Genistein Promotes M2 Macrophage Polarization via Aryl Hydrocarbon Receptor and Alleviates Intestinal Inflammation in Broilers with Necrotic Enteritis
<p>Genistein alleviates intestinal damage in broilers infected with <span class="html-italic">Clostridium perfringens</span>. (<b>A</b>) Hematoxylin and eosin (HE) staining of duodenum of broilers (×40 magnification, scale bar = 200 μm). (<b>B</b>) The intestinal lesion scores of broilers. (<b>C</b>) The villus height (VH), crypt depth (CD), and the ratio of VH to CD (VH/CD) in the duodenum of broilers. Con, basal diet; Gen40, basal diet supplemented with 40 mg/kg genistein; Gen80, Gen80 diet; <span class="html-italic">Cp</span>, basal diet and <span class="html-italic">Cp</span> infection; <span class="html-italic">Cp</span>+Gen40, Gen40 diet and <span class="html-italic">Cp</span> infection; <span class="html-italic">Cp</span>+Gen80, Gen80 diet and <span class="html-italic">Cp</span> infection. The differences among groups were determined by ANOVA using Duncan’s test. The results are presented as mean ± SEM, <span class="html-italic">n</span> = 12. Letter a indicates <span class="html-italic">p</span> < 0.05 vs. Con group; letter b indicates <span class="html-italic">p</span> < 0.05 vs. <span class="html-italic">Cp</span> group.</p> "> Figure 1 Cont.
<p>Genistein alleviates intestinal damage in broilers infected with <span class="html-italic">Clostridium perfringens</span>. (<b>A</b>) Hematoxylin and eosin (HE) staining of duodenum of broilers (×40 magnification, scale bar = 200 μm). (<b>B</b>) The intestinal lesion scores of broilers. (<b>C</b>) The villus height (VH), crypt depth (CD), and the ratio of VH to CD (VH/CD) in the duodenum of broilers. Con, basal diet; Gen40, basal diet supplemented with 40 mg/kg genistein; Gen80, Gen80 diet; <span class="html-italic">Cp</span>, basal diet and <span class="html-italic">Cp</span> infection; <span class="html-italic">Cp</span>+Gen40, Gen40 diet and <span class="html-italic">Cp</span> infection; <span class="html-italic">Cp</span>+Gen80, Gen80 diet and <span class="html-italic">Cp</span> infection. The differences among groups were determined by ANOVA using Duncan’s test. The results are presented as mean ± SEM, <span class="html-italic">n</span> = 12. Letter a indicates <span class="html-italic">p</span> < 0.05 vs. Con group; letter b indicates <span class="html-italic">p</span> < 0.05 vs. <span class="html-italic">Cp</span> group.</p> "> Figure 2
<p>Genistein enhances immune responses in the intestine and serum of broilers. (<b>A</b>) The content of sIgA, TGF-β, and IL-10 in the jejunal mucosa of broilers was measured by ELISA kits. (<b>B</b>) The concentration of serum IgG and IgA of broilers was determined by ELISA kits. The lysozyme activity was measured by lysozyme assay kits. Con, basal diet; Gen40, basal diet supplemented with 40 mg/kg genistein; Gen80, Gen80 diet; <span class="html-italic">Cp</span>, basal diet and <span class="html-italic">Cp</span> infection; <span class="html-italic">Cp</span>+Gen40, Gen40 diet and <span class="html-italic">Cp</span> infection; <span class="html-italic">Cp</span>+Gen80, Gen80 diet and <span class="html-italic">Cp</span> infection. The differences among groups were determined by ANOVA using Duncan’s test. The results are presented as mean ± SEM, <span class="html-italic">n</span> = 12. Letter a indicates <span class="html-italic">p</span> < 0.05 vs. Con group; letter b indicates <span class="html-italic">p</span> < 0.05 vs. <span class="html-italic">Cp</span> group.</p> "> Figure 3
