCGGCCCAATGCCCCTCAACGTCAGC | 1404 |
R: TCTCCAGCCAATTTCAAGAGAGCATAATTAGTACACTGGCCCGAGCCGGCGCAAGAGTTCCGTAT | ||
EGFP | F: CTTGAAATTGGCTGGAGATGTTGAGAGCAACCCAGGTCCCATGGTGAGCAAGGGCGAG | 780 |
R: CGAATTGACATGAGTCACATTTACTTGTACAGCTCGTCCATGC | ||
Klf4 | F: AATTACAGGCTAGCTATCAGGCCACCATGGCTGTCAGCGACGC | 1499 |
R: ACCTGCTTGCTTTAGCAGAGAGAAGTTTGTGGCGCCGCTGCCAAAGTGCCTCTTCATGTGTAAGG | ||
Nanog | F: CTGCTAAAGCAAGCAGGTGATGTTGAAGAAAACCCCGGGCCTATGAGTGTGGGCCCAGC | 984 |
R: CCCCGCATGTTAGAAGACTTCCCCTGCCCTCGCCGGAGCCCAAATCTTCAGGCTGTATGTTG | ||
Lin28 | F: GTCTTCTAACATGCGGGGACGTGGAGGAAAATCCCGGCCCAATGGGCTCTGTGTCAAAC | 702 |
R: TCTCCAGCCAATTTCAAGAGAGCATAATTAGTACACTGGCCCGAGCCATTCTGGGCCTCTGGGAG | ||
mCherry | F: CTTGAAATTGGCTGGAGATGTTGAGAGCAACCCAGGTCCCATGGTGAGCAAGGGCGAG | 771 |
R: CGAATTGACATGAGTCACATTTACTTGTACAGCTCGTCCATGC |
Gene | Primer (5′-3′) | Product Length (bp) |
---|---|---|
endoOct4 | F: CAAGCAGTGACTACTCCCAACG | 306 |
R: ATCCCAAAGCCCTGGTACAA | ||
endoSox2 | F: TTCGCCTGATTTTCCTCGC | 518 |
R: ATGAGCGTCTTGGTTTTCCG | ||
endoNanog | F: TTCCCAAACTACCCTCTCAAC | 206 |
R: CTCTTACTGGACTCATTACCCTTC | ||
Sall4 | F: GCAGCGTTCCATCCACATTTAT | 377 |
R: CCTCTTTGCGTCCGTTCCTA | ||
Rex1 | F: ACCTATTGTGGAAGAGGACCC | 403 |
R: ATCTCGGGGATTATAAACTCG | ||
CDH1 | F: ACCCCCTGTCGGTGTTTTTAT | 321 |
R: GCTGGGATTGTGTAACCGAT | ||
TERT | F: GCGGAAGCCAAGTCTCGGAA | 356 |
R: GCGTGGTTCCCAAGCAGTTTC | ||
STAT3 | F: TGAATGGAAACAACCAGTCGG | 412 |
R: CGCTGGACTACGAAGGCAC | ||
GAPDH | F: TGCTGGTGCTGAGTATGTGGT | 613 |
R: AGAAGAGTGAGTGTCGCTGTT |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, R.; Huang, X.; Fu, W.; Ji, W.; Cai, W.; Xu, M.; Lan, D. Construction of Lentiviral Vectors Carrying Six Pluripotency Genes in Yak to Obtain Yak iPSC Cells. Int. J. Mol. Sci. 2024, 25, 9431. https://doi.org/10.3390/ijms25179431
Zeng R, Huang X, Fu W, Ji W, Cai W, Xu M, Lan D. Construction of Lentiviral Vectors Carrying Six Pluripotency Genes in Yak to Obtain Yak iPSC Cells. International Journal of Molecular Sciences. 2024; 25(17):9431. https://doi.org/10.3390/ijms25179431
Chicago/Turabian StyleZeng, Ruilin, Xianpeng Huang, Wei Fu, Wenhui Ji, Wenyi Cai, Meng Xu, and Daoliang Lan. 2024. "Construction of Lentiviral Vectors Carrying Six Pluripotency Genes in Yak to Obtain Yak iPSC Cells" International Journal of Molecular Sciences 25, no. 17: 9431. https://doi.org/10.3390/ijms25179431