Chemical, Physical, and Toxicological Properties of V-Agents
<p>Examples of G-, GV-, and carbamate nerve agents.</p> "> Figure 2
<p>Classification of V-agents according to their chemical structure. Seven different classes can be identified named classes 1–7.</p> "> Figure 3
<p>General formula of a class of highly toxic organophosphate salts and the structure and toxicity of the most toxic representative compound (EA-2098).</p> "> Figure 4
<p>Chemical connection between certain V-agents and insecticides.</p> "> Figure 5
<p>(<b>Left</b>)A bridged VG agent. Bridging the R groups results in a loss of toxicity. (<b>Right</b>) the <span class="html-italic">O</span>-analog (choline) of VX, also referred as VO.</p> "> Figure 6
<p>(<b>A</b>) Effect of reduction in basicity on the toxicity of the nerve agents. (<b>B</b>) Effect of converting a phosphorate to phosphinate.</p> "> Figure 7
<p>Example of the reaction between soman with AChE followed by aging. Minor and major indicate the byproducts of the aging reaction.</p> "> Figure 8
<p>Mechanism of autocatalytic hydrolysis of V-type nerve agents (VX and VR have been tested). The pyro and water necessary for the autocatalytic cycle are shown inside dashed boxes. Removal of water stabilizes the nerve agent. The polymers based on thiol reactions shown on the right are responsible for the observed high viscosity of the final reaction mixture. A theoretical structure of the intermediate that results in the generation of pyro and thiol, which is also the rate-determining step, is shown on the left. VX reacts slower than VR due to the presence of the sterically hindered isopropyl groups.</p> "> Figure 9
<p>Binary VX.</p> "> Figure 10
<p>The presence of bis(2-diisopropylaminoethyl) disulfide can be attributed to the oxidation of 2-(diisopropylamino)ethanethiol. However, the reaction of ethyl methylphosphonic acid with 2-(diisopropylamino)ethanethiol cannot occur at room temperature. Thus, the exact mechanism of VX formation and whether a catalyst was used is yet unknown.</p> "> Figure 11
<p>The major industrial production process of QL.</p> "> Figure 12
<p>Some minor side reactions presented during the production of SW.</p> "> Figure 13
<p>A schematic diagram of the EMPTA process to produce VX.</p> "> Figure 14
<p>Synthesis of the <span class="html-italic">trans</span> EA-1576 agent.</p> "> Figure 15
<p>Synthesis of isolated enantiomers of V-agents.</p> "> Figure 16
<p>Synthesis of radiolabeled VX and VM. The lithium salt of N,N-dialkylaminoethanol can be prepared from the respectively substituted aminothiol with butyllithium.</p> "> Figure 17
<p>General synthesis schemes for V-agent surrogates.</p> "> Figure 18
<p>Potent mechanism of oxime reactivation of cholinesterase conjugate through nucleophilic attack.</p> "> Figure 19
<p>Chemical structures of the components of the ATNAA and INATS.</p> ">
Abstract
:1. Introduction
2. Methods
3. General Structures and (Sub)Categories of V-Agents
4. Physical Properties of V-Agents
5. Toxicity of V-Agents
6. Exposure to V-Agents
7. Stability of V-Agents during Storage
8. Unitary vs. Binary Formulations and Thickening of V-Agents
9. Chemical Synthesis
9.1. Major Industrial Production Process
9.2. The EMPTA Process
9.3. Production Process Based on O,O-Dialkyl Alkylphophonothionate Starting Material
9.4. Synthesis of EA-1576
9.5. Small-Scale Synthesis for Specific Purposes
10. V-Agent Surrogates and Mimics
11. V-Agent Antidotes
12. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nakagawa, T.; Tu, T.A. Murders with VX: Aum Shinrikyo in Japan and the assassination of Kim Jong-Nam in Malaysia. Forensic Toxicol. 2018, 36, 542–544. [Google Scholar] [CrossRef]