<p>Genistein activates the intestinal AhR pathway in broilers challenged with NE. (<b>A</b>) Western blot of AhR and CYP1A1 in the jejunum of broilers. (<b>B</b>) Quantification of AhR and CYP1A1 protein levels, <span class="html-italic">n</span> = 3. Con, basal diet; Gen40, basal diet supplemented with 40 mg/kg genistein; Gen80, Gen80 diet; <span class="html-italic">Cp</span>, basal diet and <span class="html-italic">Cp</span> infection; <span class="html-italic">Cp</span>+Gen40, Gen40 diet and <span class="html-italic">Cp</span> infection; <span class="html-italic">Cp</span>+Gen80, Gen80 diet and <span class="html-italic">Cp</span> infection. The differences among groups were determined by ANOVA using Duncan’s test. The results are presented as mean ± SEM. Letter a indicates <span class="html-italic">p</span> < 0.05 vs. Con group; letter b indicates <span class="html-italic">p</span> < 0.05 vs. <span class="html-italic">Cp</span> group.</p> "> Figure 4
<p>Genistein promotes AhR expression in intestinal M2 macrophages of broilers. (<b>A</b>) Sections of jejunum tissues were immunostained with DAPI (blue), AhR (green), and CD163 (red) (×400 magnification, scale bar = 50 μm). (<b>B</b>) The quantified number of AhR<sup>+</sup> and AhR<sup>+</sup>CD163<sup>+</sup> cells in the jejunum of broilers, <span class="html-italic">n</span> = 3. Con, basal diet; Gen40, basal diet supplemented with 40 mg/kg genistein; Gen80, Gen80 diet; <span class="html-italic">Cp</span>, basal diet and <span class="html-italic">Cp</span> infection; <span class="html-italic">Cp</span>+Gen40, Gen40 diet and <span class="html-italic">Cp</span> infection; <span class="html-italic">Cp</span>+Gen80, Gen80 diet and <span class="html-italic">Cp</span> infection. The differences among groups were determined by ANOVA using Duncan’s test. The results are presented as mean ± SEM. Letter b indicates <span class="html-italic">p</span> < 0.05 vs. <span class="html-italic">Cp</span> group.</p> "> Figure 5
<p>Genistein promotes M2 macrophage polarization depending on AhR in RAW264.7 cells. (<b>A</b>) Cells were treated with genistein (0, 25, 50, 100, 200 μM) for 48 h. The effect of genistein on cell viability was determined by the CCK-8 assay, <span class="html-italic">n</span> = 10. (<b>B</b>) Cells were prestimulated with IL-4 (20 ng/mL) for 24 h and then treated with genistein (0, 25, 50, 100, 200 μM) and IL-4 (20 ng/mL) for 24 h. The relative mRNA expression levels of AhR and Arg-1 were measured by qRT-PCR. (<b>C</b>) Cells were prestimulated with IL-4 (20 ng/mL) for 24 h and then treated with genistein (50 μM), FICZ (100 nM), CH223191 (5 μM), genistein + CH223191 in the presence of IL-4 for 24 h. The relative mRNA expression levels of IL-10 were measured by qRT-PCR. (<b>D</b>) The protein levels of AhR, CYP1A1, CD163, and Arg-1 were determined by Western blot. The differences among groups were determined by ANOVA using Duncan’s test. The results are presented as mean ± SEM, <span class="html-italic">n</span> = 3. Letter a indicates <span class="html-italic">p</span> < 0.05 vs. Con group; letter b indicates <span class="html-italic">p</span> < 0.05 vs. IL-4-treatment group; letter c indicates <span class="html-italic">p</span> < 0.05 vs. Gen-treatment group.</p> "> Figure 5 Cont.
