Distinct Effects of Beta-Amyloid, Its Isomerized and Phosphorylated Forms on the Redox Status and Mitochondrial Functioning of the Blood–Brain Barrier Endothelium
<p>The effects of beta-amyloid isoforms on bEnd.3 cell death. The cells were incubated for (<b>A</b>) 4 h, (<b>B</b>) 24 h and (<b>C</b>) 48 h with 10 µM of Aβ<sub>42</sub>, p-Aβ<sub>42</sub> and iso-Aβ<sub>42</sub>. The percentage of propidium iodide positive (dead) cells was analyzed by flow cytometry. The mean ± SD in 7 independent experiments in triplicates is shown in the figure. The statistical difference between experimental groups was analyzed by one-way analysis of variance using the post hoc Tukey test for multiple comparisons. ***—<span class="html-italic">p</span> < 0.001.</p> "> Figure 2
<p>The effects of beta-amyloid isoforms on the redox parameters in bEnd.3 cells. Cells were incubated for 4 h (<b>A</b>,<b>D</b>,<b>G</b>), 24 h (<b>B</b>,<b>E</b>,<b>H</b>) and 48 h (<b>C</b>,<b>F</b>,<b>I</b>) with 10 µM of Aβ<sub>42</sub>, p-Aβ<sub>42</sub> and iso-Aβ<sub>42</sub>. The level of intracellular nitric oxide (NO) (<b>A</b>–<b>C</b>), reduced glutathione (GSH) (<b>D</b>–<b>F</b>) and intracellular reactive oxygen species (ROS) (<b>G</b>–<b>I</b>) were analyzed by flow cytometry. All parameters were normalized to control. The values in the control samples were taken as 100%. The mean ± SD in 3 independent experiments in triplicates is shown in the figure. The statistical difference between experimental groups was analyzed by one-way analysis of variance using the post hoc Tukey test for multiple comparisons. *—<span class="html-italic">p</span> < 0.05, **—<span class="html-italic">p</span> < 0.01 and ***—<span class="html-italic">p</span> < 0.001.</p> "> Figure 3
<p>The effects of beta-amyloid isoforms on intracellular and mitochondrial calcium levels in bEnd.3 cells. Cells were incubated for 4 h (<b>A</b>,<b>B</b>), 24 h (<b>C</b>,<b>D</b>) and 48 h (<b>E</b>,<b>F</b>) with 10 μM of Aβ<sub>42</sub>, p-Aβ<sub>42</sub> and iso-Aβ<sub>42</sub>. Flow cytometry was used to analyze changes in intracellular calcium (<b>A</b>,<b>C</b>,<b>E</b>) and mitochondrial calcium (<b>B</b>,<b>D</b>,<b>F</b>). All parameters were normalized to control. The values in the control samples were taken as 100%. The mean ± SD in 3 independent experiments in triplicates is shown in the figure. The statistical difference between experimental groups was analyzed by one-way analysis of variance using the post hoc Tukey test for multiple comparisons. *—<span class="html-italic">p</span> < 0.05, ** —<span class="html-italic">p</span> < 0.01 and ***—<span class="html-italic">p</span> < 0.001.</p> "> Figure 4
<p>The effects of beta-amyloid isoforms on mitochondrial potential in bEnd.3 cells. Cells were incubated for 4 h (<b>A</b>,<b>B</b>), 24 h (<b>C</b>,<b>D</b>) and 48 h (<b>E</b>,<b>F</b>) with 10 μM of Aβ<sub>42</sub>, p-Aβ<sub>42</sub> and iso-Aβ<sub>42</sub>. Flow cytometry was used to analyze changes in mean MitoProbe DilC fluorescence (<b>A</b>,<b>C</b>,<b>E</b>) and the number of cells with low mitochondrial potential (ψ) (<b>B</b>,<b>D</b>,<b>F</b>). Mean DilC fluorescence was normalized to control. The values in the control samples were taken as 100%. The mean ± SD in 3 independent experiments in triplicates is shown in the figure. The statistical difference between experimental groups was analyzed by one-way analysis of variance using the post hoc Tukey test for multiple comparisons. *—<span class="html-italic">p</span> < 0.05, **—<span class="html-italic">p</span> < 0.01 and ***—<span class="html-italic">p</span> < 0.001.</p> "> Figure 5
<p>Scheme for measuring the bioenergetics parameters. Seahorse technology was used to assess cellular OCR. The ATP synthase inhibitor oligomycin, protonophore FCCP (carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone), and mitochondrial complex I and III inhibitors, Rotenone and antimycin A, respectively, were used to further determine indicators of cellular respiration. OCR is the oxygen consumption rate. ECAR is the extracellular acidification rate. The respiration parameters were calculated as follows: Basal respiration = cellular respiration—non-mitochondrial respiration; ATP-linked respiration = cellular respiration—oligomycin-inhibited respiration; Maximal respiration capacity = FCCP-induced respiration—non-mitochondrial respiration; Spare capacity = FCCP-induced respiration—cellular respiration; Proton leak = ATP-linked respiration—non-mitochondrial respiration.</p> "> Figure 6