- Aroniadou-Anderjaska, V.; Apland, J.P.; Figueiredo, T.H.; De Araujo Furtado, M.; Braga, M.F. Acetylcholinesterase inhibitors (nerve agents) as weapons of mass destruction: History, mechanism of action, and medical countermeasures. Neuropharmacology 2020, 181, 108298. [Google Scholar] [CrossRef] [PubMed]
- Bajgar, J.; Fusek, J.; Hrdina, V.; Patocka, J.; Vachek, J. Acute toxicities of 2-dialkylaminoalkyl-(dialkyamido)-fluoro-phosphates. Physiol. Res. 1992, 41, 399–402. [Google Scholar] [PubMed]
- Franca, T.C.C.; Kitagawa, D.A.S.; Cavalcante, S.F.A.; da Silva, J.A.V.; Nepovimova, E.; Kuca, K. Novichoks: The dangerous fourth generation of chemical weapons. Int. J. Mol. Sci. 2019, 20, 1222. [Google Scholar] [CrossRef]
- Chai, P.R.; Hayes, B.D.; Erickson, T.B.; Boyer, E.W. Novichok agents: A historical, current, and toxicological perspective. Toxicol. Commun. 2019, 2, 45–48. [Google Scholar] [CrossRef]
- Sommer, H.Z.; De Grace, H.; Krenzer, J.; Park, O.; Owens, O.O.; Miller, J.I. Chemical Agents. U.S. Patent 4,677,204, 30 June 1987. [Google Scholar]
- Tu, A.T. Aum Shinrikyo’s chemical and biological weapons: More than sarin. Forensic Sci. Rev. 2014, 26, 115–120. [Google Scholar]
- Alsaleh, O.I.; Elsafti Elsaeidy, A.M.; Saeed, S.; Alhallak, A.; Altelawi, M.A.; Van Berlear, G.; Hubloue, I. Acute health effects and outcome following sarin gas attacks in Khan Shaykhyn, Syria. Cureus 2022, 14, e22188. [Google Scholar]
- John, H.; van der Schans, M.; Koller, M.; Spruit, H.E.T.; Worek, F.; Thiermann, H.; Noort, D. Fatal sarin poisoning in Syria 2013: Forensic verification within an international laboratory network. Forensic Toxicol. 2018, 36, 61–71. [Google Scholar] [CrossRef]
- Haslam, J.D.; Russell, P.; Hill, S.; Emmett, S.R.; Blain, P.G. Chemical, biological, radiological, and nuclear mass casualty medicine: A review of lessons from the Salisbury and Amesbury novichok nerve agents incidents. Br. J. Anaesth 2022, 128, e200–e205. [Google Scholar] [CrossRef]
- Steindl, D.; Boehmerle, W.; Körner, R.; Praeger, D.; Haug, M.; Nee, J.; Schreiber, A.; Scheibe, F.; Demin, K.; Jacoby, P.; et al. Novichok nerve agent poisoning. Lancet 2021, 397, 249–252. [Google Scholar] [CrossRef]
- Akerfeldt, S.; Fagerlind, L. Selenophosphorus compounds as powerful cholinesterase inhibitors. J. Med. Chem. 1967, 10, 115–116. [Google Scholar] [CrossRef] [PubMed]
- Dawson, T.P.; Williamson, C.E. 3-Pyridyl Phosphonates. U.S. Patent 3,903,098, 2 September 1975. [Google Scholar]
- Dawson, T.P.; Williamson, C.E. Phosphonate Esters of Alkyl Acetoacetates. U.S. Patent 3,450,801, 17 June 1969. [Google Scholar]
- Natarelli, G.E.; Pinto, F.G.; Miller, J.I. Toxic Phosphorus Compounds. U.S. Patent 3,900,535, 19 August 1975. [Google Scholar]
- Jung, H.; Choi, S. VX evaporation and degradation from urban land surfaces. Environ. Eng. Sci. 2017, 35, 645–653. [Google Scholar] [CrossRef]
- Coulter, P.B.; Callahan, J.J.; Link, R.S. Physical Constants of Thirteen V Agents. CWLR 2346; US Army Chemical Center, Aberdeen Proving Ground: Aberdeen, MD, USA, 1959. [Google Scholar]
- Tevault, D.E.; Brozena, A.; Buchanan, J.H.; Abercrombie-Thomas, P.L.; Buettner, L.C. Thermophysical properties of VX and RVX. J. Chem. Eng. Data 2012, 57, 1970–1977. [Google Scholar] [CrossRef]
- Kuca, K.; Jun, D.; Cabal, J.; Hrabinova, M.; Bartosova, L.; Opletalova, V. Russian VX: Inhibition and reactivation of acetylcholinesterase compared with VX agent. Basic Clin. Pharmacol. Toxicol. 2006, 98, 389–394. [Google Scholar] [CrossRef]
- Buchanan, J.H.; Buettner, L.C.; Butrow, A.B.; Tevault, D.E. Vapor Pressure of VX; Edgewood Chemical Biological Center, ECBC-TR068, Aberdeen Proving Ground: Aberdeen, MD, USA, 1999.