<p>Genistein promotes M2 macrophage polarization depending on AhR in RAW264.7 cells. (<b>A</b>) Cells were treated with genistein (0, 25, 50, 100, 200 μM) for 48 h. The effect of genistein on cell viability was determined by the CCK-8 assay, <span class="html-italic">n</span> = 10. (<b>B</b>) Cells were prestimulated with IL-4 (20 ng/mL) for 24 h and then treated with genistein (0, 25, 50, 100, 200 μM) and IL-4 (20 ng/mL) for 24 h. The relative mRNA expression levels of AhR and Arg-1 were measured by qRT-PCR. (<b>C</b>) Cells were prestimulated with IL-4 (20 ng/mL) for 24 h and then treated with genistein (50 μM), FICZ (100 nM), CH223191 (5 μM), genistein + CH223191 in the presence of IL-4 for 24 h. The relative mRNA expression levels of IL-10 were measured by qRT-PCR. (<b>D</b>) The protein levels of AhR, CYP1A1, CD163, and Arg-1 were determined by Western blot. The differences among groups were determined by ANOVA using Duncan’s test. The results are presented as mean ± SEM, <span class="html-italic">n</span> = 3. Letter a indicates <span class="html-italic">p</span> < 0.05 vs. Con group; letter b indicates <span class="html-italic">p</span> < 0.05 vs. IL-4-treatment group; letter c indicates <span class="html-italic">p</span> < 0.05 vs. Gen-treatment group.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Genistein Ameliorates Cp-Induced Intestinal Injury
2.2. Genistein Enhances Immune Responses
2.3. Genistein Activates Intestinal AhR Signaling Pathway
2.4. Genistein Promotes AhR Expression in Intestinal M2 Macrophages
2.5. Genistein Induces M2 Macrophage Polarization via AhR
3. Discussion
4. Materials and Methods
4.1. Reagents
4.2. Animals
4.3. Necrotic Enteritis Model
4.4. Intestinal Lesion Scores
4.5. Intestinal Morphology Analysis
4.6. Serum and Mucosal Immune Parameters
4.7. Western Blot Analysis
4.8. Immunofluorescence
4.9. In Vitro Experiment
4.9.1. Cell Culture and Treatment
4.9.2. Quantitative Real-Time PCR
4.10. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Rothhammer, V.; Quintana, F.J. The aryl hydrocarbon receptor: An environmental sensor integrating immune responses in health and disease. Nat. Rev. Immunol. 2019, 19, 184–197. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, J.V.; Bradfield, C.A. Ah receptor signaling pathways. Annu. Rev. Cell Dev. Biol. 1996, 12, 55–89. [Google Scholar] [CrossRef] [PubMed]
- Gronke, K.; Hernández, P.P.; Zimmermann, J.; Klose, C.S.N.; Kofoed-Branzk, M.; Guendel, F.; Witkowski, M.; Tizian, C.; Amann, L.; Schumacher, F.; et al. Interleukin-22 protects intestinal stem cells against genotoxic stress. Nature 2019, 566, 249–253. [Google Scholar] [CrossRef] [PubMed]
- Climaco-Arvizu, S.; Dominguez-Acosta, O.; Cabanas-Cortes, M.A.; Rodriguez-Sosa, M.; Gonzalez, F.J.; Vega, L.; Elizondo, G. Aryl hydrocarbon receptor influences nitric oxide and arginine production and alters M1/M2 macrophage polarization. Life Sci. 2016, 155, 76–84. [Google Scholar] [CrossRef] [PubMed]