<p>The effects of beta-amyloid isoforms on the bioenergetic functions of bEnd.3 cells after 4 h incubation. Cells were incubated with 10 µM of Aβ<sub>42</sub>, p-Aβ<sub>42</sub> and iso-Aβ<sub>42</sub>. (<b>A</b>) Representative raw data of bioenergetic function. (<b>B</b>) Basal respiration, (<b>C</b>) ATP-linked respiration, (<b>D</b>) maximal respiration capacity, (<b>E</b>) spare capacity, (<b>F</b>) proton leak and (<b>G</b>) non-mitochondrial respiration are demonstrated. The results were calculated based on data obtained using bioenergetic functional analysis (for details, see <a href="#ijms-24-00183-f005" class="html-fig">Figure 5</a>). The values in the control samples were taken as 1. All parameters were normalized to control. OCR is the oxygen consumption rate. FCCP is carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone. Each geometric figure (circle/square/up-pointing triangle/down-pointing triangle) in the histogram represents the result in an independent sample and corresponds to the Control, Aβ<sub>42</sub>, p-Aβ<sub>42</sub> and iso-Aβ<sub>42</sub>. The mean ± SD in 3 independent experiments in 4–8 replications is shown in the figure. The statistical difference between experimental groups was analyzed by one-way analysis of variance using the post hoc Tukey test for multiple comparisons. *—<span class="html-italic">p</span> < 0.05, **—<span class="html-italic">p</span> < 0.01 and ***—<span class="html-italic">p</span> < 0.001.</p> "> Figure 7
<p>The effects of beta-amyloid isoforms on the bioenergetic functions in bEnd.3 cells after 24 h incubation. Cells were incubated with 10 µM of Aβ<sub>42</sub>, p-Aβ<sub>42</sub> and iso-Aβ<sub>42</sub>. (<b>A</b>) Representative raw data of bioenergetic function. (<b>B</b>) Basal respiration, (<b>C</b>) ATP-linked respiration, (<b>D</b>) maximal respiration capacity, (<b>E</b>) spare capacity, (<b>F</b>) proton leak and (<b>G</b>) non-mitochondrial respiration are demonstrated. The results were calculated based on the data obtained from bioenergetic functional analysis (for details, see <a href="#ijms-24-00183-f005" class="html-fig">Figure 5</a>). The values in the control samples were taken as 1. All parameters given are normalized to control. OCR is the oxygen consumption rate. FCCP is carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone. Each geometric figure (circle/square/up-pointing triangle/down-pointing triangle) in the histogram represents the result in an independent sample and corresponds to the Control, Aβ<sub>42</sub>, p-Aβ<sub>42</sub> and iso-Aβ<sub>42</sub>. The mean ± SD in 3 independent experiments in 5–8 replications is shown in the figure. The statistical difference between experimental groups was analyzed by one-way analysis of variance using the post hoc Tukey test for multiple comparisons. **—<span class="html-italic">p</span> < 0.01 and ***—<span class="html-italic">p</span> < 0.001.</p> "> Figure 8
<p>The effects of beta-amyloid isoforms on the bioenergetic functions in bEnd.3 cells after 48 h incubation. Cells were incubated with 10 µM of Aβ<sub>42</sub>, p-Aβ<sub>42</sub> and iso-Aβ<sub>42</sub>. (<b>A</b>) Representative raw data of bioenergetic function. (<b>B</b>) Basal respiration, (<b>C</b>) ATP-linked respiration, (<b>D</b>) maximal respiration capacity, (<b>E</b>) spare capacity, (<b>F</b>) proton leak and (<b>G</b>) non-mitochondrial respiration are demonstrated. The results were calculated based on the data obtained from bioenergetic functional analysis (for details, see <a href="#ijms-24-00183-f005" class="html-fig">Figure 5</a>). The values in the control samples were taken as 1. All parameters given are normalized to control. OCR is the oxygen consumption rate. FCCP is carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone. Each geometric figure (circle/square/up-pointing triangle/down-pointing triangle) in the histogram represents the result in an independent sample and corresponds to the Control, Aβ<sub>42</sub>, p-Aβ<sub>42</sub> and iso-Aβ<sub>42</sub>. The mean ± SD in 3 independent experiments in 4–5 replications is shown in the figure. The statistical difference between experimental groups was analyzed by one-way analysis of variance using the post hoc Tukey test for multiple comparisons. *—<span class="html-italic">p</span> < 0.05, **—<span class="html-italic">p</span> < 0.01 and ***—<span class="html-italic">p</span> < 0.001.</p> "> Figure 9