- Ellison, H. Handbook of Chemical and Biological Warfare Agents, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Abercrombie-Thomas, P.L.; Brozena, A.; Buchanan, J.H.; Ellzy, M.W.; Berg, F.J.; Sumpter, K.B.; Wilcox, P.G. Thermophysical Properties and Spectral Characterization of EA 6043; US Army Research, Development and Engineering Command, Aberdeen Proving Ground: Aberdeen, MD, USA, 2014. [Google Scholar]
- Pulkrabkova, L.; Svobodova, B.; Konecny, J.; Kobrlova, T.; Muckova, L.; Janousek, J.; Pejchal, J.; Korabecny, J.; Soukup, O. Neurotoxicity evoked by organophosphates and available countermeasures. Arch. Toxicol. 2022, 97, 39–72. [Google Scholar] [CrossRef] [PubMed]
- Sejvar, J.J. Neurochemical and neurobiological weapons. Neurol. Clin. 2020, 38, 881–896. [Google Scholar] [CrossRef] [PubMed]
- Bajgar, J. Organophosphates/nerve agent poisoning: Mechanism of action, diagnosis, prophylaxis, and treatment. Adv. Clin. Chem. 2004, 38, 151–216. [Google Scholar]
- Misik, J.; Pavlikova, R.; Cabal, J.; Kuca, K. Acute toxicity of some nerve agents and pesticides in rats. Drug Chem. Toxicol. 2015, 38, 32–36. [Google Scholar] [CrossRef]
- Pubchem. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/39793#section=Acute-Effects (accessed on 10 April 2023).
- Hall, C.R.; Inch, T.D.; Inns, R.H.; Muir, A.W.; Sellers, D.J.; Smith, A.P. Differences between some biological properties of enantiomers of alkyl S-alkyl methylphosphonothioates. J. Pharm. Pharmac. 1977, 29, 574–576. [Google Scholar] [CrossRef]
- Rice, H.; Dalton, C.H.; Price, M.E.; Graham, S.J.; Green, A.C.; Jenner, J.; Groombridge, H.J.; Timperley, C.M. Toxicity and medical countermeasure studies on the organophosphorus nerve agents VM and VX. Proc. R. Soc. A 2015, 471, 20140891. [Google Scholar] [CrossRef]
- Koplovitz, I.; Schulz, S.; Rousayne, C.; Smith, K.; Gray, R. Acute Toxicity and Efficacy of Current Medical Countermeasures against VM in Guinea Pigs: A Comparison to VX and VR; US Army Medical Research Institute of Chemical Defense, USAMRICD-TR-13-01, Aberdeen Proving Ground: Aberdeen, MD, USA, 2013. [Google Scholar]
- Marzulli, M.N. A Comparison of Toxic Properties of the V-Agents with GB, MLSR-75; Chemical Corps Medical Laboratories, Army Chemical Center: Aberdeen, MD, USA, 1955.
- Harris, L.; Broomfield, C.; Adams, N.; Stitcher, D. Detoxification of soman and O-cyclopentyl S-diethylaminoethyl methylphosphonothioate in vivo. Proc. West. Pharmacol. Soc. 1984, 27, 315–318. [Google Scholar] [PubMed]
- Bajgar, J. Comments to future Chemical Weapons Convention. Cs Farm 1989, 38, 239–240. [Google Scholar]
- Bajgar, J.; Fusek, J.; Patocka, J. Toxicities and rates of penetration of O-ethyl-S-(2-dimethylaminoethyl)-methylphosphonothioate into the blood following different routes of intoxication. Acta Biol. Med. Ger. 1978, 37, 633–636. [Google Scholar] [PubMed]
- Coleman, I.W.; Patton, G.E.; Bannard, R.A. Cholinolytics in the treatment of acetylcholinesterase poisoning. V. The effectiveness of Parpanit with oximes in the treatment of organophosphorus poisoning. Can. J. Physiol. Pharmacol. 1968, 46, 109–117. [Google Scholar] [CrossRef] [PubMed]