- Cui, X.; Ye, Z.; Wang, D.; Yang, Y.; Jiao, C.; Ma, J.; Tang, N.; Zhang, H. Aryl hydrocarbon receptor activation ameliorates experimental colitis by modulating the tolerogenic dendritic and regulatory T cell formation. Cell Biosci. 2022, 12, 46. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Innocentin, S.; Withers, D.R.; Roberts, N.A.; Gallagher, A.R.; Grigorieva, E.F.; Wilhelm, C.; Veldhoen, M. Exogenous stimuli maintain intraepithelial lymphocytes via aryl hydrocarbon receptor activation. Cell 2011, 147, 629–640. [Google Scholar] [CrossRef] [PubMed]
- Kiss, E.A.; Vonarbourg, C.; Kopfmann, S.; Hobeika, E.; Finke, D.; Esser, C.; Diefenbach, A. Natural aryl hydrocarbon receptor ligands control organogenesis of intestinal lymphoid follicles. Science 2011, 334, 1561–1565. [Google Scholar] [CrossRef] [PubMed]
- Schiering, C.; Wincent, E.; Metidji, A.; Iseppon, A.; Li, Y.; Potocnik, A.J.; Omenetti, S.; Henderson, C.J.; Wolf, C.R.; Nebert, D.W.; et al. Feedback control of AHR signalling regulates intestinal immunity. Nature 2017, 542, 242–245. [Google Scholar] [CrossRef] [PubMed]
- Rankin, L.C.; Kaiser, K.A.; de Los, S.K.; Park, H.; Uhlemann, A.C.; Gray, D.; Arpaia, N. Dietary tryptophan deficiency promotes gut RORgammat(+) Treg cells at the expense of Gata3(+) Treg cells and alters commensal microbiota metabolism. Cell Rep. 2023, 42, 112135. [Google Scholar] [CrossRef]
- Panda, S.K.; Peng, V.; Sudan, R.; Ulezko, A.A.; Di Luccia, B.; Ohara, T.E.; Fachi, J.L.; Grajales-Reyes, G.E.; Jaeger, N.; Trsan, T.; et al. Repression of the aryl-hydrocarbon receptor prevents oxidative stress and ferroptosis of intestinal intraepithelial lymphocytes. Immunity 2023, 56, 797–812.e4. [Google Scholar] [CrossRef]
- Kim, H.; Peterson, T.G.; Barnes, S. Mechanisms of action of the soy isoflavone genistein: Emerging role for its effects via transforming growth factor beta signaling pathways. Am. J. Clin. Nutr. 1998, 68, 1418s–1425s. [Google Scholar] [PubMed]
- Zhou, L.; Xiao, X.; Zhang, Q.; Zheng, J.; Li, M.; Yu, M.; Wang, X.; Deng, M.; Zhai, X.; Li, R.; et al. Dietary Genistein Could Modulate Hypothalamic Circadian Entrainment, Reduce Body Weight, and Improve Glucose and Lipid Metabolism in Female Mice. Int. J. Endocrinol. 2019, 2019, 2163838. [Google Scholar] [CrossRef]
- Zhang, M.; Kou, J.; Wu, Y.; Wang, M.; Zhou, X.; Yang, Y.; Wu, Z. Dietary genistein supplementation improves intestinal mucosal barrier function in Escherichia coli O78-challenged broilers. J. Nutr. Biochem. 2020, 77, 108267. [Google Scholar] [CrossRef] [PubMed]
