Spatiotemporal LUCC Simulation under Different RCP Scenarios Based on the BPNN_CA_Markov Model: A Case Study of Bamboo Forest in Anji County
<p>Location and natural environment of the study area: (<b>A</b>) land-use types in 2014, (<b>B</b>) elevation in 2014, (<b>C</b>) soil clay fraction in 2008, (<b>D</b>) total precipitation in 2014, (<b>E</b>) average temperature in 2014, and (<b>F</b>) average radiation in 2014.</p> "> Figure 2
<p>The concentrations of greenhouse gas under different climate scenarios from 2004 to 2049.</p> "> Figure 3
<p>The structure of the back propagation neural network (BPNN).</p> "> Figure 4
<p>The roulette selection mechanism.</p> "> Figure 5
<p>Flow chart for the simulation.</p> "> Figure 6
<p>The error of Markov chain (<b>A</b>) in 2008 and (<b>B</b>) in 2014. (RE is the relative error between the simulated area of each land use and the actual classification area).</p> "> Figure 7
<p>(<b>A</b>) The mean square error (MSE) of BPNN, (<b>B</b>) the accuracy of BPNN, and (<b>C</b>) the receiver operating characteristic (ROC) curves and area under ROC curve (AUC) values of BPNN.</p> "> Figure 8
<p>The land suitability probabilities of the six land-use types in 2008.</p> "> Figure 9
<p>The simulated spatial pattern of land cover from 2004 to 2014.</p> "> Figure 10
<p>Normalized confusion matrices between predicted results and true label in 2008 and 2014.</p> "> Figure 11
<p>Area demands of each land-use type in Anji County from 2004 to 2049.</p> "> Figure 12
<p>Simulated result of Anji County in 2014 and different simulated results of Anji County in four scenarios from 2024–2049.</p> "> Figure 13
<p>(<b>A</b>) Different simulated results of bamboo forest change in four scenarios in different periods. (<b>B</b>) the statistical area of the bamboo forest change from 2014 to 2049.</p> "> Figure 14
<p>(<b>A</b>) the same regions where bamboo forests will change under the four RCP scenarios from 2014 to 2049. (<b>B</b>) the different regions where bamboo forests will increase under the four RCP scenarios from 2014 to 2049. (<b>C</b>) the different regions where bamboo forests will decrease under the four RCP scenarios from 2014 to 2049. (<b>D</b>) the different regions where bamboo forests will be unchanged under the four RCP scenarios from 2014 to 2049.</p> "> Figure 15
<p>The annual total precipitation (<b>A</b>) and annual mean temperature (<b>B</b>) of Anji County under different climate scenarios from 2004 to 2049.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Methods
2.3.1. Evaluation of Spatiotemporal Bamboo Forest Change
2.3.2. Markov Chain Model
2.3.3. CA Model Integrated with a BPNN Model (BPNN_CA)
Back Propagation Neural Network (BPNN)
Self-Adaptive Inertia and Competition Mechanism
2.3.4. Integration of BPNN_CA and Markov Chain
3. Results
3.1. Dynamics Change and Average Transition Probability Matrix of Land Use
3.2. Parameter Optimization of BPNN and the Probability of Land Suitability