- Vayron, P.; Renard, P.Y.; Taran, F.; Créminon, C.; Frobert, Y.; Grassi, J.; Mioskowski, C. Toward antibody-catalyzed hydrolysis of organophosphorus poisons. Proc. Natl. Acad. Sci. USA 2000, 97, 7058–7063. [Google Scholar] [CrossRef]
- Aquilonius, S.M.; Fredriksson, T.; Sundwall, A. Studies on phosphorylated thiocholine and choline derivatives I. General toxicology and pharmacology. Toxicol. Appl. Pharmacol. 1964, 6, 269–279. [Google Scholar] [CrossRef]
- Tammelin, E.L. Substrates and Inhibitors of Cholinesterases. Ph.D. Thesis, Stockholm University, Stockholm, Sweden, 1958. [Google Scholar]
- Amitai, G.; Ashani, Y.; Grunfeld, Y.; Kalir, A.; Cohen, S. Synthesis and properties of 2-S-[2’-(N,N-dialkylamino)ethyl]thio-1,3,2-dioxaphosphorinane 2-oxide and of the corresponding quaternary derivatives as potential nontoxic antiglaucoma agent. J. Med. Chem. 1976, 19, 810–813. [Google Scholar] [CrossRef]
- O’ Brien, R.D.; Hilton, B.D. The relation between basicity and selectivity in organophosphates. J. Agric. Food Chem. 1964, 12, 53–55. [Google Scholar] [CrossRef]
- Mager, P.P. Multidimensional Pharmacochemistry; Academic Press: Orlando, FL, USA, 1984. [Google Scholar]
- Urbina, F.; Lentzos, F.; Invernizzi, C.; Ekins, S. Dual use of artificial-intelligence-powered drug discovery. Nat. Mach. Intell. 2022, 4, 189–191. [Google Scholar] [CrossRef]
- Sim, V.M.; Stubbs, J.L. VX Percutaneous Studies in Man; US Army Chemical Research and Development Laboratories, CRDLR-3015: Army Chemical Center: Aberdeen, MD, USA, 1960. [Google Scholar]
- Sirin, G.S.; Zhou, Y.; Lior-Hoffmann, L.; Wang, S.; Zhang, Y. Aging mechanism of soman inhibited acetylcholinesterase. J. Phys. Chem. B 2012, 116, 12199–12207. [Google Scholar] [CrossRef]
- Shafferman, A.; Ordentlich, A.; Barak, D.; Stein, D.; Ariel, N.; Velan, B. Aging of phosphylated human acetylcholinesterase: Catalytic processes mediated by aromatic and polar residues of the active centre. Biochem. J. 1996, 318, 833–840. [Google Scholar] [CrossRef]
- Franjesevic, A.; Sillart, S.B.; Beck, J.M.; Vyas, S.; Callam, C.S.; Hadad, C.M. Resurrection and reactivation of acetylcholinesterase and butyrylcholinesterase. Chemistry 2019, 25, 5337–5371. [Google Scholar] [CrossRef] [PubMed]
- Duysen, E.G.; Stribley, J.A.; Fry, D.L.; Hinrichs, S.H.; Lockridge, O. Rescue of the acetylcholinesterase knockout mouse by feeding a liquid diet; phenotype of the adult acetylcholinesterase deficient mouse. Brain Res. Dev. Brain Res. 2002, 137, 43–54. [Google Scholar] [CrossRef] [PubMed]
- Duysen, E.G.; Li, B.; Xie, W.; Schopfer, L.M.; Anderson, R.S.; Broomfield, C.A.; Lockridge, O. Evidence for nonacetylcholinesterase targets of organophosphorus nerve agent: Supersensitivity of acetylcholinesterase knockout mouse to VX lethality. J. Pharmacol. Exp. Ther. 2001, 299, 528–535. [Google Scholar] [PubMed]
- Richardson, R.J.; Fink, J.K.; Glynn, P.; Hufnagel, R.B.; Makhaeva, G.F.; Wijeyesakere, S.J. Neuropathy target esterase (NET/PNPLA6) and organophosphorus compound-induced delayed neurotoxicity (OPIDN). Adv. Neurotoxicol. 2020, 4, 1–78. [Google Scholar] [PubMed]
- Voorhees, J.R.; Rohlman, D.S.; Lein, P.J.; Pieper, A.A. Neurotoxicity in preclinical models of occupational exposure to organophosphorus compounds. Front. Neurosci. 2017, 10, 590. [Google Scholar] [CrossRef] [PubMed]
