Relationship between Winter Snow Cover Dynamics, Climate and Spring Grassland Vegetation Phenology in Inner Mongolia, China
<p>(<b>a</b>) The geographic location of Inner Mongolia; (<b>b</b>) the distribution of grassland vegetation types; and (<b>c</b>) the elevation, weather stations and phenology observation stations of Inner Mongolia.</p> "> Figure 2
<p>A schematic diagram illustrates the retrieval of spring phenology using the logistic fitting method [<a href="#B45-ijgi-08-00042" class="html-bibr">45</a>]. The solid line indicates the fitted logistic curve and the dashed line is the rate of change in curvature of the fitted logistic curve. Onset date of spring phenology (SOS) is defined as the first local maximum of the dashed curve. The red line indicates that the vegetation index begin to increase rapidly.</p> "> Figure 3
<p>(<b>a</b>) Spatial distribution of the mean SOS in the grassland of Inner Mongolia during 1982–2015; (<b>b</b>) spatial distribution of the change trend for SOS in the grassland of Inner Mongolia during 1982–2015. The SOS change trends are termed significant for pixels at <span class="html-italic">p</span> < 0.05 level.</p> "> Figure 4
<p>34 year average of SOS and its change trends for different vegetation types: (<b>a</b>) meadow steppe, (<b>b</b>) typical steppe, and (<b>c</b>) desert steppe. Each bin represents a 10 day range of SOS. The height and color of each bin indicate the number and fitting slope (i.e., the change trend) of the pixels that fall within the bin, respectively, with the color bar of the slope on the bottom of the figure. Only statistically significant trends (<span class="html-italic">p</span> < 0.05) are included.</p> "> Figure 5
<p>The change trends of SOS for different vegetation types with different window lengths (i.e., study period): (<b>a</b>) meadow steppe; (<b>b</b>) typical steppe and (<b>c</b>) desert steppe. Each dot represents mean trends of each vegetation type over a single window size (1–33 years) for each start year (1982–2014). Only statistically significant trends (<span class="html-italic">p</span> < 0.05) are included in this analysis. The red (green) color indicates positive (negative) trends.</p> "> Figure 6
<p>The interannual variability of each climate factor in different grassland types. The value in each grid indicates the rate of change for each climate factor. Values are also color-coded, with blue indicating negative values and red indicating positive values. The color of each grid corresponds to the value, with the color bar on the right of the table. The asterisks (*) indicate the climate factors trends that are statistically significant at the <span class="html-italic">p</span> < 0.1 level, and the double asterisks (**) indicate significance at the <span class="html-italic">p</span> < 0.05 level.</p> "> Figure 7
<p>The correlation between SOS and climate factors for three vegetation types: (<b>a</b>) meadow steppe; (<b>b</b>) typical steppe; and (<b>c</b>) desert steppe. Each dot represents the correlation between SOS and the corresponding climate factor, with the red color indicating a positive correlation and blue color indicating a negative correlation. The asterisks (*) indicate the trends of the climate factors trends that are statistically significant with <span class="html-italic">p</span> < 0.1 and the double asterisks (**) indicate trends with <span class="html-italic">p</span> < 0.05.</p> ">
Abstract
:1. Introduction
- (1)
- Quantify the spatial heterogeneity and temporal trends in vegetation spring phenology for different temperate grassland vegetation types in Inner Mongolia.
- (2)
- Explore the underlying mechanisms related to the effects of winter snow cover dynamics (including snow depth (SD), snow cover duration (SCD), snow cover onset date (SCOD), and snow cover end date (SCED)) on the spring phenology.
- (3)
- Investigate the responses of the spring phenology to climate factors (including Tmin, Tmax, Tavg, precipitation (PRE), onset date of frozen soil thawing (GST), relative humidity (RHU), and sunshine duration (SSD)) during SCED and SOS.
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Preprocessing of NDVI Time Series Data
2.4. Retrieval of Spring Phenology
2.5. Statistical Analyses
3. Results
3.1. The Performances of Satellite-Based SOS
3.2. Spatial Variation in Vegetation Spring Phenology
3.3. Temporal Variations in Vegetation Spring Phenology
3.4. The Relationship between Winter Snow Cover, Climate, and Vegetation Spring Phenology
- (1)
- Snow cover duration (SCD): the number of snow covered days in a hydrological year;
- (2)
- (3)
- End date of snow cover (SCED): the ending date (Julian day) of the snow cover. It is defined as the last day when snow cover is last observed to exist for at least five consecutive days.