<p>Effect of beta-amyloid isoforms on the extracellular acidification rate. Mouse brain endothelial cells bEnd.3 were incubated for (<b>A</b>) 4 h, (<b>B</b>) 24 h and (<b>C</b>) 48 h with 10 µM of Aβ<sub>42</sub>, p-Aβ<sub>42</sub> and iso-Aβ<sub>42</sub>. Extracellular acidification rate (ECAR)—the level of acidification of the extracellular medium. The values in the control samples were taken as 1. The histograms indicate the ratio of values in samples with beta-amyloid isoforms, normalized to the control. Each geometric figure (circle/square/up-pointing triangle/down-pointing triangle) in the histogram represents the result in an independent sample and corresponds to the Control, Aβ<sub>42</sub>, p-Aβ<sub>42</sub> and iso-Aβ<sub>42</sub>. The mean ± SD in 3 independent experiments in 5–8 replications is shown in the figure. The statistical difference between experimental groups was analyzed by one-way analysis of variance using the post hoc Tukey test for multiple comparisons. **—<span class="html-italic">p</span> < 0.01 and ***—<span class="html-italic">p</span> < 0.001.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Iso-Aβ42 Induces the Highest Toxicity to the Blood–Brain Barrier Cells
2.2. Aβ42 and iso-Aβ42 Significantly Affect the Redox Status of the Blood–Brain Barrier Cells
2.3. Aβ Isoforms Affect Cytosolic and Mitochondrial Calcium in a Different Mode
2.4. Aβ42 and Iso-Aβ42 Induce an Increase in the Mitochondrial Potential in the Blood-Brain Barrier Cells
2.5. Iso-Aβ42 Has the Most Rapid and Pronounced Effect on Mitochondrial Functioning in the Blood–Brain Barrier Cells
3. Discussion
4. Materials and Methods
4.1. Synthetic Peptides′ Preparation
4.2. Cell Culture
4.3. Flow Cytometry
4.4. Estimation of the Cellular Bioenergetic Parameters
4.5. Western Blot
4.6. Statistical Data Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Aβ | beta-amyloid |
Aβ42 | beta-amyloid 1–42 |
AD | Alzheimer’s disease |
BBB | blood–brain barrier |
DHR123 | dihydrorhodamine 123 |
DMEM | Dulbecco’s Modified Eagles Medium |
DMSO | dimethyl sulfoxide |
ECAR | extracellular acidification rate |
eNOS | endothelial nitric oxide synthase |
FBS | fetal bovine serum |
FCCP | carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone |
GSH | reduced glutathione |
iso-Aβ42 | beta-amyloid 1–42, containing isomerized Asp7 residue |
NO | nitric oxide |
NOS | nitric oxide synthase |
OCR | oxygen consumption rate |
p-Aβ42 | beta-amyloid 1–42, containing phosphorylated Ser8 residue |
PI | propidium iodide |
RAGE | receptor for advanced glycation end products |
ROS | reactive oxygen species |
ZO-1 | zonula occludens-1 |
References
- Alzheimer’s Association. 2021 Alzheimer’s Disease Facts and Figures. Alzheimer’s Dement. 2021, 17, 327–406. [Google Scholar] [CrossRef] [PubMed]
- Musiek, E.S.; Holtzman, D.M. Three Dimensions of the Amyloid Hypothesis: Time, Space, and “Wingmen”. Nat. Neurosci. 2015, 18, 800–806. [Google Scholar] [CrossRef] [Green Version]
- Düzel, E.; Ziegler, G.; Berron, D.; Maass, A.; Schütze, H.; Cardenas-Blanco, A.; Glanz, W.; Metzger, C.; Dobisch, L.; Reuter, M.; et al. Amyloid Pathology but Not APOE Ε4 Status Is Permissive for Tau-Related Hippocampal Dysfunction. Brain 2022, 145, 1473–1485. [Google Scholar] [CrossRef]
- Sagare, A.P.; Bell, R.D.; Zlokovic, B.V. Neurovascular Dysfunction and Faulty Amyloid β-Peptide Clearance in Alzheimer Disease. Cold Spring Harb. Perspect. Med. 2012, 2, a011452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bell, R.D.; Zlokovic, B.V. Neurovascular Mechanisms and Blood-Brain Barrier Disorder in Alzheimer’s Disease. Acta Neuropathol. 2009, 118, 103–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbott, N.J. Blood–Brain Barrier Structure and Function and the Challenges for CNS Drug Delivery. J. Inherit. Metab. Dis. 2013, 36, 437–449. [Google Scholar] [CrossRef]
- Shibata, M.; Yamada, S.; Kumar, S.R.; Calero, M.; Bading, J.; Frangione, B.; Holtzman, D.M.; Miller, C.A.; Strickland, D.K.; Ghiso, J.; et al. Clearance of Alzheimer’s Amyloid-Ss(1-40) Peptide from Brain by LDL Receptor-Related Protein-1 at the Blood-Brain Barrier. J. Clin. Investig. 2000, 106, 1489–1499. [Google Scholar] [CrossRef] [Green Version]