3.3. Verification of the Consistency between the Simulation Results and the Actual Patterns
3.4. Future Spatiotemporal LUCC Simulation and Its Evolution
3.4.1. Future Land-Use Demand Projection
3.4.2. Spatiotemporal Land-Use Pattern and Bamboo Forest Distribution in the Future
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jiao, J.-G.; Yang, L.-Z.; Wu, J.-X.; Wang, H.-Q.; Li, H.-X.; Ellis, E.C. Land Use and Soil Organic Carbon in China’s Village Landscapes. Pedosphere 2010, 20, 1–14. [Google Scholar]
- Matthews, H.D.; Graham, T.L.; Keverian, S.; Lamontagne, C.; Seto, D.; Smith, T.J. National contributions to observed global warming. Environ. Res. Lett. 2014, 9, 468–475. [Google Scholar] [CrossRef] [Green Version]
- Su, Z.-Y.; Xiong, Y.-M.; Zhu, J.-Y.; Ye, Y.-C.; Ye, M. Soil Organic Carbon Content and Distribution in a Small Landscape of Dongguan, South China. Pedosphere 2006, 16, 10–17. [Google Scholar]
- Law, B.E.; Hudiburg, T.W.; Berner, L.T.; Kent, J.J.; Buotte, P.C.; Harmon, M.E. Land use strategies to mitigate climate change in carbon dense temperate forests. Proc. Natl. Acad. Sci. USA 2018, 115, 201720064. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Dai, E.; Wu, Z.; Lin, M. Future forest dynamics under climate change, land use change, and harvest in subtropical forests in Southern China. Landsc. Ecol. 2019, 34, 843–863. [Google Scholar] [CrossRef]
- Yu, Z.; Lu, C.; Tian, H.; Canadell, J.G. Largely underestimated carbon emission from land use and land cover change in the conterminous United States. Glob. Chang. Biol. 2019, 25, 3741–3752. [Google Scholar] [CrossRef]
- Liu, X.; Liang, X.; Li, X.; Xu, X.; Ou, J.; Chen, Y.; Li, S.; Wang, S.; Pei, F. A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects. Landsc. Urban Plan. 2017, 168, 94–116. [Google Scholar] [CrossRef]
- Marull, J.; Pino, J.; Tello, E.; Cordobilla, M.J. Social metabolism, landscape change and land-use planning in the Barcelona Metropolitan Region. Land Use Policy 2010, 27, 497–510. [Google Scholar] [CrossRef]
- Pijanowski, B.C.; Brown, D.G.; Shellito, B.A.; Manik, G.A. Using neural networks and GIS to forecast land use changes: A land transformation model. Comput. Environ. Urban Syst. 2002, 26, 553–575. [Google Scholar] [CrossRef]
- Stephenne, N.; Lambin, E. A dynamic simulation model of land-use changes in Sudano-sahelian countries of Africa (SALU). Agric. Ecosyst. Environ. 2001, 85, 145–161. [Google Scholar] [CrossRef]
- Gobin, A.; Campling, P.; Feyen, J. Logistic modelling to derive agricultural land use determinants: A case study from southeastern Nigeria. Agric. Ecosyst. Environ. 2002, 89, 213–228. [Google Scholar] [CrossRef]
- Tian, H.; Liang, X.; Li, X.; Liu, X.; Ou, J.; Hong, Y.; He, Z. Simulating Multiple Land Use Scenarios in China during 2010–2050 Based on System Dynamic Model. Trop. Geogr. 2017, 37, 547–561. [Google Scholar]
- Li, X.; Yeh, A.G.-O. Neural-network-based cellular automata for simulating multiple land use changes using GIS. Int. J. Geogr. Inf. Sci. 2002, 16, 323–343. [Google Scholar] [CrossRef]