4. Discussion
5. Conclusions
- (1)
- During 1982–2015, 52.7% of the Inner Mongolia grassland experienced a significant advancing trend in SOS and 34.30% exhibited a delaying trend. The average SOS occurred on DOY 120 for meadow steppe and typical steppe, and on DOY 130 in the desert steppe. All three grassland vegetation types exhibited an earlier spring season at a rate of 0.3 ± 0.74 days/year across all of grassland vegetation types, and rates of 0.27 ± 0.47 days/year, 0.32 ± 0.65 days/year, and 0.47 ± 1.48 days/year for temperate meadow steppe, typical steppe, and desert steppe, respectively.
- (2)
- Winter snow cover showed a positive correlation with the SOS. By contrast, SCOD showed an opposite correlation. Focusing on the correlation between snow cover and SOS, we found that the SOS was more strongly associated with SCED, SD, and SCOD for meadow steppe, typical steppe, and desert steppe, respectively. Furthermore, the climate during snowmelt and SOS was also a significant factor contributing to the change in SOS. Higher temperatures and more precipitation advanced SOS, whereas Tmax and Tavg showed a positive correlation with SOS for desert steppe. Increasing Tmin would reduce the number of frost events and promote vegetation growth. Sunshine hours and relative humidity showed weaker correlations.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Baldocchi, D.; Falge, E.; Gu, L.; Olson, R.; Hollinger, D.; Running, S.; Anthoni, P.; Bernhofer, C.; Davis, K.; Evans, R. Fluxnet: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull. Am. Meteorol. Soc. 2001, 82, 2415–2434. [Google Scholar] [CrossRef]
- Churkina, G.; Schimel, D.; Braswell, B.H.; Xiao, X.M. Spatial analysis of growing season length control over net ecosystem exchange. Glob. Chang. Biol. 2005, 11, 1777–1787. [Google Scholar] [CrossRef]
- Richardson, A.D.; Braswell, B.H.; Hollinger, D.Y.; Jenkins, J.P.; Ollinger, S.V. Near-surface remote sensing of spatial and temporal variation in canopy phenology. Ecol. Appl. 2009, 19, 1417–1428. [Google Scholar] [CrossRef] [PubMed]
- Hogg, E.H.; Price, D.T.; Black, T.A. Postulated feedbacks of deciduous forest phenology on seasonal climate patterns in the western Canadian interior. J. Clim. 2000, 13, 4229–4243. [Google Scholar] [CrossRef]
- Cooke, J.E.K.; Weih, M. Nitrogen storage and seasonal nitrogen cycling in Populus: Bridging molecular physiology and ecophysiology. New Phytol. 2005, 167, 19–30. [Google Scholar] [CrossRef] [PubMed]
- Heimann, M.; Esser, G.; Haxeltine, A.; Kaduk, J.; Kicklighter, D.W.; Knorr, W.; Kohlmaier, G.H.; McGuire, A.D.; Melillo, J.; Moore, B.; et al. Evaluation of terrestrial carbon cycle models through simulations of the seasonal cycle of atmospheric CO2: First results of a model intercomparison study. Glob. Biogeochem. Cycles 1998, 12, 1–24. [Google Scholar] [CrossRef]
- Menzel, A.; Sparks, T.H.; Estrella, N.; Koch, E.; Aasa, A.; Ahas, R.; Alm-Kubler, K.; Bissolli, P.; Braslavska, O.; Briede, A.; et al. European phenological response to climate change matches the warming pattern. Glob. Chang. Biol. 2006, 12, 1969–1976. [Google Scholar] [CrossRef] [Green Version]
- Parmesan, C.; Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 2003, 421, 37–42. [Google Scholar] [CrossRef]
- Dai, A.; Wigley, T.M.L. Global patterns of enso-induced precipitation. Geophys. Res. Lett. 2000, 27, 1283–1286. [Google Scholar] [CrossRef]