- Bell, R.D.; Sagare, A.P.; Friedman, A.E.; Bedi, G.S.; Holtzman, D.M.; Deane, R.; Zlokovic, B.V. Transport Pathways for Clearance of Human Alzheimer’s Amyloid Beta-Peptide and Apolipoproteins E and J in the Mouse Central Nervous System. J. Cereb. Blood Flow Metab. 2007, 27, 909–918. [Google Scholar] [CrossRef] [Green Version]
- Yan, S.D.; Chen, X.; Fu, J.; Chen, M.; Zhu, H.; Roher, A.; Slattery, T.; Zhao, L.; Nagashima, M.; Morser, J.; et al. RAGE and Amyloid-Beta Peptide Neurotoxicity in Alzheimer’s Disease. Nature 1996, 382, 685–691. [Google Scholar] [CrossRef]
- Deane, R.; Du Yan, S.; Submamaryan, R.K.; LaRue, B.; Jovanovic, S.; Hogg, E.; Welch, D.; Manness, L.; Lin, C.; Yu, J.; et al. RAGE Mediates Amyloid-Beta Peptide Transport across the Blood-Brain Barrier and Accumulation in Brain. Nat. Med. 2003, 9, 907–913. [Google Scholar] [CrossRef]
- Deane, R.; Singh, I.; Sagare, A.P.; Bell, R.D.; Ross, N.T.; LaRue, B.; Love, R.; Perry, S.; Paquette, N.; Deane, R.J.; et al. A Multimodal RAGE-Specific Inhibitor Reduces Amyloid β-Mediated Brain Disorder in a Mouse Model of Alzheimer Disease. J. Clin. Investig. 2012, 122, 1377–1392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bateman, R.J.; Munsell, L.Y.; Morris, J.C.; Swarm, R.; Yarasheski, K.E.; Holtzman, D.M. Human Amyloid-Beta Synthesis and Clearance Rates as Measured in Cerebrospinal Fluid in Vivo. Nat. Med. 2006, 12, 856–861. [Google Scholar] [CrossRef] [PubMed]
- Wan, W.; Cao, L.; Liu, L.; Zhang, C.; Kalionis, B.; Tai, X.; Li, Y.; Xia, S. Aβ(1-42) Oligomer-Induced Leakage in an in Vitro Blood-Brain Barrier Model Is Associated with up-Regulation of RAGE and Metalloproteinases, and down-Regulation of Tight Junction Scaffold Proteins. J. Neurochem. 2015, 134, 382–393. [Google Scholar] [CrossRef] [PubMed]
- Kook, S.-Y.; Hong, H.S.; Moon, M.; Ha, C.M.; Chang, S.; Mook-Jung, I. Aβ1–42-RAGE Interaction Disrupts Tight Junctions of the Blood–Brain Barrier Via Ca2+-Calcineurin Signaling. J. Neurosci. 2012, 32, 8845–8854. [Google Scholar] [CrossRef] [PubMed]
- Quintana, D.D.; Garcia, J.A.; Anantula, Y.; Rellick, S.L.; Engler-Chiurazzi, E.B.; Sarkar, S.N.; Brown, C.M.; Simpkins, J.W. Amyloid-β Causes Mitochondrial Dysfunction via a Ca2+-Driven Upregulation of Oxidative Phosphorylation and Superoxide Production in Cerebrovascular Endothelial Cells. J. Alzheimer’s Dis. 2020, 75, 119–138. [Google Scholar] [CrossRef] [PubMed]
- Petrushanko, I.Y.; Tverskoi, A.M.; Barykin, E.P.; Petrovskaya, A.V.; Strelkova, M.A.; Leonova, O.G.; Anashkina, A.A.; Tolstova, A.P.; Adzhubei, A.A.; Bogdanova, A.Y.; et al. Na, K-ATPase Acts as a Beta-Amyloid Receptor Triggering Src Kinase Activation. Cells 2022, 11, 2753. [Google Scholar] [CrossRef]
- Inyushin, M.Y.; Sanabria, P.; Rojas, L.; Kucheryavykh, Y.; Kucheryavykh, L. Aβ Peptide Originated from Platelets Promises New Strategy in Anti-Alzheimer’s Drug Development. Biomed. Res. Int. 2017, 2017, 3948360. [Google Scholar] [CrossRef] [Green Version]
- Bu, X.-L.; Xiang, Y.; Jin, W.-S.; Wang, J.; Shen, L.-L.; Huang, Z.-L.; Zhang, K.; Liu, Y.-H.; Zeng, F.; Liu, J.-H.; et al. Blood-Derived Amyloid-β Protein Induces Alzheimer’s Disease Pathologies. Mol. Psychiatry 2018, 23, 1948–1956. [Google Scholar] [CrossRef]
- Sun, H.-L.; Chen, S.-H.; Yu, Z.-Y.; Cheng, Y.; Tian, D.-Y.; Fan, D.-Y.; He, C.-Y.; Wang, J.; Sun, P.-Y.; Chen, Y.; et al. Blood Cell-Produced Amyloid-β Induces Cerebral Alzheimer-Type Pathologies and Behavioral Deficits. Mol. Psychiatry 2021, 26, 5568–5577. [Google Scholar] [CrossRef]
- Kozin, S.A.; Cheglakov, I.B.; Ovsepyan, A.A.; Telegin, G.B.; Tsvetkov, P.O.; Lisitsa, A.V.; Makarov, A.A. Peripherally Applied Synthetic Peptide IsoAsp7-Aβ(1-42) Triggers Cerebral β-Amyloidosis. Neurotox. Res. 2013, 24, 370–376. [Google Scholar] [CrossRef]
- Meyer-Luehmann, M.; Coomaraswamy, J.; Bolmont, T.; Kaeser, S.; Schaefer, C.; Kilger, E.; Neuenschwander, A.; Abramowski, D.; Frey, P.; Jaton, A.L.; et al. Exogenous Induction of Cerebral Beta-Amyloidogenesis Is Governed by Agent and Host. Science 2006, 313, 1781–1784. [Google Scholar] [CrossRef]
- Barykin, E.P.; Mitkevich, V.A.; Kozin, S.A.; Makarov, A.A. Amyloid β Modification: A Key to the Sporadic Alzheimer’s Disease? Front. Genet. 2017, 8, 58. [Google Scholar] [CrossRef] [Green Version]
- Kummer, M.P.; Heneka, M.T. Truncated and Modified Amyloid-Beta Species. Alzheimer’s Res. 2014, 6, 28. [Google Scholar] [CrossRef] [Green Version]