- Abou-Donia, M.; Siracuse, B.; Gupta, N.; Sokol, A.S. Sarin (GB, O-isopropyl methylphosphonofluoridate) neurotoxicity: Critical review. Crit. Rev. Toxicol. 2016, 46, 845–875. [Google Scholar] [CrossRef] [PubMed]
- Makhaeva, G.F.; Rubakova, E.V.; Hein, N.D.; Serebryakova, O.G.; Kovaleva, N.V.; Boltneva, N.P.; Fink, J.K.; Richardson, R.J. Further studies toward a mouse model for biochemical assessment of neuropathic potential of organophosphorus compounds. J. Appl. Toxicol. 2014, 34, 1426–1435. [Google Scholar] [CrossRef] [PubMed]
- Munro, N. Toxicity of the organophosphate chemical warfare agents GA, GB, and VX: Implications for public protection. Environ. Health Perspect 1994, 102, 18–38. [Google Scholar] [CrossRef]
- Sidell, F.R.; Groff, W.A.; Vocci, F. Effects of EA 3148 Administered Intravenously to Humans, CRDL TM 2-31; Edgewood: Aberdeen, MD, USA, 1965. [Google Scholar]
- Brown, M. Military chemical warfare agent human subjects testing: Part 1-History of six-decades of military experiments with chemical warfare agents. Mil. Med. 2009, 174, 1041. [Google Scholar] [CrossRef]
- Boffey, P.M. Nerve gas: Dugway accident linked to Utah sheep kill. Science 1968, 162, 1460–1464. [Google Scholar] [CrossRef] [PubMed]
- Tu, T.A. The use of VX as a terrorist agent: Action by Aum Shinrikyo of Japan and the death of Kim Yong-Nam in Malaysia: Four case studies. Glob. Secur. Health Sci. Policy 2020, 5, 48–56. [Google Scholar] [CrossRef]
- Zurer, P. Japanese cult used VX to slay member. Chem. Eng. News 1998, 76, 7. [Google Scholar] [CrossRef]
- Nozaki, H.; Aikawa, N.; Fujishima, S.; Suzuki, M.; Shinozawa, Y.; Hori, S.; Nogawa, S. A case of VX poisoning and the difference from sarin. Lancet 1995, 346, 698–699. [Google Scholar] [CrossRef]
- Kim, K.; Tsay, O.G.; Atwood, D.A.; Churchill, D.G. Destruction and detection of chemical warfare agents. Chem. Rev. 2011, 111, 5345–5403. [Google Scholar] [CrossRef]
- Groenewold, G.S. Degradation kinetics of VX. Main Group Chem. 2010, 9, 221–244. [Google Scholar] [CrossRef]
- Yang, Y.C.; Szafraniec, L.L.; Beaudry, W.T.; Rohrbaugh, D.K. Autocatalytic hydrolysis of V-type nerve agents. J. Org. Chem. 1996, 61, 8407–8413. [Google Scholar] [CrossRef]
- Buckles, L.C.; Lewis, S.M.; Lewis, F.E. S-(2-diisopropylamino-ethyl) O-ethyl Methylphosphonothioate Stabilized with Soluble Carbodiimides. U.S. Patent 4,012,464, 15 March 1977. [Google Scholar]
- Gross, D.; Reinhard, D.R. Production of QL at the Newport Army Ammunition Plant or Vertac Chemical Corporation, West Helena AR Plant Site: Environmental Impact Statement; Department of the Army, US Material Command: Alexandria, VA, USA, 1985. [Google Scholar]
- Koblin, A. Persistent Incapacitating Chemical Warfare Composition and Its Use. U.S. Patent 4,708,869, 24 November 1987. [Google Scholar]
- Cohen, L.; Coulter, P.B.; Zeffert, B.M. Thickened Phosphorus Esters. U.S. Patent 3868446, 25 February 1975. [Google Scholar]
- Pianfetti, J.A.; Quin, L.D. Formation of phosphonous dichlorides by alkylation of phosphorus trichloride with methane or ethane. J. Am. Chem. Soc. 1962, 84, 851–854. [Google Scholar] [CrossRef]