- Dannenberg, M.P.; Song, C.H.; Hwang, T.; Wise, E.K. Empirical evidence of El Nino-Southern Oscillation influence on land surface phenology and productivity in the western United States. Remote Sens. Environ. 2015, 159, 167–180. [Google Scholar] [CrossRef]
- Shrestha, A.; Kostaschuk, R. El Nino/Southern Oscillation (ENSO)-related variablity in mean-monthly streamflow in Nepal. J. Hydrol. 2005, 308, 33–49. [Google Scholar] [CrossRef]
- Rees, M.; Condit, R.; Crawley, M.; Pacala, S.; Tilman, D. Long-term studies of vegetation dynamics. Science 2001, 293, 650–655. [Google Scholar] [CrossRef] [PubMed]
- Pettorelli, N.; Vik, J.O.; Mysterud, A.; Gaillard, J.M.; Tucker, C.J.; Stenseth, N.C. Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends Ecol. Evol. 2005, 20, 503–510. [Google Scholar] [CrossRef] [PubMed]
- John, R.; Chen, J.Q.; Lu, N.; Wilske, B. Land cover/land use change in semi-arid Inner Mongolia: 1992–2004. Environ. Res. Lett. 2009, 4, 045010. [Google Scholar] [CrossRef] [Green Version]
- Fan, J.W.; Wang, K.; Harris, W.; Zhong, H.P.; Hu, Z.M.; Han, B.; Zhang, W.Y.; Wang, J.B. Allocation of vegetation biomass across a climate-related gradient in the grasslands of Inner Mongolia. J. Arid Environ. 2009, 73, 521–528. [Google Scholar] [CrossRef]
- Shang, Z.H.; Cao, J.J.; Guo, R.Y.; Henkin, Z.; Ding, L.M.; Long, R.J.; Deng, B. Effect of enclosure on soil carbon, nitrogen and phosphorus of alpine desert rangeland. Land Degrad. Dev. 2017, 28, 1166–1177. [Google Scholar] [CrossRef]
- Wang, M.P.; Zhao, C.Z.; Long, R.J.; Yang, Y.H. Rangeland governance in China: Overview, impacts on Sunan County in Gansu Province and future options. Rangel. J. 2010, 32, 155–163. [Google Scholar] [CrossRef]
- Tian, H.J.; Cao, C.X.; Chen, W.; Bao, S.N.; Yang, B.; Myneni, R.B. Response of vegetation activity dynamic to climatic change and ecological restoration programs in Inner Mongolia from 2000 to 2012. Ecol. Eng. 2015, 82, 276–289. [Google Scholar] [CrossRef]
- Li, C.L.; Wang, J.; Hu, R.C.; Yin, S.; Bao, Y.H.; Ayal, D.Y. Relationship between vegetation change and extreme climate indices on the Inner Mongolia Plateau, China, from 1982 to 2013. Ecol. Indic. 2018, 89, 101–109. [Google Scholar] [CrossRef]
- Shen, X.J.; Liu, B.H.; Henderson, M.; Wang, L.; Wu, Z.F.; Wu, H.T.; Jiang, M.; Lu, X.G. Asymmetric effects of daytime and nighttime warming on spring phenology in the temperate grasslands of China. Agric. For. Meteorol. 2018, 259, 240–249. [Google Scholar] [CrossRef]
- Piao, S.L.; Tan, J.G.; Chen, A.P.; Fu, Y.H.; Ciais, P.; Liu, Q.; Janssens, I.A.; Vicca, S.; Zeng, Z.Z.; Jeong, S.J.; et al. Leaf onset in the northern hemisphere triggered by daytime temperature. Nat. Commun. 2015, 6, 6911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, X.J.; Liu, B.H.; Li, G.D.; Yu, P.J.; Zhou, D.W. Impacts of grassland types and vegetation cover changes on surface air temperature in the regions of temperate grassland of China. Theor. Appl. Climatol. 2016, 126, 141–150. [Google Scholar] [CrossRef]
- Jordan, R. A One-Dimensional Temperature Model for a Snow Cover: Technical Documentation for SNTHERM.89; Cold Regions Research and Engineering Laboratory: Hanover, NH, USA, 1991. [Google Scholar]
- Wilson, W.T. Transactions, American geophysical union—An outline of the thermodynamics of snow melt. Eos Trans. Am. Geophys. Union 1941, 22, 182–195. [Google Scholar] [CrossRef]