- Luo, G.; Yin, C.; Chen, X.; Xu, W.; Lu, L. Combining system dynamic model and CLUE-S model to improve land use scenario analyses at regional scale: A case study of Sangong watershed in Xinjiang, China. Ecol. Complex. 2010, 7, 198–207. [Google Scholar] [CrossRef]
- Yang, X.; Jin, X.; Du, X.; Xiang, X.; Han, J.; Shan, W.; Fan, Y.; Zhou, Y. Multi-agent model-based historical cropland spatial pattern reconstruction for 1661–1952, Shandong Province, China. Glob. Planet. Chang. 2016, 143, 175–188. [Google Scholar] [CrossRef] [Green Version]
- Itami, R.M. Simulating spatial dynamics: Cellular automata theory. Landsc. Urban Plan. 1994, 30, 27–47. [Google Scholar] [CrossRef]
- Han, H.; Yang, C.; Song, J. Scenario simulation and the prediction of land use and land cover change in Beijing, China. Sustainability 2015, 7, 4260–4279. [Google Scholar] [CrossRef] [Green Version]
- Verburg, P.H.; Schulp, C.; Witte, N.; Veldkamp, A. Downscaling of land use change scenarios to assess the dynamics of European landscapes. Agric. Ecosyst. Environ. 2006, 114, 39–56. [Google Scholar] [CrossRef]
- Marta, L.; Michelle, R.; Erika, C.; Filippo, G.; Rosmeri, D.R.; Diego, D.S. Land Use Change over the Amazon Forest and Its Impact on the Local Climate. Water 2018, 10, 149. [Google Scholar]
- Leemans, R.; Van Amstel, A.; Battjes, C.; Kreileman, E.; Toet, S. The land cover and carbon cycle consequences of large-scale utilizations of biomass as an energy source. Glob. Environ. Chang. 1996, 6, 335–357. [Google Scholar] [CrossRef]
- van Meijl, H.; Van Rheenen, T.; Tabeau, A.; Eickhout, B. The impact of different policy environments on agricultural land use in Europe. Agric. Ecosyst. Environ. 2006, 114, 21–38. [Google Scholar] [CrossRef]
- Behera, M.D.; Borate, S.N.; Panda, S.N.; Behera, P.R.; Roy, P.S. Modelling and analyzing the watershed dynamics using Cellular Automata (CA)–Markov model—A geo-information based approach. J. Earth Syst. Sci. 2012, 121, 1011–1024. [Google Scholar] [CrossRef] [Green Version]
- Jokar Arsanjani, J.; Helbich, M.; Kainz, W.; Darvishi Boloorani, A. Integration of logistic regression, Markov chain and cellular automata models to simulate urban expansion. Int. J. Appl. Earth Obs. Geoinf. 2013, 21, 265–275. [Google Scholar] [CrossRef]
- Guan, D.J.; Li, H.F.; Inohae, T.; Su, W.; Nagaie, T.; Hokao, K. Modeling urban land use change by the integration of cellular automaton and Markov model. Ecol. Model. 2011, 222, 3761–3772. [Google Scholar] [CrossRef]
- Tiné, M.; Perez, L.; Molowny-Horas, R. Hybrid spatiotemporal simulation of future changes in open wetlands: A study of the Abitibi-Témiscamingue region, Québec, Canada. Int. J. Appl. Earth Obs. Geoinf. 2019, 74, 302–313. [Google Scholar] [CrossRef]