- Mitkevich, V.A.; Petrushanko, I.Y.; Yegorov, Y.E.; Simonenko, O.V.; Vishnyakova, K.S.; Kulikova, A.A.; Tsvetkov, P.O.; Makarov, A.A.; Kozin, S.A. Isomerization of Asp7 Leads to Increased Toxic Effect of Amyloid-Beta42 on Human Neuronal Cells. Cell Death Dis. 2013, 4, e939. [Google Scholar] [CrossRef] [Green Version]
- Barykin, E.P.; Garifulina, A.I.; Kruykova, E.V.; Spirova, E.N.; Anashkina, A.A.; Adzhubei, A.A.; Shelukhina, I.V.; Kasheverov, I.E.; Mitkevich, V.A.; Kozin, S.A.; et al. Isomerization of Asp7 in Beta-Amyloid Enhances Inhibition of the A7 Nicotinic Receptor and Promotes Neurotoxicity. Cells 2019, 8, 771. [Google Scholar] [CrossRef] [Green Version]
- Barykin, E.P.; Petrushanko, I.Y.; Kozin, S.A.; Telegin, G.B.; Chernov, A.S.; Lopina, O.D.; Radko, S.P.; Mitkevich, V.A.; Makarov, A.A. Phosphorylation of the Amyloid-Beta Peptide Inhibits Zinc-Dependent Aggregation, Prevents Na,K-ATPase Inhibition, and Reduces Cerebral Plaque Deposition. Front. Mol. Neurosci. 2018, 11, 302. [Google Scholar] [CrossRef] [Green Version]
- Zatsepina, O.G.; Kechko, O.I.; Mitkevich, V.A.; Kozin, S.A.; Yurinskaya, M.M.; Vinokurov, M.G.; Serebryakova, M.V.; Rezvykh, A.P.; Evgen’ev, M.B.; Makarov, A.A. Amyloid-β with Isomerized Asp7 Cytotoxicity Is Coupled to Protein Phosphorylation. Sci. Rep. 2018, 8, 3518. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Wirths, O.; Stüber, K.; Wunderlich, P.; Koch, P.; Theil, S.; Rezaei-Ghaleh, N.; Zweckstetter, M.; Bayer, T.A.; Brüstle, O.; et al. Phosphorylation of the Amyloid β-Peptide at Ser26 Stabilizes Oligomeric Assembly and Increases Neurotoxicity. Acta Neuropathol. 2016, 131, 525–537. [Google Scholar] [CrossRef] [Green Version]
- Moro, M.L.; Phillips, A.S.; Gaimster, K.; Paul, C.; Mudher, A.; Nicoll, J.A.R.; Boche, D. Pyroglutamate and Isoaspartate Modified Amyloid-Beta in Ageing and Alzheimer’s Disease. Acta Neuropathol. Commun. 2018, 6, 3. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Frost, J.L.; Cotman, C.W.; Head, E.; Palmour, R.; Lemere, C.A.; Walter, J. Deposition of Phosphorylated Amyloid-β in Brains of Aged Nonhuman Primates and Canines. Brain Pathol. 2018, 28, 427–430. [Google Scholar] [CrossRef]
- Mukherjee, S.; Perez, K.A.; Lago, L.C.; Klatt, S.; McLean, C.A.; Birchall, I.E.; Barnham, K.J.; Masters, C.L.; Roberts, B.R. Quantification of N-Terminal Amyloid-β Isoforms Reveals Isomers Are the Most Abundant Form of the Amyloid-β Peptide in Sporadic Alzheimer’s Disease. Brain Commun. 2021, 3, fcab028. [Google Scholar] [CrossRef] [PubMed]
- Barykin, E.P.; Petrushanko, I.Y.; Burnysheva, K.M.; Makarov, A.A.; Mitkevich, V.A. Isomerization of Asp7 increases the toxic effects of amyloid β and its phosphorylated form in SH-SY5Y neuroblastoma cells. Mol. Biol. 2016, 50, 863–869. [Google Scholar] [CrossRef]
- Łuczak, A.; Madej, M.; Kasprzyk, A.; Doroszko, A. Role of the ENOS Uncoupling and the Nitric Oxide Metabolic Pathway in the Pathogenesis of Autoimmune Rheumatic Diseases. Oxid. Med. Cell. Longev. 2020, 2020, 1417981. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, H.H.; Pollock, J.S.; Nakane, M.; Förstermann, U.; Murad, F. Ca2+/Calmodulin-Regulated Nitric Oxide Synthases. Cell Calcium 1992, 13, 427–434. [Google Scholar] [CrossRef]
- De Bock, M.; Wang, N.; Decrock, E.; Bol, M.; Gadicherla, A.K.; Culot, M.; Cecchelli, R.; Bultynck, G.; Leybaert, L. Endothelial Calcium Dynamics, Connexin Channels and Blood-Brain Barrier Function. Prog. Neurobiol. 2013, 108, 1–20. [Google Scholar] [CrossRef]
- Deniaud, A.; Sharaf el dein, O.; Maillier, E.; Poncet, D.; Kroemer, G.; Lemaire, C.; Brenner, C. Endoplasmic Reticulum Stress Induces Calcium-Dependent Permeability Transition, Mitochondrial Outer Membrane Permeabilization and Apoptosis. Oncogene 2008, 27, 285–299. [Google Scholar] [CrossRef] [Green Version]
- Xu, C.; Bailly-Maitre, B.; Reed, J.C. Endoplasmic Reticulum Stress: Cell Life and Death Decisions. J. Clin. Investig. 2005, 115, 2656–2664. [Google Scholar] [CrossRef] [Green Version]
- Chacko, B.K.; Kramer, P.A.; Ravi, S.; Benavides, G.A.; Mitchell, T.; Dranka, B.P.; Ferrick, D.; Singal, A.K.; Ballinger, S.W.; Bailey, S.M.; et al. The Bioenergetic Health Index: A New Concept in Mitochondrial Translational Research. Clin. Sci. 2014, 127, 367–373. [Google Scholar] [CrossRef] [Green Version]
- Dranka, B.P.; Hill, B.G.; Darley-Usmar, V.M. Mitochondrial Reserve Capacity in Endothelial Cells: The Impact of Nitric Oxide and Reactive Oxygen Species. Free Radic. Biol. Med. 2010, 48, 905–914. [Google Scholar] [CrossRef] [Green Version]