- Eckhaus, S.R.; Davis, B.M., Jr.; Moore, T.R. Preparation of Alkylphosphonothiolates. U.S. Patent 3,911,059, 7 October 1975. [Google Scholar]
- Ember, L. Detection of VX precursor in soil sample led U.S. to bomb Sudanese facility. Chem. Eng. News 1998, 76, 6. [Google Scholar] [CrossRef]
- Epstein, J.; Michel, H.O.; Plapinger, R.E.; Fleisher, J.H.; Callahan, J.J.; Jandorf, B.J. Process for Making Compounds Possessing Anticholinesterase Activity. U.S. Patent H346, 6 October 1987. [Google Scholar]
- Ford-Moore, A.H.; Bebbington, A. Preparation of O-Alkyl S-Dialkyl-Phosphonothiolates. U.S. Patent 3,781,387, 25 December 1973. [Google Scholar]
- Berman, H.A.; Leonard, K. Chiral reactions of acetylcholinesterase probed with enantiomeric methylphosphonothiolates. J. Biol. Chem. 1989, 264, 3942–3950. [Google Scholar] [CrossRef]
- Holmgren, K.H.; Valdez, C.A.; Magnusson, R.; Vu, A.K.; Lindberg, S.; Williams, A.M.; Alcaraz, A.; Åstot, C.; Hok, S.; Norlin, R. Part 1: Tracing Russian VX to its synthetic routes by multivariate statistics of chemical attribution signatures. Talanta 2018, 186, 586–596. [Google Scholar] [CrossRef] [PubMed]
- Jansson, D.; Lindström, S.W.; Norlin, R.; Hok, S.; Valdez, C.A.; Williams, A.M.; Alcaraz, A.; Nilsson, C.; Åstot, C. Part 2: Forensic attribution profiling of Russian VX in food using liquid chromatography-mass spectrometry. Talanta 2018, 186, 597–606. [Google Scholar] [CrossRef] [PubMed]
- Cavalcante, S.F.A.; Simas, A.B.C.; Kuca, K. Nerve agents’s surrogates: Invaluable tools for development of acetylcholinesterase reactivators. Curr. Org. Chem. 2019, 23, 1539–1559. [Google Scholar] [CrossRef]
- Wang, X.; Wang, X.; Feng, R.; Fu, T.; Jiang, Y.; Zhang, J.; Sun, X. Recent advances of chemosensors for nerve agents. Chem. Asian J. 2022, 17, e202200284. [Google Scholar] [CrossRef] [PubMed]
- Singer, B.C.; Hodgson, A.T.; Destaillats, H.; Hotchi, T.; Revzan, K.L.; Sextro, R.G. Indoor sorption of surrogates for sarin and related nerve agents. Environ. Sci. Technol. 2005, 39, 3203–3214. [Google Scholar] [CrossRef] [PubMed]
- Meek, E.; Chambers, H.W.; Coban, A.; Funck, K.E.; Pringle, R.B.; Ross, M.; Chambers, J.E. Synthesis and in vitro and in vivo inhibition potencies of highly relevant nerve agent surrogates. Toxicol. Sci. 2012, 126, 525–533. [Google Scholar] [CrossRef]
- Chao, C.K.; Balasubramanian, N.; Gerdes, J.M.; Thompson, C.M. The inhibition, reactivation and mechanism of VX-, sarin-, fluoro-VX and fluoro-sarin surrogates following their interaction with HuAChE and HuBuChE. Chem. Biol. Interact. 2018, 291, 220–227. [Google Scholar] [CrossRef]
- Dagnaw, F.W.; Cai, Y.P.; Song, Q.H. Rapid and sensitive detection of nerve agent mimics by meso-substituted BODIPY piperazines as fluorescent chemosensors. Dyes. Pigm. 2021, 189, 109257. [Google Scholar] [CrossRef]
- Kangas, M.J.; Ernest, A.; Lukowicz, R.; Mora, A.V.; Quossi, A.; Perez, M.; Kyes, N.; Holmes, A.E. The identification of seven chemical warfare mimics using a colorimetric array. Sensors 2018, 18, 4291. [Google Scholar] [CrossRef]
- Jokanovic, M.; Prostran, M. Pyridinium Oximes as Cholinesterase Reactivators. Structure-Activity Relationship and Efficacy in the Treatment of Poisoning with Organophosphorus Compound. Curr. Med. Chem. 2009, 16, 2177–2188. [Google Scholar] [CrossRef]