- Zhao, M.; He, Z.; Du, J.; Chen, L.; Lin, P.; Fang, S. Assessing the effects of ecological engineering on carbon storage by linking the CA-Markov and InVEST models. Ecol. Indic. 2018, 98, 29–38. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, Z.; Wang, X. Land use change and prediction in the Baimahe Basin using GIS and CA-Markov model. IOP Conf. Ser. Earth Environ. Sci. 2014, 17, 012074. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Chen, F.; Xi, J.; Xie, P.; Li, C. A Multitarget Land Use Change Simulation Model Based on Cellular Automata and Its Application. Abstr. Appl. Anal. 2014, 2014, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Shooshtari, S.J.; Gholamalifard, M. Scenario-based land cover change modeling and its implications for landscape pattern analysis in the Neka Watershed, Iran. Remote Sens. Appl. Soc. Environ. 2015, 1, 1–19. [Google Scholar] [CrossRef]
- Espiritosanto, F.D.B.; Gloor, M.; Keller, M.; Malhi, Y.; Saatchi, S.; Nelson, B.W.; Junior, R.; Pereira, C.; Lloyd, J.; Frolking, S. Size and frequency of natural forest disturbances and the Amazon forest carbon balance. Nat. Commun. 2014, 5, 3434. [Google Scholar] [CrossRef] [Green Version]
- Seidl, R.; Thom, D.; Kautz, M.; Martin-Benito, D.; Peltoniemi, M.; Vacchiano, G.; Wild, J.; Ascoli, D.; Petr, M.; Honkaniemi, J. Forest disturbances under climate change. Nat. Clim. Chang. 2017, 7, 395–402. [Google Scholar] [CrossRef] [Green Version]
- Houghton, R.A.; Nassikas, A.A. Negative emissions from stopping deforestation and forest degradation, globally. Glob. Chang. Biol. 2018, 24, 350–359. [Google Scholar] [CrossRef]
- Costanza, R.; Ruth, M. Using Dynamic Modeling to Scope Environmental Problems and Build Consensus. Environ. Manag. 1998, 22, 183–195. [Google Scholar] [CrossRef]
- Verburg, P.H.; Schot, P.P.; Dijst, M.J.; Veldkamp, A. Land use change modelling: Current practice and research priorities. Geojournal 2004, 61, 309–324. [Google Scholar] [CrossRef]
- Kline, J.D.; Moses, A.; Lettman, G.J.; Azuma, D.L. Modeling forest and range land development in rural locations, with examples from eastern Oregon. Landsc. Urban Plan. 2007, 80, 320–332. [Google Scholar] [CrossRef]
- Schulp, C.J.E.; Nabuurs, G.J.; Verburg, P.H. Future carbon sequestration in Europe—Effects of land use change. Agric. Ecosyst. Environ. 2008, 127, 251–264. [Google Scholar] [CrossRef]
- Zhou, G.; Jiang, P.; Du, H.; Shi, Y. Technology for the Measurement and Enhancement Carbon Sinks in Bamboo Forest Ecosystems; Science Press: Beijing, China, 2017. [Google Scholar]
- Li, X.; Mao, F.; Du, H.; Zhou, G.; Zhang, M. Spatiotemporal evolution and impacts of climate change on bamboo distribution in China. J. Environ. Manag. 2019, 248, 109265. [Google Scholar] [CrossRef]
- Xu, X.; Zhou, G.; Du, H.; Partida, A. Bamboo forest change and its effect on biomass carbon stocks: A case study of Anji County, Zhejiang Province, China. J. Trop. For. Sci. 2012, 24, 426–435. [Google Scholar]
- Ruirui, C.; Huaqiang, D.; Guomo, Z.; Xiaojun, X.; Dejin, D.; Yulong, L. Remote sensing-based dynamic monitoring of moso bamboo forest and its carbon stock change in Anji County. J. Zhejiang A F Univ. 2011, 28, 422–431. [Google Scholar]