- Jantaratnotai, N.; Utaisincharoen, P.; Sanvarinda, P.; Thampithak, A.; Sanvarinda, Y. Phytoestrogens mediated anti-inflammatory effect through suppression of IRF-1 and pSTAT1 expressions in lipopolysaccharide-activated microglia. Int. Immunopharmacol. 2013, 17, 483–488. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Shi, J.X.; Zhang, D.M.; Wang, H.D.; Hang, C.H.; Chen, H.L.; Yin, H.X. Inhibition of hemolysate-induced iNOS and COX-2 expression by genistein through suppression of NF-small ka, CyrillicB activation in primary astrocytes. J. Neurol. Sci. 2009, 278, 91–95. [Google Scholar] [CrossRef] [PubMed]
- Fan, W.; Zhang, S.; Wu, Y.; Lu, T.; Liu, J.; Cao, X.; Liu, S.; Yan, L.; Shi, X.; Liu, G.; et al. Genistein-Derived ROS-Responsive Nanoparticles Relieve Colitis by Regulating Mucosal Homeostasis. ACS Appl. Mater. Interfaces 2021, 13, 40249–40266. [Google Scholar] [CrossRef]
- He, Y.; Ayansola, H.; Hou, Q.; Liao, C.; Lei, J.; Lai, Y.; Jiang, Q.; Masatoshi, H.; Zhang, B. Genistein Inhibits Colonic Goblet Cell Loss and Colorectal Inflammation Induced by Salmonella Typhimurium Infection. Mol. Nutr. Food Res. 2021, 65, e2100209. [Google Scholar] [CrossRef] [PubMed]
- Goh, Y.X.; Jalil, J.; Lam, K.W.; Husain, K.; Premakumar, C.M. Genistein: A Review on its Anti-Inflammatory Properties. Front. Pharmacol. 2022, 13, 820969. [Google Scholar] [CrossRef] [PubMed]
- Kamboh, A.A.; Hang, S.Q.; Khan, M.A.; Zhu, W.Y. In vivo immunomodulatory effects of plant flavonoids in lipopolysaccharide-challenged broilers. Animal 2016, 10, 1619–1625. [Google Scholar] [CrossRef]
- Van der Heiden, E.; Bechoux, N.; Muller, M.; Sergent, T.; Schneider, Y.; Larondelle, Y.; Maghuin-Rogister, G.; Scippo, M. Food flavonoid aryl hydrocarbon receptor-mediated agonistic/antagonistic/synergic activities in human and rat reporter gene assays. Anal. Chim. Acta 2009, 637, 337–345. [Google Scholar] [CrossRef]
- Wang, H.; Yeh, C.; Iwamoto, T.; Satsu, H.; Shimizu, M.; Totsuka, M. Dietary Flavonoid Naringenin Induces Regulatory T Cells via an Aryl Hydrocarbon Receptor Mediated Pathway. J. Agric. Food. Chem. 2012, 60, 2171–2178. [Google Scholar] [CrossRef]
- Bialesova, L.; Novotna, A.; Macejova, D.; Brtko, J.; Dvorak, Z. Agonistic effect of selected isoflavones on arylhydrocarbon receptor in a novel AZ-AhR transgenic gene reporter human cell line. Gen. Physiol. Biophys. 2015, 34, 331–334. [Google Scholar] [CrossRef]
- Gong, P.; Madak-Erdogan, Z.; Flaws, J.A.; Shapiro, D.J.; Katzenellenbogen, J.A.; Katzenellenbogen, B.S. Estrogen receptor-α and aryl hydrocarbon receptor involvement in the actions of botanical estrogens in target cells. Mol. Cell. Endocrinol. 2016, 437, 190–200. [Google Scholar] [CrossRef] [PubMed]
- Van Immerseel, F.; Rood, J.I.; Moore, R.J.; Titball, R.W. Rethinking our understanding of the pathogenesis of necrotic enteritis in chickens. Trends Microbiol. 2009, 17, 32–36. [Google Scholar] [CrossRef]
- Moore, R.J. Necrotic enteritis predisposing factors in broiler chickens. Avian Pathol. 2016, 45, 275–281. [Google Scholar] [CrossRef] [PubMed]