- Wong, L.; Radic, Z.; Bruggemann, R.J.M.; Hosea, N.; Berman, H.A.; Taylor, P. Mechanism of Oxime Reactivation of Acetylcholinesterase Analyzed by Chirality and Mutagenesis. Biochemistry 2000, 39, 5750–5757. [Google Scholar] [CrossRef] [PubMed]
- Lorke, D.E.; Petroianu, G.A. Reversible cholinesterase inhibitors as pretreatment for exposure to organophosphates. A review. J. Appl. Toxicol. 2019, 39, 101–116. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.J.; Huang, Y.; Baldassarre, H.; Wang, B.; Lazaris, A.; Leduc, M.; Bilodeau, A.S.; Bellemare, A.; Côté, M.; Herskovits, P.; et al. Recombinant human butyrylcholinesterase from milk of transgenic animals to protect against organophosphate poisoning. Proc. Natl. Acad. Sci. USA 2007, 104, 13603–13608. [Google Scholar] [CrossRef] [PubMed]
- Mumford, H.; Troyer, J.K. Post-exposure therapy with recombinant human BuChE following percutaneous VX challenge in guinea-pigs. Toxicol. Lett. 2011, 206, 29–34. [Google Scholar] [CrossRef]
- Hanke, D.W.; Beckett, M.S.; Overton, M.A.; Burdick, C.K.; Lieske, C.N. Oxime-induced reactivation of acetylcholinesterase inhibited by organophosphates. J Appl Toxicol 1990, 10, 87–90. [Google Scholar] [CrossRef]
- Costanzi, S.; Machado, J.H.; Mitchell, M. Nerve agents. What they are, how they work, how to counter them. ACS Chem. Neurosci. 2018, 9, 873–885. [Google Scholar] [CrossRef]
- US Army Medical Research Institute of Chemical Defense. Available online: https://usamricd.health.mil/research/Pages/Products.aspx (accessed on 5 May 2023).
- Maxwell, D.M.; Koplovitz, I.; Worek, F.; Sweeney, R.E. A structure-activity analysis of the variation in oxime efficacy against nerve agents. Toxicol. Appl. Pharmacol. 2008, 231, 157–164. [Google Scholar] [CrossRef]
- Burback, B.L.; Cabell, L.A.; Johnson, J.D.; McDonough, J.A.; Osheroff, M.R. International journal of toxicology special editions volume of MMB4 DMS. Int. J. Toxicol. 2013, 32, 3S–4S. [Google Scholar] [CrossRef]
- Gorecki, L.; Korabecny, J.; Musilek, K.; Malinak, D.; Nepovimova, E.; Dolezal, R.; Jun, D.; Soukup, O.; Kuca, K. SAR study to find optimal cholinesterase reactivator against organophosphorus nerve agents and pesticides. Arch. Toxicol. 2016, 90, 2831–2859. [Google Scholar] [CrossRef]
- Cherny, I.; Greisen, P., Jr.; Ashani, Y.; Khare, S.D.; Oberdorfer, G.; Leader, H.; Baker, D.; Tawfic, D.S. Engineering V-type nerve agents detoxifying enzymes using computationally focused libraries. ACS Chem. Biol. 2018, 8, 2394–2403. [Google Scholar] [CrossRef]
- Mercey, G.; Verdelet, T.; Renou, J.; Kliachyna, M.; Baati, R.; Nachon, F.; Jean, L.; Renard, P.Y. Reactivators of acetylcholinesterase inhibited by organophosphorus nerve agents. Acc. Chem. Res. 2012, 45, 756–766. [Google Scholar] [CrossRef] [PubMed]
@25 °C | |||||||||
---|---|---|---|---|---|---|---|---|---|
V-Agent | Density, g/mL | Viscosity, cS | Surface Tension, mN/m | Vapor Pressure, mmHg | Melting Point, °C | Flash Point, °C | Lower Consolute T in Water, °C | Formula | MW |
VG (EA-1508) | 1.0457 | 4.74 | 31.0 | ca. −51 | 25.5 | C10H24NO3PS | 269.34 | ||
VP (EA-1511) | 1.023 | 29.6 | 30.4 | C15H24NO3P | 297.33 | ||||