- Sansbury, B.E.; Riggs, D.W.; Brainard, R.E.; Salabei, J.K.; Jones, S.P.; Hill, B.G. Responses of Hypertrophied Myocytes to Reactive Species: Implications for Glycolysis and Electrophile Metabolism. Biochem. J. 2011, 435, 519–528. [Google Scholar] [CrossRef]
- Kozin, S.A.; Barykin, E.P.; Telegin, G.B.; Chernov, A.S.; Adzhubei, A.A.; Radko, S.P.; Mitkevich, V.A.; Makarov, A.A. Intravenously Injected Amyloid-β Peptide With Isomerized Asp7 and Phosphorylated Ser8 Residues Inhibits Cerebral β-Amyloidosis in AβPP/PS1 Transgenic Mice Model of Alzheimer’s Disease. Front. Neurosci. 2018, 12, 518. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, R.; Shukla, G.S. Potential Role of Cerebral Glutathione in the Maintenance of Blood-Brain Barrier Integrity in Rat. Neurochem. Res. 1999, 24, 1507–1514. [Google Scholar] [CrossRef]
- Mertsch, K.; Blasig, I.; Grune, T. 4-Hydroxynonenal Impairs the Permeability of an in Vitro Rat Blood-Brain Barrier. Neurosci. Lett. 2001, 314, 135–138. [Google Scholar] [CrossRef]
- Schreibelt, G.; Kooij, G.; Reijerkerk, A.; van Doorn, R.; Gringhuis, S.I.; van der Pol, S.; Weksler, B.B.; Romero, I.A.; Couraud, P.-O.; Piontek, J.; et al. Reactive Oxygen Species Alter Brain Endothelial Tight Junction Dynamics via RhoA, PI3 Kinase, and PKB Signaling. FASEB J. 2007, 21, 3666–3676. [Google Scholar] [CrossRef] [Green Version]
- Tang, X.; Luo, Y.-X.; Chen, H.-Z.; Liu, D.-P. Mitochondria, Endothelial Cell Function, and Vascular Diseases. Front. Physiol. 2014, 5, 175. [Google Scholar] [CrossRef]
- Ayloo, S.; Gu, C. Transcytosis at the Blood-Brain Barrier. Curr. Opin. Neurobiol. 2019, 57, 32–38. [Google Scholar] [CrossRef]
- Pulgar, V.M. Transcytosis to Cross the Blood Brain Barrier, New Advancements and Challenges. Front. Neurosci. 2019, 12, 1019. [Google Scholar] [CrossRef]
- Tian, X.; Leite, D.M.; Scarpa, E.; Nyberg, S.; Fullstone, G.; Forth, J.; Matias, D.; Apriceno, A.; Poma, A.; Duro-Castano, A.; et al. On the Shuttling across the Blood-Brain Barrier via Tubule Formation: Mechanism and Cargo Avidity Bias. Sci. Adv. 2020, 6, eabc4397. [Google Scholar] [CrossRef]
- Hill, B.G.; Benavides, G.A.; Lancaster, J.R.; Ballinger, S.; Dell’Italia, L.; Jianhua, Z.; Darley-Usmar, V.M. Integration of Cellular Bioenergetics with Mitochondrial Quality Control and Autophagy. Biol. Chem. 2012, 393, 1485–1512. [Google Scholar] [CrossRef] [Green Version]
- Pocernich, C.B.; Lange, M.L.B.; Sultana, R.; Butterfield, D.A. Nutritional Approaches to Modulate Oxidative Stress in Alzheimer’s Disease. Curr. Alzheimer Res. 2011, 8, 452–469. [Google Scholar] [CrossRef]
- Butterfield, D.A.; Bader Lange, M.L.; Sultana, R. Involvements of the Lipid Peroxidation Product, HNE, in the Pathogenesis and Progression of Alzheimer’s Disease. Biochim. Biophys. Acta 2010, 1801, 924–929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lovell, M.A.; Markesbery, W.R. Oxidative Damage in Mild Cognitive Impairment and Early Alzheimer’s Disease. J. Neurosci. Res. 2007, 85, 3036–3040. [Google Scholar] [CrossRef] [PubMed]
- Tayarani, I.; Chaudiere, J.; Lefauconnier, J.M.; Bourre, J.M. Enzymatic Protection against Peroxidative Damage in Isolated Brain Capillaries. J. Neurochem. 1987, 48, 1399–1402. [Google Scholar] [CrossRef] [PubMed]
- Smeyne, M.; Smeyne, R.J. Glutathione Metabolism and Parkinson’s Disease. Free Radic. Biol. Med. 2013, 62, 13–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mieyal, J.J.; Gallogly, M.M.; Qanungo, S.; Sabens, E.A.; Shelton, M.D. Molecular Mechanisms and Clinical Implications of Reversible Protein S-Glutathionylation. Antioxid. Redox Signal. 2008, 10, 1941–1988. [Google Scholar] [CrossRef] [PubMed]
- Mailloux, R.J.; Willmore, W.G. S-Glutathionylation Reactions in Mitochondrial Function and Disease. Front. Cell Dev. Biol 2014, 2, 68. [Google Scholar] [CrossRef] [Green Version]
- Beer, S.M.; Taylor, E.R.; Brown, S.E.; Dahm, C.C.; Costa, N.J.; Runswick, M.J.; Murphy, M.P. Glutaredoxin 2 Catalyzes the Reversible Oxidation and Glutathionylation of Mitochondrial Membrane Thiol Proteins: Implications for Mitochondrial Redox Regulation and Antioxidant Defense. J. Biol. Chem. 2004, 279, 47939–47951. [Google Scholar] [CrossRef] [Green Version]