- Shapouri Moghaddam, A.; Mohammadian, S.; Vazini, H.; Taghadosi, M.; Esmaeili, S.A.; Mardani, F.; Seifi, B.; Mohammadi, A.; Afshari, J.T.; Sahebkar, A. Macrophage plasticity, polarization, and function in health and disease. J. Cell. Physiol. 2018, 233, 6425–6440. [Google Scholar] [CrossRef] [PubMed]
- Hezaveh, K.; Shinde, R.S.; Klötgen, A.; Halaby, M.J.; Lamorte, S.; Ciudad, M.T.; Quevedo, R.; Neufeld, L.; Liu, Z.Q.; Jin, R.; et al. Tryptophan-derived microbial metabolites activate the aryl hydrocarbon receptor in tumor-associated macrophages to suppress anti-tumor immunity. Immunity 2022, 55, 324–340. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Palm, N.W. Immunoglobulin A and the microbiome. Curr. Opin. Microbiol. 2020, 56, 89–96. [Google Scholar] [CrossRef]
- Ding, M.; Yang, B.; Ross, R.P.; Stanton, C.; Zhao, J.; Zhang, H.; Chen, W. Crosstalk between sIgA-Coated Bacteria in Infant Gut and Early-Life Health. Trends Microbiol. 2021, 29, 725–735. [Google Scholar] [CrossRef]
- Mannino, M.H.; Zhu, Z.; Xiao, H.; Bai, Q.; Wakefield, M.R.; Fang, Y. The paradoxical role of IL-10 in immunity and cancer. Cancer Lett. 2015, 367, 103–107. [Google Scholar] [CrossRef]
- Bosurgi, L.; Cao, Y.G.; Cabeza-Cabrerizo, M.; Tucci, A.; Hughes, L.D.; Kong, Y.; Weinstein, J.S.; Licona-Limon, P.; Schmid, E.T.; Pelorosso, F.; et al. Macrophage function in tissue repair and remodeling requires IL-4 or IL-13 with apoptotic cells. Science 2017, 356, 1072–1076. [Google Scholar] [CrossRef] [PubMed]
- Vidarsson, G.; Dekkers, G.; Rispens, T. IgG subclasses and allotypes: From structure to effector functions. Front. Immunol. 2014, 5, 520. [Google Scholar] [CrossRef] [PubMed]
- Ragland, S.A.; Criss, A.K. From bacterial killing to immune modulation: Recent insights into the functions of lysozyme. PLoS Pathog. 2017, 13, e1006512. [Google Scholar] [CrossRef] [PubMed]
- Lv, Z.; Fan, H.; Zhang, B.; Xing, K.; Guo, Y. Dietary genistein supplementation for breeders and their offspring improves the growth performance and immune function of broilers. Sci. Rep. 2018, 8, 5161. [Google Scholar] [CrossRef] [PubMed]
- Vanden Braber, N.L.; Nunez, I.N.; Bohl, L.; Porporatto, C.; Nazar, F.N.; Montenegro, M.A.; Correa, S.G. Soy genistein administered in soluble chitosan microcapsules maintains antioxidant activity and limits intestinal inflammation. J. Nutr. Biochem. 2018, 62, 50–58. [Google Scholar] [CrossRef] [PubMed]
- Shinde, R.; McGaha, T.L. The Aryl Hydrocarbon Receptor: Connecting Immunity to the Microenvironment. Trends Immunol. 2018, 39, 1005–1020. [Google Scholar] [CrossRef] [PubMed]
- Pernomian, L.; Duarte-Silva, M.; de Barros Cardoso, C.R. The Aryl Hydrocarbon Receptor (AHR) as a Potential Target for the Control of Intestinal Inflammation: Insights from an Immune and Bacteria Sensor Receptor. Clin. Rev. Allergy Immunol. 2020, 59, 382–390. [Google Scholar] [CrossRef] [PubMed]