EA-1576 | 1.0829 | 23.3 | 32.4 | C14H25NO5P | 304.32 | ||||
EA-1521 | 0.995 | C16H34NO2PS | 335.49 | ||||||
EA-1622 # | 1.023 | 6.10 | 29.7 | 135 | C10H24NO2PS | 253.34 | |||
EA-1699 # | 1.0600 | 5.31 | 32.0 | C7H18NO2PS | 211.26 | ||||
VM (EA-1664) | 1.0311 | 5.85 | 31.2 | 74 | C9H22NO2PS | 239.32 | |||
VR (RVX, EA-4243) | 1.0065 | 8.34 ## 8.58 | 26.9 ## | 0.00063 ## | 150 ### | C11H26NO2PS | 267.37 | ||
EA-1694 # | 1.0453 | 4.92 | 31.5 | misc. 0–100 | C8H20NO2PS | 225.29 | |||
VE (EA-1517) | 1.0180 | 5.44 | 29.5 | 157 | 41.4 | C10H24NO2PS | 253.34 | ||
VS (EA-1677) | 1.0016 | 9.36 | 29.9 | ca. −35 | 168 | ca. −5 | C12H28NO2PS | 281.39 | |
VX (EA-1701) | 1.0083 | 9.96 10.10 # 10.09 *** | 31.6 30.2 # | 0.000884 # 0.000878 * | 159 | 9.4 | C11H26NO2PS | 267.37 | |
EA-1728 | 0.9899 | 11.4 | 29.2 | ca. −12 | 170 | −1.6 | C12H28NO2PS | 281.39 | |
EA-1763 | 0.9973 | 11.3 | 30.2 | below 0 | C12H28NO2PS | 281.39 | |||
EA-3148 | 1.05 ** | 1.96 ** | 0.0004 ** | C12H26NO2PS | 279.38 | ||||
EA-3317 | 1.02 ** | 35.1 ** | 0.00014 ** | C14H30NO2PS | 307.43 | ||||
CVX (EA-6043) | 1.0125 *** | 9.29 *** | 22.68 *** | 0.00025 *** | C11H26NO2PS | 267.37 |
V-Agent | Mouse | Rat | Rabbit | Monkey | Cat | Guinea Pig | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
i.v. | i.m. | p.o. | s.c. | i.v. | s.c. | p.c. | i.p. | i.m. | p.o. | i.v. | p.c. | s.c. | i.v. | i.v. | p.c. | s.c. | |
VX | 14.5 [25] | 26.8 [25] | 44.2 [25] | 22 [26] | 8.2 [25,26] 7 [27] | 11.9 [25,26] | 80 [25] | 45.6 [25,26] 37 [27] | 14 [25] | 85 [25] 122 [26] | 13.1 [28] | 6 [27] | 5 [27] | 613 [29] | 9 [29] | ||
VR | 14.5 [25] 15.3 [26] | 15.9 [25,26] | 290 [25] | 63 [25,26] | 14.1 [25] | 20 [25] | 11.3 [29] | ||||||||||
VM | 20 [25] | 212 [25] | 1289.9 [29] | 14.9 [30] | |||||||||||||
VE (EA-1517) | 15.3 [31] | 40.7 [31] | |||||||||||||||
VP (EA-1511) | 36.8 [31] | 81.8 [31] | |||||||||||||||
EA-3148 | 3.1 [32] | 4.5 [32] | |||||||||||||||
EA-1728 | 59.1 [33] | 46 [25] | 56 [25] | ||||||||||||||
EA-1694 | 28.9 [25] | 121 [25] | |||||||||||||||
iPr-Me * | 96 [25] | 874 [25] | |||||||||||||||
EA-1699 | 17 [34] | 54.5 [34] | 23.6 [34] | 121.9 [34] | |||||||||||||
VG (EA-1508) | 190 [35] | 150 [35] | 52.3 [31] | 167.3 [31] | 125 [35] | 80 [35] | |||||||||||
Seleno-VG | 60 [12] | ||||||||||||||||
Seleno-VE | 21 [12] |
Detection | |||
---|---|---|---|
Compound | 1st Woman | 2nd Woman | Victim |
VX | x | x | |
iPr2NCH2CH2Cl | x | x | |
iPr2NCH2CH2SH | x | x | |
CH3P(O)(OEt)SH | x | ||
CH3P(O)(OEt)OH | x | x | |
iPr2NCH2CH2SCH2CH2NiPr2 | x | ||
iPr2NCH2CH2SSCH2CH2NiPr2 | x | x | |
(CH3)2NCH2CH2OH | x |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pampalakis, G.; Kostoudi, S. Chemical, Physical, and Toxicological Properties of V-Agents. Int. J. Mol. Sci. 2023, 24, 8600. https://doi.org/10.3390/ijms24108600
Pampalakis G, Kostoudi S. Chemical, Physical, and Toxicological Properties of V-Agents. International Journal of Molecular Sciences. 2023; 24(10):8600. https://doi.org/10.3390/ijms24108600
Chicago/Turabian StylePampalakis, Georgios, and Stavroula Kostoudi. 2023. "Chemical, Physical, and Toxicological Properties of V-Agents" International Journal of Molecular Sciences 24, no. 10: 8600. https://doi.org/10.3390/ijms24108600