- Ramachandran, A.; Moellering, D.R.; Ceaser, E.; Shiva, S.; Xu, J.; Darley-Usmar, V. Inhibition of Mitochondrial Protein Synthesis Results in Increased Endothelial Cell Susceptibility to Nitric Oxide-Induced Apoptosis. Proc. Natl. Acad. Sci. USA 2002, 99, 6643–6648. [Google Scholar] [CrossRef] [Green Version]
- Ramachandran, A.; Moellering, D.; Go, Y.-M.; Shiva, S.; Levonen, A.-L.; Jo, H.; Patel, R.P.; Parthasarathy, S.; Darley-Usmar, V.M. Activation of C-Jun N-Terminal Kinase and Apoptosis in Endothelial Cells Mediated by Endogenous Generation of Hydrogen Peroxide. Biol. Chem. 2002, 383, 693–701. [Google Scholar] [CrossRef]
- Kotamraju, S.; Tampo, Y.; Keszler, A.; Chitambar, C.R.; Joseph, J.; Haas, A.L.; Kalyanaraman, B. Nitric Oxide Inhibits H2O2-Induced Transferrin Receptor-Dependent Apoptosis in Endothelial Cells: Role of Ubiquitin-Proteasome Pathway. Proc. Natl. Acad. Sci. USA 2003, 100, 10653–10658. [Google Scholar] [CrossRef]
- Kotamraju, S.; Tampo, Y.; Kalivendi, S.V.; Joseph, J.; Chitambar, C.R.; Kalyanaraman, B. Nitric Oxide Mitigates Peroxide-Induced Iron-Signaling, Oxidative Damage, and Apoptosis in Endothelial Cells: Role of Proteasomal Function? Arch. Biochem. Biophys. 2004, 423, 74–80. [Google Scholar] [CrossRef]
- Loke, K.E.; Laycock, S.K.; Mital, S.; Wolin, M.S.; Bernstein, R.; Oz, M.; Addonizio, L.; Kaley, G.; Hintze, T.H. Nitric Oxide Modulates Mitochondrial Respiration in Failing Human Heart. Circulation 1999, 100, 1291–1297. [Google Scholar] [CrossRef] [Green Version]
- Brown, G.C. Nitric Oxide and Mitochondria. Front. Biosci. 2007, 12, 1024–1033. [Google Scholar] [CrossRef]
- Kawahara, M.; Kuroda, Y.; Arispe, N.; Rojas, E. Alzheimer’s Beta-Amyloid, Human Islet Amylin, and Prion Protein Fragment Evoke Intracellular Free Calcium Elevations by a Common Mechanism in a Hypothalamic GnRH Neuronal Cell Line. J. Biol. Chem. 2000, 275, 14077–14083. [Google Scholar] [CrossRef] [Green Version]
- LaFerla, F.M.; Green, K.N.; Oddo, S. Intracellular Amyloid-Beta in Alzheimer’s Disease. Nat. Rev. Neurosci. 2007, 8, 499–509. [Google Scholar] [CrossRef]
- Kagan, B.L.; Hirakura, Y.; Azimov, R.; Azimova, R.; Lin, M.-C. The Channel Hypothesis of Alzheimer’s Disease: Current Status. Peptides 2002, 23, 1311–1315. [Google Scholar] [CrossRef]
- Sanz-Blasco, S.; Valero, R.A.; Rodríguez-Crespo, I.; Villalobos, C.; Núñez, L. Mitochondrial Ca2+ Overload Underlies Abeta Oligomers Neurotoxicity Providing an Unexpected Mechanism of Neuroprotection by NSAIDs. PLoS ONE 2008, 3, e2718. [Google Scholar] [CrossRef] [Green Version]
- Calvo-Rodriguez, M.; Bacskai, B.J. Mitochondria and Calcium in Alzheimer’s Disease: From Cell Signaling to Neuronal Cell Death. Trends Neurosci. 2021, 44, 136–151. [Google Scholar] [CrossRef]
- Tiruppathi, C.; Minshall, R.D.; Paria, B.C.; Vogel, S.M.; Malik, A.B. Role of Ca2+ Signaling in the Regulation of Endothelial Permeability. Vasc. Pharmacol. 2002, 39, 173–185. [Google Scholar] [CrossRef]
- Hecquet, C.M.; Ahmmed, G.U.; Malik, A.B. TRPM2 Channel Regulates Endothelial Barrier Function. Adv. Exp. Med. Biol. 2010, 661, 155–167. [Google Scholar] [CrossRef]
- Fleming, I.; Bauersachs, J.; Busse, R. Calcium-Dependent and Calcium-Independent Activation of the Endothelial NO Synthase. JVR 1997, 34, 165–174. [Google Scholar] [CrossRef] [PubMed]
- Rellick, S.L.; Hu, H.; Simpkins, J.W.; Ren, X. Evaluation of Bioenergetic Function in Cerebral Vascular Endothelial Cells. J. Vis. Exp. 2016, e54847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martins, T.; Burgoyne, T.; Kenny, B.-A.; Hudson, N.; Futter, C.E.; Ambrósio, A.F.; Silva, A.P.; Greenwood, J.; Turowski, P. Methamphetamine-Induced Nitric Oxide Promotes Vesicular Transport in Blood-Brain Barrier Endothelial Cells. Neuropharmacology 2013, 65, 74–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Austin, S.A.; Katusic, Z.S. Partial Loss of Endothelial Nitric Oxide Leads to Increased Cerebrovascular Beta Amyloid. J. Cereb. Blood Flow Metab. 2020, 40, 392–403. [Google Scholar] [CrossRef] [PubMed]
- Tolstova, A.P.; Adzhubei, A.A.; Mitkevich, V.A.; Petrushanko, I.Y.; Makarov, A.A. Docking and Molecular Dynamics-Based Identification of Interaction between Various Beta-Amyloid Isoforms and RAGE Receptor. Int. J. Mol. Sci. 2022, 23, 11816. [Google Scholar] [CrossRef]
- Zhang, Y.; You, B.; Liu, X.; Chen, J.; Peng, Y.; Yuan, Z. High-Mobility Group Box 1 (HMGB1) Induces Migration of Endothelial Progenitor Cell via Receptor for Advanced Glycation End-Products (RAGE)-Dependent PI3K/Akt/ENOS Signaling Pathway. Med. Sci. Monit. 2019, 25, 6462–6473. [Google Scholar] [CrossRef]