- Poelmans, L.; Rompaey, A.V. Complexity and performance of urban expansion models. Comput. Environ. Urban Syst. 2010, 34, 17–27. [Google Scholar] [CrossRef]
- Dubovyk, O.; Sliuzas, R.; Flacke, J. Spatio-temporal modelling of informal settlement development in Sancaktepe district, Istanbul, Turkey. ISPRS J. Photogramm. Remote Sens. 2011, 66, 235–246. [Google Scholar] [CrossRef]
- Li, X.; Du, H.; Mao, F.; Zhou, G.; Xing, L.; Liu, T.; Han, N.; Liu, E.; Ge, H.; Liu, Y. Mapping spatiotemporal decisions for sustainable productivity of bamboo forest land. Land Degrad. Dev. 2020, 31, 939–958. [Google Scholar] [CrossRef]
- Zheng, J.; Mao, F.; Du, H.; Li, X.; Xing, L. Spatiotemporal Simulation of Net Ecosystem Productivity and Its Response to Climate Change in Subtropical Forests. Forests 2019, 10, 708. [Google Scholar] [CrossRef] [Green Version]
- Pachauri, R.; Reisinger, A. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. J. Roman. Stud. 2014, 4, 85–88. [Google Scholar]
- Zhou, G.M.; Jiang, P.K. Density, storage and spatial distribution of carbon in Phyllostachy pubescens forest. Sci. Silvae Sin. 2004, 40, 20–24. [Google Scholar]
- Xiao, F.; Fan, S.; Wang, S.; Xiong, C.; Zhang, C.; Liu, S.; Zhang, J. Carbon storage and spatial distribution in Phyllostachy pubescens and Cunninghamia lanceolata plantation ecosystem. Acta Phytoecol. Sin. 2007, 27, 2791–2801. [Google Scholar]
- Zhen-Qin, L. Soil Nutrients and Carbon Stocks in Phyllostachys heterocycla cv. pubescens Ecosystems at Various Elevations in Jianou City. J. Bamboo Res. 2013, 2, 7. [Google Scholar]
- Zhang, M.; Du, H.; Mao, F.; Zhou, G.; Li, X.; Dong, L.; Zheng, J.; Zhu, D.; Liu, H.; Huang, Z. Spatiotemporal Evolution of Urban Expansion Using Landsat Time Series Data and Assessment of Its Influences on Forests. ISPRS Int. J. Geo Inf. 2020, 9, 64. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Du, H.; Mao, F.; Li, X.; Cui, L.; Han, N.; Xu, X. Information Extracting and Spatiotemporal Evolution of Bamboo Forest Based on Landsat Time Series Data in Zhejiang Province. Sci. Silvae Sin. 2019, 55, 88–96. [Google Scholar]
- Surabuddin Mondal, M.; Sharma, N.; Kappas, M.; Garg, P. Modeling of spatio-temporal dynamics of land use and land cover in a part of Brahmaputra River basin using Geoinformatic techniques. Geocarto Int. 2013, 28, 632–656. [Google Scholar] [CrossRef]
- Sanchayeeta, A.; Jane, S. Simulating Forest Cover Changes of Bannerghatta National Park Based on a CA-Markov Model: A Remote Sensing Approach. Remote Sens. 2012, 4, 3215–3243. [Google Scholar]
- Gidey, E.; Dikinya, O.; Sebego, R.; Segosebe, E.; Zenebe, A. Cellular automata and Markov Chain (CA_Markov) model-based predictions of future land use and land cover scenarios (2015–2033) in Raya, northern Ethiopia. Modeling Earth Syst. Environ. 2017, 3, 1245–1262. [Google Scholar] [CrossRef]