- Trikha, P.; Lee, D.A. The role of AhR in transcriptional regulation of immune cell development and function. Biochim. Biophys. Acta-Rev. Cancer 2020, 1873, 188335. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Qin, C.; Safe, S.H. Flavonoids as Aryl Hydrocarbon Receptor Agonists/Antagonists: Effects of Structure and Cell Context. Environ. Health. Perspect. 2003, 111, 1877–1882. [Google Scholar] [CrossRef]
- Romagnolo, D.F.; Donovan, M.G.; Papoutsis, A.J.; Doetschman, T.C.; Selmin, O.I. Genistein Prevents BRCA1 CpG Methylation and Proliferation in Human Breast Cancer Cells with Activated Aromatic Hydrocarbon Receptor. Curr. Dev. Nutr. 2017, 1, e562. [Google Scholar] [CrossRef]
- Gagliani, N.; Amezcua, V.M.; Iseppon, A.; Brockmann, L.; Xu, H.; Palm, N.W.; de Zoete, M.R.; Licona-Limon, P.; Paiva, R.S.; Ching, T.; et al. Th17 cells transdifferentiate into regulatory T cells during resolution of inflammation. Nature 2015, 523, 221–225. [Google Scholar] [CrossRef] [PubMed]
- Vuerich, M.; Harshe, R.; Frank, L.A.; Mukherjee, S.; Gromova, B.; Csizmadia, E.; Nasser, I.; Ma, Y.; Bonder, A.; Patwardhan, V.; et al. Altered aryl-hydrocarbon-receptor signalling affects regulatory and effector cell immunity in autoimmune hepatitis. J. Hepatol. 2021, 74, 48–57. [Google Scholar] [CrossRef] [PubMed]
- Dang, G.; Wen, X.; Zhong, R.; Wu, W.; Tang, S.; Li, C.; Yi, B.; Chen, L.; Zhang, H.; Schroyen, M. Pectin modulates intestinal immunity in a pig model via regulating the gut microbiota-derived tryptophan metabolite-AhR-IL22 pathway. J. Anim. Sci. Biotechnol. 2023, 14, 38. [Google Scholar] [CrossRef] [PubMed]
- Bernardo, M.E.; Fibbe, W.E. Mesenchymal stromal cells: Sensors and switchers of inflammation. Cell Stem Cell 2013, 13, 392–402. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; He, J.; Liang, H.; Hu, K.; Jiang, S.; Yang, L.; Mei, S.; Zhu, X.; Yu, J.; Kijlstra, A.; et al. Aryl Hydrocarbon Receptor Regulates Apoptosis and Inflammation in a Murine Model of Experimental Autoimmune Uveitis. Front. Immunol. 2018, 9, 1713. [Google Scholar] [CrossRef] [PubMed]
- Abron, J.D.; Singh, N.P.; Price, R.L.; Nagarkatti, M.; Nagarkatti, P.S.; Singh, U.P. Genistein induces macrophage polarization and systemic cytokine to ameliorate experimental colitis. PLoS ONE 2018, 13, e199631. [Google Scholar] [CrossRef] [PubMed]
- Murray, P.J.; Allen, J.E.; Biswas, S.K.; Fisher, E.A.; Gilroy, D.W.; Goerdt, S.; Gordon, S.; Hamilton, J.A.; Ivashkiv, L.B.; Lawrence, T.; et al. Macrophage activation and polarization: Nomenclature and experimental guidelines. Immunity 2014, 41, 14–20. [Google Scholar] [CrossRef]
- Xu, X.; Dong, Q.; Zhong, Q.; Xiu, W.; Chen, Q.; Wang, J.; Zhou, Z. The Flavonoid Kurarinone Regulates Macrophage Functions via Aryl Hydrocarbon Receptor and Alleviates Intestinal Inflammation in Irritable Bowel Syndrome. J. Inflamm. Res. 2021, 14, 4347–4359. [Google Scholar] [CrossRef]
- Dahiya, J.P.; Hoehler, D.; Wilkie, D.C.; Van Kessel, A.G.; Drew, M.D. Dietary glycine concentration affects intestinal Clostridium perfringens and lactobacilli populations in broiler chickens. Poult. Sci. 2005, 84, 1875–1885. [Google Scholar] [CrossRef]