- Stieglitz, M.; Ducharne, A.; Koster, R.; Suarez, M. The impact of detailed snow physics on the simulation of snow cover and subsurface thermodynamics at continental scales. J. Hydrometeorol. 2001, 2, 228–242. [Google Scholar] [CrossRef]
- Baker, D.G.; Ruschy, D.L.; Skaggs, R.H.; Wall, D.B. Air-temperature and radiation depressions associated with a snow cover. J. Appl. Meteorol. 1992, 31, 247–254. [Google Scholar] [CrossRef]
- Paudel, K.P.; Andersen, P. Response of rangeland vegetation to snow cover dynamics in Nepal Trans Himalaya. Clim. Chang. 2013, 117, 149–162. [Google Scholar] [CrossRef]
- Primack, R.B.; Ibanez, I.; Higuchi, H.; Lee, S.D.; Miller-Rushing, A.J.; Wilson, A.M.; Silander, J.A. Spatial and interspecific variability in phenological responses to warming temperatures. Biol. Conserv. 2009, 142, 2569–2577. [Google Scholar] [CrossRef]
- Schwartz, M.D.; Hanes, J.M. Continental-scale phenology: Warming and chilling. Int. J. Climatol. 2010, 30, 1595–1598. [Google Scholar] [CrossRef]
- Anyamba, A.; Tucker, C.J. Analysis of Sahelian vegetation dynamics using NOAA-AVHRR NDVI data from 1981–2003. J. Arid Environ. 2005, 63, 596–614. [Google Scholar] [CrossRef]
- Han, J.Y.; Mol, A.P.J.; Lu, Y.L.; Zhang, L. Onshore wind power development in China: Challenges behind a successful story. Energy Policy 2009, 37, 2941–2951. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.G.; Kang, Y.M.; Han, G.D.; Sakurai, K. Effect of climate change over the past half century on the distribution, extent and NPP of ecosystems of Inner Mongolia. Glob. Chang. Biol. 2011, 17, 377–389. [Google Scholar] [CrossRef]
- Li, Q.Y.; Xu, L.; Pan, X.B.; Zhang, L.Z.; Li, C.; Yang, N.; Qi, J.G. Modeling phenological responses of Inner Mongolia grassland species to regional climate change. Environ. Res. Lett. 2016, 11, 015002. [Google Scholar] [CrossRef] [Green Version]
- Bai, Y.F.; Han, X.G.; Wu, J.G.; Chen, Z.Z.; Li, L.H. Ecosystem stability and compensatory effects in the Inner Mongolia grassland. Nature 2004, 431, 181–184. [Google Scholar] [CrossRef] [PubMed]
- John, R.; Chen, J.Q.; Lu, N.; Guo, K.; Liang, C.Z.; Wei, Y.F.; Noormets, A.; Ma, K.P.; Han, X.G. Predicting plant diversity based on remote sensing products in the semi-arid region of Inner Mongolia. Remote Sens. Environ. 2008, 112, 2018–2032. [Google Scholar] [CrossRef]
- Pedelty, J.; Devadiga, S.; Masuoka, E.; Brown, M.; Pinzon, J.; Tucker, C.; Roy, D.; Ju, J.C.; Vermote, E.; Prince, S.; et al. Generating a long-term land data record from the AVHRR and MODIS instruments. In Proceedings of the Igarss: 2007 IEEE International Geoscience and Remote Sensing Symposium, Barcelona, Spain, 23–28 July 2007; Volumes 1–12, pp. 1021–1024. [Google Scholar]
- He, Y.Q.; Lee, E.; Warner, T.A. A time series of annual land use and land cover maps of China from 1982 to 2013 generated using AVHRR GIMMS NDVI3G data. Remote Sens. Environ. 2017, 199, 201–217. [Google Scholar] [CrossRef]
- Jiang, C.; Zhang, H.Y.; Zhang, Z.D. Spatially explicit assessment of ecosystem services in China’s Loess Plateau: Patterns, interactions, drivers, and implications. Glob. Planet Chang. 2018, 161, 41–52. [Google Scholar] [CrossRef]
- Cao, R.Y.; Chen, Y.; Shen, M.G.; Chen, J.; Zhou, J.; Wang, C.; Yang, W. A simple method to improve the quality of NDVI time-series data by integrating spatiotemporal information with the Savitzky−Golay filter. Remote Sens. Environ. 2018, 217, 244–257. [Google Scholar] [CrossRef]