- Akin, A.; Aliffi, S.; Sunar, F. Spatio-temporal urban change analysis and the ecological threats concerning the third bridge in Istanbul City. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2014, 40, 9. [Google Scholar] [CrossRef] [Green Version]
- He, C.; Shi, P.; Chen, J.; Li, X.; Pan, Y.; Li, Y.; Li, J. Developing land use scenario dynamics model by the integration of system dynamics model and cellular automata model. Sci. China Ser. D Earth Sci. 2005, 48, 1979. [Google Scholar] [CrossRef]
- Huang, Q.X.; Chunyang, H.E.; Liu, Z.F.; Shi, P.J. Modeling the impacts of drying trend scenarios on land systems in northern China using an integrated SD and CA model. Sci. China Earth Sci. 2014, 57, 839–854. [Google Scholar] [CrossRef]
- Verburg, P.H.; Soepboer, W.; Veldkamp, A.; Limpiada, R.; Espaldon, V.; Mastura, S.S. Modeling the spatial dynamics of regional land use: The CLUE-S model. Environ. Manag. 2002, 30, 391–405. [Google Scholar] [CrossRef]
- Pontius, R.G.; Boersma, W.; Castella, J.; Clarke, K.C.; De Nijs, T.; Dietzel, C.; Duan, Z.; Fotsing, E.; Goldstein, N.; Kok, K. Comparing the input, output, and validation maps for several models of land change. Ann. Reg. Sci. 2008, 42, 11–37. [Google Scholar] [CrossRef] [Green Version]
- Estoque, R.C.; Murayama, Y. Examining the potential impact of land use/cover changes on the ecosystem services of Baguio city, the Philippines: A scenario-based analysis. Appl. Geogr. 2012, 35, 316–326. [Google Scholar] [CrossRef]
- Iacono, M.; Levinson, D.; El-Geneidy, A.; Wasfi, R. A Markov chain model of land use change. TeMA J. Land Use Mobil. Environ. 2015, 8, 263–276. [Google Scholar]
- Li, K.; Feng, M.; Biswas, A.; Su, H.; Niu, Y.; Cao, J. Driving Factors and Future Prediction of Land Use and Cover Change Based on Satellite Remote Sensing Data by the LCM Model: A Case Study from Gansu Province, China. Sensors 2020, 20, 2757. [Google Scholar] [CrossRef]
- Liao, W.; Liu, X.; Xu, X.; Chen, G.; Li, X. Projections of land use changes under the plant functional type classification in different SSP-RCP scenarios in China. Sci. Bull. 2020, 65, 1935–1947. [Google Scholar] [CrossRef]
- Zhai, Y.; Yao, Y.; Guan, Q.; Liang, X.; Li, X.; Pan, Y.; Yue, H.; Yuan, Z.; Zhou, J. Simulating urban land use change by integrating a convolutional neural network with vector-based cellular automata. Int. J. Geogr. Inf. Sci. 2020, 34, 1475–1499. [Google Scholar] [CrossRef]
- Zhang, Y. A study of the effects of climatic fluctuation on Chinese fir and bamboo ecological envrionment in subtropical regions of China. Q. J. Appl. Meteorl. 1995, 6, 75–82. [Google Scholar]
Category | Data | Year | Data Resource |
---|---|---|---|
Land use | Land-use data | 2004, 2008, 2014 | Based on the Landsat TM and OLI |
Neighborhood effects | Urban land density | 2004, 2008, 2014 | Density of the specific land-use type in the Moore neighborhood |
Water body density | |||
Cultivated land density | |||
Broadleaf forest density | |||
Coniferous forest density | |||