Items | Con | Gen40 | Gen80 | Cp | Cp+Gen40 | Cp+Gen80 | p-Values |
---|---|---|---|---|---|---|---|
Day 22 | |||||||
BW, g | 902 ± 15.6 | 928 ± 18.2 | 890 ± 18.9 | 884 ± 3.2 | 909 ± 17.1 | 905 ± 9.9 | 0.391 |
Days 1–22 | |||||||
ADG, g/d | 39.1 ± 0.71 | 40.3 ± 0.82 | 38.5 ± 0.86 | 38.3 ± 0.14 | 39.4 ± 0.78 | 39.2 ± 0.45 | 0.384 |
ADFI, g/d | 57.9 ± 0.88 | 58.7 ± 1.93 | 57.0 ± 0.95 | 59.4 ± 1.18 | 58.1 ± 0.48 | 59.6 ± 0.72 | 0.575 |
F/G | 1.48 ± 0.010 | 1.45 ± 0.024 | 1.48 ± 0.015 | 1.55 ± 0.027 a | 1.48 ± 0.02 b | 1.52 ± 0.017 b | 0.025 |
Ingredients (%) | Days 1–22 | Calculated Nutrient Levels | Days 1–22 |
---|---|---|---|
Corn | 44.15 | ME (Mcal/kg) | 2.95 |
Soybean meal | 25.65 | Crude protein (%) | 20.50 |
Wheat | 20.00 | Lysine (%) | 1.15 |
Corn gluten meal | 3.59 | Methionine (%) | 0.50 |
Soybean oil | 2.00 | Calcium (%) | 1.01 |
Calcium hydrogen phosphate | 2.00 | Available phosphorus (%) | 0.47 |
Limestone | 1.20 | ||
Sodium chloride | 0.35 | ||
L-Lysine HCl (78%) | 0.40 | ||
Choline chloride | 0.20 | ||
Trace mineral premix 1 | 0.20 | ||
DL-Methionine | 0.18 | ||
Vitamin premix 2 | 0.02 | ||
Zeolite powder | 0.06 | ||
Total | 100 |
Genes | Primer Sequences (5′-3′) |
---|---|
β-actin | F: CTTCTTTGCAGCTCCTTCGTT |
R: AGGAGTCCTTCTGACCCATTC | |
AhR | F: CTTAGGCTCAGCGTCAGTTAC |
R: CGTTTCTTTCAGTAGGGGAGGAT | |
Arg-1 | F: CTCCAAGCCAAAGTCCTTAGAG |
R: AGGAGCTGTCATTAGGGACATC | |
IL-10 | F: GCTCTTACTGACTGGCATGAG |
R: CGCAGCTCTAGGAGCATGTG |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quan, S.; Huang, J.; Chen, G.; Zhang, A.; Yang, Y.; Wu, Z. Genistein Promotes M2 Macrophage Polarization via Aryl Hydrocarbon Receptor and Alleviates Intestinal Inflammation in Broilers with Necrotic Enteritis. Int. J. Mol. Sci. 2024, 25, 6656. https://doi.org/10.3390/ijms25126656
Quan S, Huang J, Chen G, Zhang A, Yang Y, Wu Z. Genistein Promotes M2 Macrophage Polarization via Aryl Hydrocarbon Receptor and Alleviates Intestinal Inflammation in Broilers with Necrotic Enteritis. International Journal of Molecular Sciences. 2024; 25(12):6656. https://doi.org/10.3390/ijms25126656
Chicago/Turabian StyleQuan, Shuli, Jingxi Huang, Guiqin Chen, Anrong Zhang, Ying Yang, and Zhenlong Wu. 2024. "Genistein Promotes M2 Macrophage Polarization via Aryl Hydrocarbon Receptor and Alleviates Intestinal Inflammation in Broilers with Necrotic Enteritis" International Journal of Molecular Sciences 25, no. 12: 6656. https://doi.org/10.3390/ijms25126656
APA StyleQuan, S., Huang, J., Chen, G., Zhang, A., Yang, Y., & Wu, Z. (2024). Genistein Promotes M2 Macrophage Polarization via Aryl Hydrocarbon Receptor and Alleviates Intestinal Inflammation in Broilers with Necrotic Enteritis. International Journal of Molecular Sciences, 25(12), 6656. https://doi.org/10.3390/ijms25126656