- Holben, B.N. Characteristics of maximum-value composite images from temporal AVHRR data. Int. J. Remote Sens. 1986, 7, 1417–1434. [Google Scholar] [CrossRef] [Green Version]
- Savitzky, A.; Golay, M.J.E. Smoothing + differentiation of data by simplified least squares procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- Geng, L.; Ma, M.; Wang, X.; Yu, W.; Jia, S.; Wang, H. Comparison of eight techniques for reconstructing multi-satellite sensor time-series NDVI data sets in the Heihe River Basin, China. Remote Sens. 2014, 6, 2024–2049. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Friedl, M.A.; Schaaf, C.B.; Strahler, A.H. Climate controls on vegetation phenological patterns in northern mid- and high latitudes inferred from MODIS data. Glob. Chang. Biol. 2004, 10, 1133–1145. [Google Scholar] [CrossRef]
- Shen, M.G.; Piao, S.L.; Cong, N.; Zhang, G.X.; Janssens, I.A. Precipitation impacts on vegetation spring phenology on the Tibetan Plateau. Glob. Chang. Biol. 2015, 21, 3647–3656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.Y.; Friedl, M.A.; Schaaf, C.B.; Strahler, A.H.; Hodges, J.C.F.; Gao, F.; Reed, B.C.; Huete, A. Monitoring vegetation phenology using MODIS. Remote Sens. Environ. 2003, 84, 471–475. [Google Scholar] [CrossRef]
- Han, L.J.; Tsunekawa, A.; Tsubo, M.; He, C.Y.; Shen, M.G. Spatial variations in snow cover and seasonally frozen ground over northern China and Mongolia, 1988–2010. Glob. Planet Chang. 2014, 116, 139–148. [Google Scholar] [CrossRef] [Green Version]
- Broge, N.H.; Leblanc, E. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sens. Environ. 2001, 76, 156–172. [Google Scholar] [CrossRef]
- Lu, A.; Zhu, W.; Jia, S. Assessment of the sensitivity of vegetation to El-Nino/Southern Oscillation events over China. Adv. Space Res. 2012, 50, 1362–1373. [Google Scholar] [CrossRef]
- Ke, C.Q.; Li, X.C.; Xie, H.J.; Ma, D.H.; Liu, X.; Kou, C. Variability in snow cover phenology in China from 1952 to 2010. Hydrol. Earth Syst. Sci. 2016, 20, 755–770. [Google Scholar] [CrossRef] [Green Version]
- Peng, S.S.; Piao, S.L.; Ciais, P.; Friedlingstein, P.; Zhou, L.M.; Wang, T. Change in snow phenology and its potential feedback to temperature in the northern hemisphere over the last three decades. Environ. Res. Lett. 2013, 8, 014008. [Google Scholar] [CrossRef]
- Estrella, N.; Menzel, A. Responses of leaf colouring in four deciduous tree species to climate and weather in Germany. Clim. Res. 2006, 32, 253–267. [Google Scholar] [CrossRef] [Green Version]
- Miller-Rushing, A.J.; Primack, R.B. Global warming and flowering times in Thoreau’s Concord: A community perspective. Ecology 2008, 89, 332–341. [Google Scholar] [CrossRef]
- Sun, C.F.; Liu, Y.; Song, H.M.; Cai, Q.F.; Li, Q.; Wang, L.; Mei, R.C.; Fang, C.X. Sunshine duration reconstruction in the southeastern Tibetan Plateau based on tree-ring width and its relationship to volcanic eruptions. Sci. Total Environ. 2018, 628–629, 707–714. [Google Scholar] [CrossRef] [PubMed]
- Dai, L.; Tao, C. Spatiotemporal variability in snow cover from 1987 to 2011 in northern China. J. Appl. Remote Sens. 2014, 8, 084693. [Google Scholar] [CrossRef]
- Peng, S.S.; Piao, S.L.; Ciais, P.; Fang, J.Y.; Wang, X.H. Change in winter snow depth and its impacts on vegetation in China. Glob. Chang. Biol. 2010, 16, 3004–3013. [Google Scholar] [CrossRef]