Bamboo density | |||
Climate | Annual total Precipitation (Pre) | 2004–2014 | Interpolation based on data from 410 weather stations in Zhejiang Province and its surrounding provinces, from 2004 to 2014 |
Annual average radiation (Rad) | |||
Annual average relative humidity (Rhu) | |||
Annual average temperature (Tav) | |||
Future Climate | RCP2.6 (Pre, Rad, Rhu, Tav) | 2019–2049 | Derived from BCC-CSM1-1 climate change modeling data |
RCP4.5 (Pre, Rad, Rhu, Tav) | |||
RCP6.0 (Pre, Rad, Rhu, Tav) | |||
RCP8.5 (Pre, Rad, Rhu, Tav) | |||
Topography | DEM | 2014 | Calculated from DEM |
Slope | |||
Aspect | |||
Soil | Silt fraction | 2008 | Derived from the Harmonized World Soil Database (HWSD 1.2) |
Clay fraction | |||
Wilt point | |||
Soil available water content | |||
Soil bulk density | |||
Location | Distance to road | 2014 | Generated using the distance analysis function in ArcGIS 10.4 |
Distance to water |
Year | Type | UL | WB | CL | BLF | CF | BF | OA | Kappa |
---|---|---|---|---|---|---|---|---|---|
2004 | UL | 82 | 1 | 1 | 0 | 0 | 0 | 0.9621 | 0.9541 |
WB | 1 | 52 | 0 | 0 | 0 | 0 | |||
CL | 2 | 0 | 41 | 0 | 1 | 1 | |||
BLF | 0 | 0 | 1 | 73 | 0 | 2 | |||
CF | 0 | 0 | 0 | 1 | 58 | 1 | |||
BF | 0 | 0 | 1 | 1 | 0 | 50 | |||
2008 | UL | 71 | 0 | 4 | 0 | 0 | 0 | 0.9617 | 0.9536 |
WB | 1 | 78 | 1 | 0 | 0 | 0 | |||
CL | 2 | 2 | 106 | 0 | 1 | 1 | |||
BLF | 0 | 0 | 0 | 78 | 0 | 1 | |||
CF | 0 | 0 | 0 | 1 | 58 | 2 | |||
BF | 0 | 0 | 0 | 2 | 0 | 61 | |||
2014 | UL | 68 | 1 | 0 | 0 | 0 | 0 | 0.9313 | 0.9170 |
WB | 1 | 64 | 0 | 0 | 0 | 0 | |||
CL | 1 | 0 | 83 | 0 | 0 | 2 | |||
BLF | 0 | 0 | 0 | 84 | 2 | 11 | |||
CF | 0 | 0 | 1 | 1 | 54 | 4 | |||
BF | 0 | 0 | 2 | 5 | 1 | 81 |
Types | UL | WB | CL | BLF | CF | BF |
---|---|---|---|---|---|---|
values | 1 | 0.9 | 0.55 | 0.7 | 0.6 | 0.8 |
Types | UL | WB | CL | BLF | CF | BF |
---|---|---|---|---|---|---|
UL | 0 | 0.8 | 0.6 | 0.99 | 0.99 | 0.99 |
WB | 0.8 | 0 | 0.8 | 0.9 | 0.9 | 0.9 |
CL | 0.3 | 0.7 | 0 | 0.5 | 0.4 | 0.5 |
BLF | 0.9 | 0.9 | 0.7 | 0 | 0.6 | 0.5 |
CF | 0.9 | 0.9 | 0.6 | 0.5 | 0 | 0.6 |
BF | 0.9 | 0.9 | 0.7 | 0.6 | 0.6 | 0 |
Year | Types | UL | WB | CL | BLF | CF | BF | Total | K | P | |
---|---|---|---|---|---|---|---|---|---|---|---|
2004–2008 | UL | 56.12 | 2.61 | 17.20 | 0.16 | 0.19 | 0.51 | 76.80 | 41.86% | 10.46% | 0.37% |
WB | 2.58 | 35.65 | 9.49 | 0.09 | 2.58 | 0.02 | 50.41 | −1.11% | −0.28% | 0.02% | |
CL | 71.13 | 11.26 | 567.66 | 27.21 | 30.00 | 88.57 | 795.84 | −20.78% | −5.20% | 63.78% | |
BLF | 0.22 | 0.01 | 4.13 | 173.52 | 3.67 | 37.39 | 218.94 | 19.76% | 4.94% | 26.92% | |
CF | 1.17 | 0.27 | 23.48 | 20.05 | 127.27 | 12.37 | 184.59 | 10.29% | 2.57% | 8.91% | |
BF | 0.87 | 0.06 | 36.96 | 51.82 | 42.05 | 425.52 | 557.28 | 1.26% | 0.31% | ||
Total | 132.09 | 49.86 | 658.91 | 272.84 | 205.77 | 564.39 | 1883.86 | ||||
2008–2014 | UL | 80.31 | 3.69 | 46.40 | 0.72 | 0.46 | 0.51 | 132.09 | 22.18% | 3.70% | 0.28% |
WB | 4.42 | 36.77 | 8.32 | 0.17 | 0.18 | 0.00 | 49.86 | 2.48% | 0.41% | 0.00% | |