- Tsvetkov, P.O.; Popov, I.A.; Nikolaev, E.N.; Archakov, A.I.; Makarov, A.A.; Kozin, S.A. Isomerization of the Asp7 Residue Results in Zinc-Induced Oligomerization of Alzheimer’s Disease Amyloid Beta(1-16) Peptide. Chembiochem 2008, 9, 1564–1567. [Google Scholar] [CrossRef]
- Liu, L.; Yu, J.; Li, L.; Zhang, B.; Liu, L.; Wu, C.-H.; Jong, A.; Mao, D.-A.; Huang, S.-H. Alpha7 Nicotinic Acetylcholine Receptor Is Required for Amyloid Pathology in Brain Endothelial Cells Induced by Glycoprotein 120, Methamphetamine and Nicotine. Sci. Rep. 2017, 7, 40467. [Google Scholar] [CrossRef]
- Klein, W.L. Abeta Toxicity in Alzheimer’s Disease: Globular Oligomers (ADDLs) as New Vaccine and Drug Targets. Neurochem. Int. 2002, 41, 345–352. [Google Scholar] [CrossRef]
- Petrushanko, I.Y.; Mitkevich, V.A.; Anashkina, A.A.; Adzhubei, A.A.; Burnysheva, K.M.; Lakunina, V.A.; Kamanina, Y.V.; Dergousova, E.A.; Lopina, O.D.; Ogunshola, O.O.; et al. Direct Interaction of Beta-Amyloid with Na,K-ATPase as a Putative Regulator of the Enzyme Function. Sci. Rep. 2016, 6, 27738. [Google Scholar] [CrossRef]
- Mitkevich, V.A.; Kretova, O.V.; Petrushanko, I.Y.; Burnysheva, K.M.; Sosin, D.V.; Simonenko, O.V.; Ilinskaya, O.N.; Tchurikov, N.A.; Makarov, A.A. Ribonuclease Binase Apoptotic Signature in Leukemic Kasumi-1 Cells. Biochimie 2013, 95, 1344–1349. [Google Scholar] [CrossRef]
- Petrushanko, I.; Bogdanov, N.; Bulygina, E.; Grenacher, B.; Leinsoo, T.; Boldyrev, A.; Gassmann, M.; Bogdanova, A. Na-K-ATPase in Rat Cerebellar Granule Cells Is Redox Sensitive. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2006, 290, R916–R925. [Google Scholar] [CrossRef] [Green Version]
- Petrushanko, I.Y.; Bogdanov, N.B.; Lapina, N.; Boldyrev, A.A.; Gassmann, M.; Bogdanova, A.Y. Oxygen-Induced Regulation of Na/K ATPase in Cerebellar Granule Cells. J. Gen. Physiol. 2007, 130, 389–398. [Google Scholar] [CrossRef] [Green Version]
- Va, M.; Iy, P.; Pv, S.; Tv, F.; Ov, K.; Na, T.; Vs, P.; On, I.; Aa, M. Sensitivity of Acute Myeloid Leukemia Kasumi-1 Cells to Binase Toxic Action Depends on the Expression of KIT and AML1-ETO Oncogenes. Cell Cycle 2011, 10, 4090–4097. [Google Scholar] [CrossRef] [Green Version]
- Gerencser, A.A.; Neilson, A.; Choi, S.W.; Edman, U.; Yadava, N.; Oh, R.J.; Ferrick, D.A.; Nicholls, D.G.; Brand, M.D. Quantitative Microplate-Based Respirometry with Correction for Oxygen Diffusion. Anal. Chem. 2009, 81, 6868–6878. [Google Scholar] [CrossRef] [Green Version]
- Nicholls, D.G.; Darley-Usmar, V.M.; Wu, M.; Jensen, P.B.; Rogers, G.W.; Ferrick, D.A. Bioenergetic Profile Experiment Using C2C12 Myoblast Cells. J. Vis. Exp. 2010, e2511. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrovskaya, A.V.; Tverskoi, A.M.; Barykin, E.P.; Varshavskaya, K.B.; Dalina, A.A.; Mitkevich, V.A.; Makarov, A.A.; Petrushanko, I.Y. Distinct Effects of Beta-Amyloid, Its Isomerized and Phosphorylated Forms on the Redox Status and Mitochondrial Functioning of the Blood–Brain Barrier Endothelium. Int. J. Mol. Sci. 2023, 24, 183. https://doi.org/10.3390/ijms24010183
Petrovskaya AV, Tverskoi AM, Barykin EP, Varshavskaya KB, Dalina AA, Mitkevich VA, Makarov AA, Petrushanko IY. Distinct Effects of Beta-Amyloid, Its Isomerized and Phosphorylated Forms on the Redox Status and Mitochondrial Functioning of the Blood–Brain Barrier Endothelium. International Journal of Molecular Sciences. 2023; 24(1):183. https://doi.org/10.3390/ijms24010183
Chicago/Turabian StylePetrovskaya, Aleksandra V., Artem M. Tverskoi, Evgeny P. Barykin, Kseniya B. Varshavskaya, Alexandra A. Dalina, Vladimir A. Mitkevich, Alexander A. Makarov, and Irina Yu. Petrushanko. 2023. "Distinct Effects of Beta-Amyloid, Its Isomerized and Phosphorylated Forms on the Redox Status and Mitochondrial Functioning of the Blood–Brain Barrier Endothelium" International Journal of Molecular Sciences 24, no. 1: 183. https://doi.org/10.3390/ijms24010183
APA StylePetrovskaya, A. V., Tverskoi, A. M., Barykin, E. P., Varshavskaya, K. B., Dalina, A. A., Mitkevich, V. A., Makarov, A. A., & Petrushanko, I. Y. (2023). Distinct Effects of Beta-Amyloid, Its Isomerized and Phosphorylated Forms on the Redox Status and Mitochondrial Functioning of the Blood–Brain Barrier Endothelium. International Journal of Molecular Sciences, 24(1), 183. https://doi.org/10.3390/ijms24010183