- Wang, S.Y.; Wang, X.Y.; Chen, G.S.; Yang, Q.C.; Wang, B.; Ma, Y.X.; Shen, M. Complex responses of spring alpine vegetation phenology to snow cover dynamics over the Tibetan Plateau, China. Sci. Total Environ. 2017, 593, 449–461. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.Y.; Wu, C.Y.; Peng, D.L.; Gonsamo, A.; Liu, Z.J. Snow cover phenology affects alpine vegetation growth dynamics on the Tibetan Plateau: Satellite observed evidence, impacts of different biomes, and climate drivers. Agric. For. Meteorol. 2018, 256, 61–74. [Google Scholar] [CrossRef]
- Groffman, P.M.; Driscoll, C.T.; Fahey, T.J.; Hardy, J.P.; Fitzhugh, R.D.; Tierney, G.L. Colder soils in a warmer world: A snow manipulation study in a northern hardwood forest ecosystem. Biogeochemistry 2001, 56, 135–150. [Google Scholar] [CrossRef]
- Fitzhugh, R.D.; Driscoll, C.T.; Groffman, P.M.; Tierney, G.L.; Fahey, T.J.; Hardy, J.P. Soil freezing and the acid-base chemistry of soil solutions in a northern hardwood forest. Soil Sci. Soc. Am. J. 2003, 67, 5–7. [Google Scholar] [CrossRef]
- Schimel, J.P.; Bilbrough, C.; Welker, J.A. Increased snow depth affects microbial activity and nitrogen mineralization in two arctic tundra communities. Soil Biol. Biochem. 2004, 36, 217–227. [Google Scholar] [CrossRef]
- Welker, J.M.; Fahnestock, J.T.; Sullivan, P.F.; Chimner, R.A. Leaf mineral nutrition of arctic plants in response to warming and deeper snow in northern Alaska. Oikos 2005, 109, 167–177. [Google Scholar] [CrossRef]
- Monson, R.K.; Lipson, D.L.; Burns, S.P.; Turnipseed, A.A.; Delany, A.C.; Williams, M.W.; Schmidt, S.K. Winter forest soil respiration controlled by climate and microbial community composition. Nature 2006, 439, 711–714. [Google Scholar] [CrossRef]
- Tang, G.; Arnone, J.A.; Verburg, P.S.J.; Jasoni, R.L.; Sun, L. Trends and climatic sensitivities of vegetation phenology in semiarid and arid ecosystems in the US Great Basin during 1982–2011. Biogeosciences 2015, 12, 6985–6997. [Google Scholar] [CrossRef]
- Yang, Y.T.; Guan, H.D.; Shen, M.G.; Liang, W.; Jiang, L. Changes in autumn vegetation dormancy onset date and the climate controls across temperate ecosystems in China from 1982 to 2010. Glob. Chang. Biol. 2015, 21, 652–665. [Google Scholar] [CrossRef] [PubMed]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiao, D.; Wang, N. Relationship between Winter Snow Cover Dynamics, Climate and Spring Grassland Vegetation Phenology in Inner Mongolia, China. ISPRS Int. J. Geo-Inf. 2019, 8, 42. https://doi.org/10.3390/ijgi8010042
Qiao D, Wang N. Relationship between Winter Snow Cover Dynamics, Climate and Spring Grassland Vegetation Phenology in Inner Mongolia, China. ISPRS International Journal of Geo-Information. 2019; 8(1):42. https://doi.org/10.3390/ijgi8010042
Chicago/Turabian StyleQiao, Dejing, and Nianqin Wang. 2019. "Relationship between Winter Snow Cover Dynamics, Climate and Spring Grassland Vegetation Phenology in Inner Mongolia, China" ISPRS International Journal of Geo-Information 8, no. 1: 42. https://doi.org/10.3390/ijgi8010042
APA StyleQiao, D., & Wang, N. (2019). Relationship between Winter Snow Cover Dynamics, Climate and Spring Grassland Vegetation Phenology in Inner Mongolia, China. ISPRS International Journal of Geo-Information, 8(1), 42. https://doi.org/10.3390/ijgi8010042