CL | 76.35 | 9.14 | 455.47 | 32.72 | 30.09 | 55.15 | 658.91 | −9.96% | −1.66% | 30.68% | |
BLF | 1.44 | 0.09 | 17.89 | 150.07 | 19.62 | 83.74 | 272.84 | 5.17% | 0.86% | 46.59% | |
CF | 3.04 | 1.36 | 17.87 | 42.60 | 100.56 | 40.35 | 205.77 | −6.36% | −1.06% | 22.45% | |
BF | 4.18 | 0.09 | 53.29 | 61.44 | 42.56 | 402.84 | 564.39 | 3.12% | 0.52% | ||
Total | 169.75 | 51.13 | 599.23 | 287.71 | 193.46 | 582.59 | 1883.86 | ||||
2004–2014 | UL | 55.00 | 3.29 | 16.41 | 0.90 | 0.56 | 0.64 | 76.80 | 54.76% | 5.48% | 0.35% |
WB | 5.04 | 37.20 | 6.37 | 0.76 | 0.96 | 0.08 | 50.41 | 1.41% | 0.14% | 0.04% | |
CL | 104.82 | 9.75 | 520.45 | 41.92 | 35.62 | 83.27 | 795.84 | −32.81% | −3.28% | 45.67% | |
BLF | 0.32 | 0.01 | 8.52 | 129.40 | 16.12 | 64.57 | 218.94 | 23.90% | 2.39% | 35.41% | |
CF | 2.35 | 0.71 | 12.71 | 46.41 | 88.63 | 33.78 | 184.59 | 4.58% | 0.46% | 18.53% | |
BF | 2.22 | 0.17 | 34.77 | 68.31 | 51.57 | 400.25 | 557.28 | 4.34% | 0.43% | ||
Total | 169.75 | 51.13 | 599.23 | 287.71 | 193.46 | 582.59 | 1883.86 |
Types | UL | WB | CL | BLF | CF | BF |
---|---|---|---|---|---|---|
UL | 0.6694 | 0.0310 | 0.2876 | 0.0038 | 0.0030 | 0.0053 |
WB | 0.0699 | 0.7223 | 0.1776 | 0.0026 | 0.0274 | 0.0003 |
CL | 0.1026 | 0.0140 | 0.7023 | 0.0419 | 0.0417 | 0.0975 |
BLF | 0.0031 | 0.0002 | 0.0422 | 0.6713 | 0.0443 | 0.2388 |
CF | 0.0106 | 0.0040 | 0.1070 | 0.1578 | 0.5891 | 0.1315 |
BF | 0.0045 | 0.0001 | 0.0804 | 0.1009 | 0.0754 | 0.7387 |
Year | A | B | C | D | FOM |
---|---|---|---|---|---|
2004–2008 | 309,377 | 349,891 | 107,615 | 121,845 | 39.36% |
2008–2014 | 292,171 | 438,083 | 146,782 | 188,308 | 41.12% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Z.; Du, H.; Li, X.; Zhang, M.; Mao, F.; Zhu, D.; He, S.; Liu, H. Spatiotemporal LUCC Simulation under Different RCP Scenarios Based on the BPNN_CA_Markov Model: A Case Study of Bamboo Forest in Anji County. ISPRS Int. J. Geo-Inf. 2020, 9, 718. https://doi.org/10.3390/ijgi9120718
Huang Z, Du H, Li X, Zhang M, Mao F, Zhu D, He S, Liu H. Spatiotemporal LUCC Simulation under Different RCP Scenarios Based on the BPNN_CA_Markov Model: A Case Study of Bamboo Forest in Anji County. ISPRS International Journal of Geo-Information. 2020; 9(12):718. https://doi.org/10.3390/ijgi9120718
Chicago/Turabian StyleHuang, Zihao, Huaqiang Du, Xuejian Li, Meng Zhang, Fangjie Mao, Di’en Zhu, Shaobai He, and Hua Liu. 2020. "Spatiotemporal LUCC Simulation under Different RCP Scenarios Based on the BPNN_CA_Markov Model: A Case Study of Bamboo Forest in Anji County" ISPRS International Journal of Geo-Information 9, no. 12: 718. https://doi.org/10.3390/ijgi9120718
APA StyleHuang, Z., Du, H., Li, X., Zhang, M., Mao, F., Zhu, D., He, S., & Liu, H. (2020). Spatiotemporal LUCC Simulation under Different RCP Scenarios Based on the BPNN_CA_Markov Model: A Case Study of Bamboo Forest in Anji County. ISPRS International Journal of Geo-Information, 9(12), 718. https://doi.org/10.3390/ijgi9120718